OPTIMIZATION OF SQL QUERIES FOR PARALLEL MACHINES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Wagar Hasan
December, 1995

(© Copyright 1996 by Wagar Hasan
All Rights Reserved

| certify that | have read this dissertation and that in my opinionitisfully adequate,
in scope and in quality, as a dissertation for the degree of Daoctor of Philosophy.

Gio Wiederhold
(Principal Adviser)

| certify that | have read this dissertation and that in my opinionitisfully adequate,
in scope and in quality, as a dissertation for the degree of Daoctor of Philosophy.

Hector Garcia-Molina

| certify that | have read this dissertation and that in my opinionitisfully adequate,
in scope and in quality, as a dissertation for the degree of Daoctor of Philosophy.

Ravi Krishnamurthy

| certify that | have read this dissertation and that in my opinionitisfully adequate,
in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Rajeev Motwani

| certify that | have read this dissertation and that in my opinionitisfully adequate,
in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Jeffrey D. Ullman

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

Abstract

Parallel execution offers a solution to the problem of reducing the response time of SQL queries
against large databases. As a declarative language, SQL alows users to avoid the complex proce-
dural details of programming a paralel machine. A DBMS answers a SQL query by first finding
a procedural plan to execute the query and subsequently executing the plan to produce the query
result. We address the problem of parallel query optimizationwhich is: Given a SQL query, find
the parallel plan that delivers the query result in minimal time.

We devel op optimization algorithms using model s that incorporate the sources of parallelism as
well as obstacles to achieving speedup. One obstacle isinherent limitson available parallelism due
to parale and precedence constraints between operators and due to data placement constraints that
essentially pre-all ocate some subset of operators. Another obstacleisthat the overhead of exploiting
parallelism may increase total work thus reducing or even offsetting the benefit of parallel execution.
Our experiments with NonStop SQL, a commercia parallel DBMS, show communication of data
across processors to be a significant source of increase in work.

We adopt atwo-phase approach to parallel query optimization: join ordering and query rewrite
(JOQR), followed by parall€elization. The JOQR phase minimizesthetotal work to computeaquery.
The paral€lization phase extracts parallelism and schedules resources to minimize response time.
We make contributions to both phases. Our work is applicable to queries that include operations
such as grouping, aggregation, foreign functions, intersection and set difference in additiontojoins.

We develop agorithms for the JOQR phase that minimize total cost while accounting for the
communication cost of repartitioning data. Using a model that abstracts physical characteristics
of data, such as partitioning, as colors, we devise tree coloring algorithms that are efficient and
guarantee optimality.

We model the parallelization phase as scheduling a tree of inter-dependent operators with
computation and communi cation costsrepresented asnode and edgeweights. Scheduling aweighted
operator tree on a parallel machine poses a class of novel multi-processor scheduling problemsthat

differ from the classical in several ways.

We devel op and compare several efficient algorithmsfor the problem of scheduling a pipelined
operator tree in which al operators run in parallel using inter-operator parallelism. Given the NP-
hardness of the problem, we assess the quality of our algorithms by measuring their performance
ratio which is the ratio of the response time of the generated schedule to that of the optimal. We
prove worst-case bounds on the performance ratios of our algorithms and measure the average cases
using simulation.

We address the problem of scheduling a pipelined operator tree using both pipelined and
partitioned parallelism. We characterize optimal schedules and investigate two classes of schedules
that we term symmetric and balanced.

Theresultsin this thesis enable the construction of SQL compilersthat can effectively exploit
parallel machines.

Acknowledgements

| expressmy gratitudeto the people and organi zationsthat madethisthesispossible. Gio Wiederhold
was a constant source of intellectual support. He encouraged me to learn and use a variety
of techniques from different areas of Computer Science. Rajeev Motwani helped enhance my
understanding of theory and contributed significantly to the ideas in this thesis. Jeff Ullman was
a source of useful discussions and | thank him for his helpful and incisive comments. Ravi
Krishnamurthy served as a mentor and a source of interesting ideas and challenging questions.
Hector Garcia-Molina provided helpful advice. Jim Gray helped me understand the redlities of
paralle query processing.

My thesis topic grew out of work at Hewlett-Packard Laboratories and was supported by a
fellowship from Hewlett-Packard. | express my gratefulness to Hewlett-Packard Company and
thank my managers Umesh Dayal, Dan Fishman, Peter Lyngbaek and Marie-Anne Neimat for
management, intellectual and moral support.

| thank Tandem Computersfor providing access to a paralel machine, to the NonStop SQL/MP
paralled DBMS, and permitting publication of experimental results. | am grateful to Susanne Englert,
Ray Glasstone and Shyam Johari for making this possible and for hel ping me understand Tandem
systems.

The following friends and colleagues were a source of invaluable discussions and diversions:
Sang Cha, Suragjit Chaudhuri, Philippe DeSmedt, Mike Heytens, Curt K olovson, Stephaniel eichner,
Sherayn Listgarten, Arif Merchant, Inderpal Mumick, Pandu Nayak, Peter Rathmann, Donovan
Schneider, Arun Swami, Kevin Wilkinson, Xiaolei Qian.

This thesis would not have been possible without the support and understanding of my family.
| thank my father, Dr. Amir Hasan, for providing the inspiration to pursue a PhD. | thank my
mother, Fatima Hasan, my brothers Safdar, Javed, and Zulfiquar, and sister Seemin for their love
and encouragement. | owe adebt to my wife Shirin and son Arif for putting up with my long hours
and for the support, love and encouragement that made thiswork possible.

vi

Contents

Abstract
Acknowledgements

1 Introduction
1.1 Minimizing Response Time: Sources and Deterrents

111 Sourcesof Speedup
112 DeerentstoSpeedup L.
1.2 Modéd for Parallel Query Optimization
121 AnnotatedQuery Trees
122 OperatorTrees.
123 Padld MachineModd
1.3 Organizationof Thesis.
14 ReaedWork,

141 Query Optimization for Centralized Databases
142 Query Optimization for Distributed Databases
143 Query Optimization for Parallel Databases .

2 Priceof Parallelism
21 Introduction L.
2.2 Tandem Architecture: An Overview
221 Pardld and Fault-tolerant Hardware
222 MessageBased Software L L
2.2.3 Performance Characteristics
23 PadldisminNonStop SQL/MP.

Vii

=

© © O ~N O O B» WN P <.

B
o O

231 Useof Intracoperator Paralelism 15

232 ProcessStructure e 17
24 Sartup CostS e e e 19
25 Costsof Operatorsand Communication 19
251 Experimental Setup 21
252 Costsof Scans, Predicatesand Aggregation 22
253 Costsof Locad and Remote Communication 23
254 Cost of Repartitioned Communication 24
255 Costsof JoinOperatorso 26
256 Costsof GroupingOperators 27
2.6 Pardld Versus Sequential Execution.o Lo 28
26.1 PadldismcanReduceWork oo oL 29
2.6.2 PardldismCanlincrease ResponseTime 30
27 Summaryof Findings Lo 30
JOQR Optimizations 32
3.1 A Mode for Minimizing Communication 33
311 Patitioning 33
312 RepartitioningCost 34
3.1.3 OptimizationProblem L. 35
3.2 Algorithmsfor Query TreeColoring o .. 36
321 Problem Smplification o oL 37
3.2.2 A Greedy Algorithm for Distinct Pre-Colorings 37
323 Algorithmfor Repested Colors 39
324 Extensions. UsingSetsof Colors 42
3.3 Modd for Methodsand Physical Properties 44
3.3.1 Annotated Query TreesandtheirCost 45
3.4 Extension of ColorSplit for Methods and Physical Properties 47
35 Model WithJoinOrdering e 49
35.1 Join Ordering Without Physical Properties. 49
3.5.2 JoinOrdering With Physical Properties 51
36 Usageof Algorithms e 52

viii

4 Scheduling Pipelined Parallelism 54

41 ProblemDefinition 54
4.2 IdentifyingWorthlessParallelism 57
421 WorthlessEdgesand MonotoneTrees 57

422 TheGreedyChase Algorithm 59

423 LowerBounds 60

4.3 TheModified LPT Algorithm 60
44 ConnectedSchedules. L 62
44.1 Connected Schedules when CommunicationisFree 63

44.2 BaancedCuts with CommunicationCosts 66

45 Connected Schedulesasan Approximation 67
4.6 Heuristicsfor POT Scheduling L. 71
46.1 AHybridAlgorithm 72
46.2 TheGreedy PairingAlgorithm. 72

4.7 ApproximationAlgorithms oL 74
471 ATwo-stageApproach 74

472 TheLocalCutsAlgorithm 76

473 TheBoundedCutsAlgorithm 79

4.8 Expeimental Comparisono e 85
481 Experimental Setup 85

482 Experimental Comparison e 85

483 Peformanceof Hybrid 86
484 Comparison of Hybrid, LocaCutsand BoundedCuts 87

485 Behaviorof LowerBound 88

49 DISCUSSION o vt e e e 88
5 Scheduling Mixed Parallelism 90
51 ProblemDefinition. 90
52 BaancedSchedules 93
53 SymmetricSchedules 98
54 Scheduling TreeswithTwoNodes o o L o0 o000 oo oL 107
55 DISCUSSION o o e e e e e 109

6 Summary and Future Work
6.1 Summary of Contributions oL L
6.2 FutureWork

Bibliography

List of Tables

2.1 Peadldization Strategiesand JoinMethodso oL
2.2 CPU Costs of Operations (1K tuplesoccupy 1Mbyte)

3.1 Examplesof Input-Output Constraints

Xi

List of Figures

11
12
13

21
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211

31
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10

Query Processing Architectureo 2
Phases and Sub-phases of Parallel Query Optimization

(A) Annotated Query Tree (B) Corresponding Operator Tree 6
(a) Tandem Architecture (b) Abstraction as Shared-Nothing 14
Process Startup: With (solid) and without (dotted) processreuse. 19
Local, Remote and Repartitioned Communication 20
Scan with 1 predicate(dotted), 2 predicates(solid), aggregation(dashed) 23
Scan and Aggregation(dashed) with Local (solid) and Remote(dotted) Comm. . . . 23
Process structure: (a) No communication (b) Loca (¢c) Remote 24
Loca and Repartitioned Execution. L. 25
Local (dotted) and Repartitioned(solid) Comm. 26
Query using Simple-hash (dashed), Sort-merge (solid) and Nested Join (dotted) . . 27
Hash (solid) and Sort (dotted) GroupingCosts 28
Process Structure: Sequential and Parallel Execution 29
Query Trees: Hatched edges show repartitioning 33
(i) Query Tree; (ii) Coloring of cost 7; (iii) Minimal Coloringof cost6 36
(i) Split colored interior node (ii) Collapse uncoloredleaves 37
(i) Query Tree (ii) Suboptima DL C coloring (cost=9) (iii) Optimal coloring (cost=8) 39
Problem Decomposition after ColoringNode¢ 40
Opt and Optctablesfor treeof Figure3.4 41
Interaction of Repartitioning with Join Predicates 43
Annotated Query Trees. e 45
Interaction of Repartitioningwith Order of Joins 49
Decompositionof acomplexqueryo o 52

Xii

41
4.2

43
4.4
45
46
47
48
4.9
4.10

411

4.12

4.13

414

51
52
5.3
5.4
55
5.6
5.7

6.1

A pipdined scheduleand itsexecution oL 55
(A) Trace of GreedyChase (worthless edges hatched) (B) modified LPT schedule

(C)naiveLPT schedule 61
Example with Performance ratio = n/p for Modified LPT 62
Connected Schedule as Cutting and CollapsingEdges 63
Fragments formed by BpSchedule before the last stage of BalancedCuts 67
Exampleswith IfTit =2- @ 69
Performance ratio=3 for star of 10 nodes scheduled on 5 processors 71
Subtrees T, T, Tyur for nodesm,m/,m” 81
Copt s o e e 81
Performanceof Hybrid(solid), Bal ancedFragments(dotted) and M odified L PT (dashed)
onWIdeTrees e e 86
Performanceof Hybrid(solid), Bal ancedFragments(dotted) and M odified L PT (dashed)
onNarrow Trees e e e e e e 87
Comparison of Hybrid(solid), L ocal Cuts(dashed) and BoundedCuts(dotted) on Nar-

FOW TIEES e e e e e e e e e 87
Comparison of Hybrid(solid), Loca Cuts(dashed) and BoundedCuts(dotted) on
WIdeTrees e e e e e 88
Performance of Optimal (dotted) and Hybrid(solid) 89
ExecutionwithMixed Pardlelism 91
Structure of (Strongly) Minima Schedule oL 97
Matricesforp =3 103
Counter-Example: Tree for which Symmetric Scheduleisa SaddlePoint 106
Plot of z = a11 + az1 — 2a11a21 With agp on x-axis, apg ony-axis 107
“OneSided” schedule 109
Balanced Schedule for n=2 (Some communicationarcs omitted) 109
Phases and Sub-phases of Parallel Query Optimization 112

Xiii

Chapter 1

| ntroduction

Database systems provide competitive advantage to businesses by allowing quick determination of
answers to business questions. Intensifying competition continuesto increase the sizes of databases
aswell asthe sophisticationof queriesagainst them. Parallel machines constructed from commodity
hardware componentsoffer higher performance aswell asperformance at alower price as compared
to sequential mainframes. Exploiting parallelism is therefore a natural solution for reducing the
response times of queries against large databases.

SQL, thestandard language for database access, isadeclarativelanguage. It insulatesusersfrom
the complex procedural detailsof accessing and manipulating data. In particular, exploiting parallel
machines does not require users to learn a new language or existing SQL code to be rewritten.
Given a declarative query, the DBM S first devises a procedural plan and then executes the plan to
produce the query result (see Figure 1.1). The problem of devising the best procedural plan for a
SQL query istermed query optimization.

Whilethe declarative nature of SQL alowsusersto benefit transparently from parallel machines,
the DBMS must solve a hew optimization problem. This new problem, termed parallel query
optimization, is the subject of thisthesis. It is defined as. Given an SQL query, find the parallée
plan that delivers the query result with the least response time.

1.1 Minimizing Response Time: Sources and Deterrents

In thisthesis, we will exploit two complementary tactics for reducing the response time of a query
(i.e. speeding up aquery). Response time may be reduced by decreasing the total work to compute
aquery. It may aso be reduced by partitioning work among multiple processors.

CHAPTER 1. INTRODUCTION 2

Declarative . . Procedural . Quer
TR Optimizatiops_— ExecqunImij

Figure 1.1: Query Processing Architecture

We will model two fundamental deterrents to achieving speedup through partitioning of work.
First, there may beintrinsic limitson how work may be partitioned. The available parallelism may
be such that it is impossible to partition work evenly among processors. Since response time is
the time at which al processors have completed work, skewed processor |oads reduce speedup.
As an extreme case, the available paralelism may be insufficient even to use al processors. The
second deterrent isthat partitioningmay itself generate extrawork. Thus, the overhead of exploiting
parallelism may reduce, or even offset, the benefit from parallel execution.

1.1.1 Sourcesof Speedup

We first discuss tactics for reducing total work followed by tactics for partitioning work among
multiple processors.

The total work to compute a query may be reduced by two tactics. First, algebraic laws may
be applied to transform a query into an equivalent query by rearranging, replacing, or eliminating
operators. If the equivalent query requires less work, we may compute it instead of the original
guery. Second, each operator (or collection of operators) has severa aternative implementations
each of which may be the best depending on the statistical and physical characteristics of the
operands. Work may be reduced by choosing an appropriate combination of methods for each
operator. While there has been substantial work on these tactics, parallel machines raise new
aspects such as communication costs that require afresh look at the problem.

Thework incomputing aguery may be partitioned using threeformsof paralelism: independent,
pipelined and partitioned. Two operators neither of which uses data produced by the other may
run simultaneously on distinct processors. Such inter-operator parallelism is termed independent
paralleism. Since operators produce and consume sets of tuples, the tuplesoutput by aproducer can
sometimes be fed to a consumer as they get produced. Such inter-operator concurrency is termed
pipelining and, when the producer and consumer use distinct processors, is termed pipeined
paraleism. A third form of paralelism, termed partitioned parallelism, provides intra-operator
parallelism based on partitioning of data. We explain opportunities for partitioned paralelism for
unary and binary operators below.

CHAPTER 1. INTRODUCTION 3

IfT =ToUT1U...UTy (wWhere T, T; are tables), then unary operators such as selection,
projection, duplicate elimination, grouping and aggregation may be pushed through union using
algebraic identities that essentially have the following form:

Op(T) = Op(To) U Op(T1) U ... U Op(T%)

The terms on the right hand side may be computed independently of each other, thus providing
opportunity for parallel execution. The exact transformation is more complex for operators such as
grouping and aggregation.

Binary operators such as equijoins, set intersection, and set subtraction may aso exploit paral-
Ielismbased on datapartitioning. Consider theequijoinof tablesT and S. Let T = ToUThU. . .UTg
and S = SpU S; U ...U S, such that matching tuples go to matching partitions. In other words,
if the value of the join column for tuplet € T matches the value of the join column for tuple
s € § and, ¢ goes to partition T; then s must go to partition S;. The following identity shows the
opportunity for partitioned paralelism.

TI><IS:(Tll><1Sl)U(TlelSz)U...U(TkIXISk) (1.2

Similar identitiesapply to other binary operators. We aso mention arelated form of parallelism
based on exploiting a combination of data replication and partitioning. It may be used for joins
without requiring an equijoin predicate. The join operator may be parallelized by partitioning T
and joining each partition with areplica of S. This strategy is termed fragment and replicate or
partition and replicate. The transformation applies irrespective of the nature of the join predicate;
specifically it also applies to Cartesian products.

TeaS=(TiaS)U (T2 S)U...U (T S) (1.2

1.1.2 Deterrentsto Speedup

Speedup islimited by theintrinsiclimitson available parallelismand by the overheads of exploiting
paraldism.

Available paralelism is limited by severa factors. Inter-operator paralelism is limited by
timing constraints between operators. For example, a hash join works by first building a hash table
on one operand and then probing the hash table for matches using tuples of the second operand.
Since the hash table must be fully built before being probed, there is a precedence constraint in
the computation. As another example, an operator that scans a table may pipe its output to the
operator that builds a hash table. Such concurrency eliminates the need to buffer intermediate

CHAPTER 1. INTRODUCTION 4

results. However, it placesaparalléd constraint in the computation. In many machine architectures,
data on a specific disk may be accessed only by the processor that controls the disk. Thus data
placement constraints limit both inter and intra-operator parallelism by localizing scan operations
to specific processors. For example, if an Employee table is stored partitioned by department, a
selection query that retrieves employees from asingle department has no available paralelism.

Using parallel execution requires starting and initializing processes. These processes may then
communicate substantial amounts of data. These startup and communication overheads increase
total work. Theincrease is significant enough that careless use of parallelism can result in slowing
down queries rather than speeding them up. The cost of communication is a function of the size
of data communicated. While an individua operator may examine a relatively small portion of
each tuple, dl attributes that are used by any subsequent operator need to be communicated. Thus,
communication costs can be an arbitrarily high portion of total cost.

1.2 Model for Parallel Query Optimization

OPTIMIZATION
Ir ~ 7 T Jo0rR 7 "PARALLELIZATON —'l
| | Parallel
. . Annotated — aralle
SQL | Join Ordering Query c Operator | | Plan
Query & Tree a5 | Tree 2 | (Schedule)
uery Rewrite B °
& 2 |
— |
I

Figure 1.2: Phases and Sub-phases of Parallel Query Optimization

We will adopt a two-phase approach [Hon92b] to minimizing the response time of queries (Fig-
ure 1.2). The first phase applies the tactic of minimizing total work while the second applies the
tactic of partitioning work among processors. Dividing the problem into two phases reduces the
conceptual complexity of parale query optimization.

The first phase, JOQR (for Join Ordering and Query Rewrite, the two steps in a conventional
optimizer [HFLP89]), produces an annotated query tree that fixes aspects such as the order of joins

CHAPTER 1. INTRODUCTION 5

and the strategy for computing each join. While conventional query optimization dealswith similar
problemswewill devel op (in Chapter 3) model sand a gorithmsthat are cognizant of critical aspects
of parald execution. Thusrather than finding the best plan for sequential execution, our agorithms
find the best plan while accounting for parallel execution.

The second phase, parall€elization, converts the annotated query tree into a parale plan. We
break the parallelization phase into two steps, parallelism extraction followed by scheduling.
Parallelism extraction produces an operator tree that identifies the atomic units of execution and
their interdependence. It explicatesthetiming constraintsamong operators. We shall briefly discuss
the extraction of parallelismin Section 1.2.2.

The scheduling step all ocates machine resources to each operator. We shall develop modelsand
algorithmsfor several scheduling problemsin Chapters 4 and 5.

1.2.1 Annotated Query Trees

A procedura plan for an SQL query is conventionally represented by an annotated query tree.
Such trees encode procedural choices such as the order in which operators are evaluated and the
method for computing each operator. Each tree node represents one (or several) relational operators.
Annotations on the node represent the details of how it isto be executed. For example ajoin node
may be annotated as being executed by a hash-join, and a base relation may be annotated as
being accessed by an index-scan. The EXPLAIN statement of most SQL systems (such as NonStop
SQL/MP[Tan94]) alows such treesto viewed by a user.
Example 1.1 Thefollowing SQL query retrieves the average of the salaries of al employeeswho
are skilled in “Molding” and earn more than their managers. Figure 1.3(A) shows an annotated
query tree for the query.
select avg(E.salary)
from Emp E, Emp M, EmpSkills S
where E.empNum = S.empNum and E.mgr = M.empNum and

E.Sdary > M.Sdary and S.skill =“Molding” O

1.2.2 Operator Trees

An operator tree exposes opportunitiesfor parallelism by identifying the atomic units of execution
and the timing constraints between them. Nodes of an operator tree are termed operators' and

1The meaning of the term operator varies with the context. It is used to denote operators of the relational algebra,
nodes of annotated query trees aswell as nodes of operator trees. A query trees operator may consist of several relational

CHAPTER 1. INTRODUCTION 6

AVG

* sort-merge

>3 E.mgr = M.empNum
/\ MergeRun

> simple-hash
EMP M S.empNum = E.empNum
scan
FormRuns

EMPSKILLS S El\éllus'%ered
index-scan indx-scan Scan(M)

@ ndexScan(S)

(A) (B)
Figure 1.3: (A) Annotated Query Tree (B) Corresponding Operator Tree

represent pieces of code that are deemed to be atomic. Edges represent the flow of data as well as
timing constraints between these operators.

An operator takes zero or more input sets of tuples and produces a single output set. Operators
are formed by appropriate factoring of the code that implementsthe relationa operations specified
in an annotated query tree. A criteria in designing operators is to reduce inter-operator timing
constraintsto simpleforms, i.e. paralel and precedence constraints.

The process of parallelism extraction isused to create operator trees from annotated query trees.
This process may be viewed as applying a“ macro-expansion” to each node of an annotated query
tree. Since annotated query trees are constructed out of afixed set of operators, the macro-expansion
of each operator (of an annotated query tree) may be specified using mechanism such as rules. We
will illustrate a sample expansion in Example 1.2.

Given an edge from operator ¢ to j, a parallel constraint requires ¢ and j to start at the same
time and terminate at the same time. A precedence constraint requires j to start after ¢ terminates.
We define an edge that represents a parallel constraint to be a pipelining edge and an edge that
represents a precedence constraint to be a blocking edge.

Parallel constraints capture pipelined execution. A pipeline between two operatorsistypicaly
implemented using a flow control mechanism (such as a table queue [PMC™90]) to ensure that a
fixed amount of memory suffices for the pipeline. Flow-control causes afast producer to be slowed
down by aslow consumer (or vice-versa) by stretching over alonger timeperiod. Thus, the producer
and consumer operators are constrained to run concurrently. Precedence constraints capture the

operators. An operator tree operator is a piece of code that may not correspond to any relational or query tree operator.

CHAPTER 1. INTRODUCTION 7

behavior of operators that produce their output set only when they terminate. A consumer operator
must wait for the producer to terminate before it may start execution.

Example 1.2 Figure 1.3(B) shows the operator tree for the annotated query tree of Figure 1.3(A).
Thin edges are pipelining edges, thick edges are blocking. A smplehashjoinisbrokeninto Bui | d
and Pr obe operators. Since a hash table must be fully built before it can be probed, the edge
from Bui | d to Pr obe isblocking. A sort-merge join sorts both inputs and then merges the sorted
streams. The merging is implemented by the Mer ge operator. In this example, we assume the
right input of sort-merge to be presorted. The operator tree shows the sort required for the left input
broken into two operators For mRuns and Mer geRuns. Since the merging of runs can start only
after run formation, the edge from For nRuns to Mer geRuns isblocking. O

The operator tree exposes available paralleism. Partitioned parallelism may be used for any
operator. Pipelined parallelism may be used for operators connected by pipelining edges. Two
subtrees with no (transitive) precedence constraints between them may run independently. For ex-
ample, thesubtreesrooted at For mRuns and Bui | d may runindependently; operators For mRuns
and Scan(M may use pipeined paralelism; any operator may use partitioned parallelism.

1.2.3 Parallel Machine M odel

We consider a paralledl machine to consist of severa identical nodes that communicate over an
interconnect. The cost of a message consistsof CPU cost incurred equally by both the sending and
thereceiving CPU. Thiscost isafunction of the message size but independent of theidentitiesof the
sending and receiving CPUs (as long as they are distinct). In other words, we consider propagation
delays and network topology to be irrelevant.

Propagation delay is the time delay for a single packet to travel over the interconnect. Query
processing resultsin communicating large amounts of data over the interconnect. Such communi-
cation is typically achieved by sending a stream of packets — packets continue to be sent without
waiting for aready sent packets to reach the receiver. Thus, the propagation delay is independent
of the number of packets and becomes insignificant when the number of packetsislarge.

Network topology is ignored for three reasons. Firdt, it is unclear whether the behavior of
sophisticated interconnects can be captured by simple topological models. Besides topological
properties, interconnects also have embedded memory and specialized processors. Second, most
architectures expect applicationsto regard theinterconnect asablackbox that hasinternal algorithms
for managing messages. Third, thereistremendousvariationinthetopol ogiesused for i nterconnects.

CHAPTER 1. INTRODUCTION 8

Topol ogy-dependent algorithms and software will be not be portable. Further, topology changes
even inaspecific machine as nodesfail and recover or are added or removed. Correctly and reliably
adapting to such changesiscomplex. Incorporating topologica knowledgein query processing and
optimization will further complicate these tasks.

1.3 Organization of Thesis

In Chapter 2, we start with an experimental study that compares parallel and sequentia execution
in NonStop SQL/MP, a commercial parallel database system from Tandem Computers. The ex-
periments establish communication to be a significant overhead in using parallel execution. They
also show that startup costs may be made insignificant by modifying the execution system to reuse
processes rather than creating them afresh.

In Chapter 3, we deal with models and algorithms for the JOQR phase. We pose minimizing
communication as a tree coloring problem that is related to classical Multiway Cut problems. We
then enhance the model to cover aspects such as the dependence of operator costs on physical
properties of operands, the availability of multiple methods for an operator, and re-ordering of
operators. The chapter also provide a clean abstraction of the basic ideas in the commercialy
popular System R agorithm.

In Chapter 3, we focuses on the parallelization phase and consider the problem of managing
pipelined parallelism. We start by developing the notion of worthless paralelism and showing
how such parallelism may be eliminated. We then develop avariety of scheduling algorithms that
assign operators to processors. We evauate the algorithms by measuring their performance ratio
which is the response time of the produced schedule divided by the response time of the optimal
schedule. We establish bounds on the worst-case performance ratio by anaytica methods and
measure average-case performance ratios by experiments.

In Chapter 5, we consider the problem of scheduling a pipelined tree using both pipelined and
partitioned paralelism. Thisis the continuous version of the discrete problem considered in the
last chapter. We develop characterizations of optimal schedules and investigate two classes of
schedules: symmetric and balanced.

Finally, in Chapter 6, we summarize our contributions and discuss some open problems.

CHAPTER 1. INTRODUCTION 9

1.4 Related Work

In this section, we discuss relevant past work in databases. The individual chapters will discuss
related work from theory (Multiprocessor Scheduling [Grag9, UlI75], Multiway Cuts [DJPT92]
and Nonlinear optimization [GMW81, Lue89]) that we will find useful in devel oping optimization
algorithms.

141 Query Optimization for Centralized Databases

Early work in query optimization followed two tracks. One was minimization of expression
size [CM77, ASU79]. Expression size was measured by metrics, such as the number of joinsin a
guery, that are independent of the database state. Another track was the development of heuristics
based on models that considered the cost of an operator to depend on the size of its operands as
well the data structures in which the operands were stored. For example, the cost of a join was
estimated using the sizes of operandsaswell aswhether an index to access an operand was available.
Examples of such heuristics are performing selections and projections as early as possible [Hal 76]
and the Wong-Youseffi algorithm [WY 76] for decomposing queries.

The System R project a IBM viewed the problem of selecting access paths and ordering join
operators as an optimization problem with the objective of minimizing the total machine resource
to compute a query [SACT79]. The estimation of machine resources was based on a cost model
in which the cost of an operation depended on the statistical properties of operands (such as the
minimum and maximum values in each column), the availability of indexes and the order in which
tuples could be accessed. It also devel oped a combination of techniquesto search for a good query
plan. One of these techniques, the use of dynamic programming to speed up search, has been
adopted by most commercial optimizers. Another technique, avoiding Cartesian products, is now
recognized to produce bad plans for “star” queries (common in decision-support applications) in
which asinglelarge tableisjoined to several small tables.

System R aso incorporated agebraic transformations that were applied as heuristics while
parsing queries. The Starburst project recognized the growing importance of such heuristic trans-
formations [Day87, Kin81, Kim82, GW87] by considering Query Rewrite to be a phase of opti-
mization [PHH92].

The growing importance of decision-support has led to arejuvenation of interest in discovering
new transformations and a gorithmsto exploit the transformations[Y L95, CS94, GHQ95, LM S94].

CHAPTER 1. INTRODUCTION 10

14.2 Query Optimization for Distributed Databases

While distributed and parallel databases are fundamentally similar, research in distributed query
optimization was done in the early 1980s, a time at which communication over a network was
prohibitively expensive and computer equipment was not cheap enough to be thrown at parallel
processing.

The assumption of communication as the primary bottleneck led to the development of query
execution technigues, notably semijoins [BC81], to reduce communication. Techniques for ex-
ploiting parallelism were largely ignored. For example, Apers et al. [AHY 83] discuss independent
paralleism but do not discuss either pipelined or partitioned parallelism. Thus, for historical rea
sons, the notion of distributed execution differs from parallel execution. Sincethe space of possible
executions for a query is different, the optimization problems are different.

While Apers et a. considered minimizing response time as an optimization objective, most
work, such as in SDD-1 [BGW™81] and R* [LMH*85, ML86], focused on minimizing resource
consumption. SDD-1 assumed communication asthe solecost while R* considered local processing
costsas well.

Techniques for distributing data using horizontal and vertical partitioning schemes [UI189,
CNW83, OV91] were developed for distributed data that aso find ause in exploiting parallelism.

1.4.3 Query Optimization for Parallel Databases

Several research projects such as Bubba [BCC*90], Gamma [DGS"90], DBS3 [2ZBS93], and
Vol cano [Gra90] devised techniquesfor placement of base tables and explored a variety of parallel
execution techniques. This has yielded awell understood notion of parallel execution.

Considerable research has also been done on measuring the paralelism available in different
classes of shapesfor jointrees. Schneider [Sch90] identified right-deep trees (with hash-joinsasthe
join method) as providing considerable paralelism. Chen et a. [CLY'Y 92] investigated segmented
right-deep trees and Ziane et al. [ZZBS93] investigated Zig-Zag trees. Such research focuses on
evaluating aclass of shapesrather than optimizingasingle query. 1t may be used to subset the space
of executions over which optimization should be performed.

Hong and Stonebraker [HS91] proposed the two-phase approach to parallel query optimization.
They used a conventional query optimizer as the first phase. For paralélization, they considered
exploiting partitioned and independent parallelism but not pipelined parallelism. While they ig-
nored communication costs, we note that Hong [Hon92b] conjectured the XPRS approach to be

CHAPTER 1. INTRODUCTION 11

inapplicable to architectures such as shared-nothing that have significant communication costs.

Hong [Hon92a] develops a paraldization agorithm to maximize machine utilization under
restrictive assumptions. The parallel machine is assumed to consist of a single disk (RAID) and
multipleprocessors and each operator isassumed to have CPU and | O requirements. Assuming that
two operators, one CPU-bound and the other 10-bound to always be available for simultaneous
execution, the algorithm computes the degree of partitioned parallelism for each operator so as to
fully utilizethe disk and all CPUs.

Many other efforts in paralel query optimization [SE93, LST91, SYT93, CLYY92, HLY 93,
ZZBS93] develop heuristics assuming parallel execution to have no extra cost.

Chapter 2

Price of Parallelism

This chapter is a case study of NonStop SQL/MP, a commercia parallel DBMS from Tandem
Computerst. We report experimental measurements of the overheads in parallel execution as
compared to sequential execution?. We also document the use of parallel execution techniquesin a
commercial system.

Our experiments investigate two overheads of using paralel execution: startup and communi-
cation. Startup is the overhead of obtaining and initializing the set of processes used to execute
the query. Communication is the overhead of communicating data among these processes while
executing the query. The findings from the experiments may be summarized as:

e Startup costs are negligibleif processes can be reused rather than created afresh.

e Communication cost consists of the CPU cost of sending and receiving messages.

e Communication costs can exceed the cost of operators such as scanning, joining or grouping
These findings lead to the important conclusion that

| Query optimization should be concerned with communication costs but not with startup costs. |

!We thank Tandem Computers for providing accessto NonStop SQL/MP and aparallel machine. Parts of this chapter
have also been published as the paper S. Englert, R. Glasstone and W. Hasan: Parallelism and its Price: A Case Study
of NonStop SQL/MP, Sigmod Record, Dec 1995

2\We used the following guidelinesto prevent commercial misuse of our experimental results: (a) All execution times
are scaled by a fixed but unspecified factor. (b) All query executions were created by bypassing the NonStop SQL
optimizer and no inference should be drawn about its behavior.

12

CHAPTER 2. PRICE OF PARALLELISM 13

2.1 Introduction

Startup overhead isincurred as a prelude to real work. It consists of obtaining a set of processes
and passing to each a description of its role in executing the query. The description consists of the
portion of the query plan the process will execute and the identities of the other processes it will
communicate with.

Communication overhead is the cost of transferring data between processes. Our experiments
consider three categories of communication between processes. Local communication consists of a
producer process sending data to aconsumer process on the same processor. Remote communication
isthe casewhen the producer and consumer areon distinct processors. Repartitioned communication
consists of aset of producers sending data to a set of consumers. Each tupleisrouted based on the
value of some attribute.

Communication requires data to be moved from one physical location to another. Loca
communication is implemented as a memory to memory copy across address spaces. Remote
communication divides datainto packetsthat are transmitted across the interconnect. Thereceiving
CPU has to process interrupts generated by packet arrival as well as to reassemble the data. In
repartitioned communication, a producer has to perform some additional computation to determine
the destination of each tuple.

Our experiments compare the cost of communication with the cost of operators such as scans,
joins and groupings. We observe that while the cost of communicating data is proportional to the
number of bytes transmitted, an operator may not even look at al its input data — it only needs
to look at attributes that are relevant to it and may ignore the attributes that are relevant only to
subsequent operators.

We first describe the architecture of Tandem systems in Section 2.2. In Section 2.3, we
describe how opportunities for paralldism are exploited by NonStop SQL/MP. We then describe
our experimental resultson startup costsin Section 2.4. Section 2.5 describes our results on the cost
of communication. These costs are put in perspective by comparing them with costs of operators
such asscans, joinsand groupings. Section 2.6 showsinteresting examplesof parallel and sequentia
execution and Section 2.7 summarizes our conclusions.

CHAPTER 2. PRICE OF PARALLELISM 14

Inter-Processor Bus

| | | |
ProCe?so
+ local
memory

=

Processor
Controlle m+ 0$a|
t_r_ /Channel ﬁ egy
]

GV (B)
Figure 2.1: (&) Tandem Architecture (b) Abstraction as Shared-Nothing

2.2 Tandem Architecture: An Overview

2.21 Paralld and Fault-tolerant Hardware

Tandem systemsarefault-tolerant, parallel machines. For thepurposeof query processing, aTandem
system may be viewed as a classical shared-nothing system (see Figure 2.1). Each processor has
local memory and exclusive control over some subset of the disks.

Processors communicate over an interconnection network. Up to 16 processors may be con-
nected to an interprocessor bus to form anode. A variety of technologies and topologies are used
to interconnect multiple nodes.

For fault-tolerance, each logical disk consists of a mirrored pair of physical disks. Disk
controllers ensure that awrite request is executed on both disks. A read request is directed to the
disk that can service it faster; for example if both disks are idle, the request is directed to the one
with itsread head closer to the data.

We will not discuss further fault-tolerance features of the Tandem architecture since they are
largely orthogonal to query processing. The interested reader isreferred to [BBT88] for details.

2.2.2 Message Based Software

M essagesimplement interprocesscommunication aswell asdisk 0. Accessto adisk isencapsul ated
by an associated set of disk processesthat run on the processor that controlsthedisk. They implement
the basic facilities for reading, writing and locking disk-resident data. An 10 request is made by
sending a message to a disk process. Dataread by aread request is aso sent back to the requester
as amessage. Use of a set of disk processes allows several requests to be processed concurrently.
Disk processes are system processes and, for the purpose of query processing, may be regarded as
being permanently in operation.

A singlefile may be partitioned across multipledisks by ranges of key values. Thisalowstables

CHAPTER 2. PRICE OF PARALLELISM 15

and indexes to be horizontally partitioned using range partitioning. The file system is cognizant of
partitioned files and can route messages based on the key value of a requested record.

2.2.3 Performance Characteristics

The interconnect used for communication between processors is engineered to provide high band-
width and performance. Experiments [Tan] have shown the message throughput between two
processors to be limited by CPU speed rather than the speed of the interprocessor bus.

The programming interface for messages provides location transparency. However, the im-
plementation mechanisms for inter and intraprocessor messages are different. An intraprocessor
message is transmitted by a memory-to-memory copy. An interprocessor message is broken into
packets and sent over theinterconnect. Packet arrival generatesinterruptsat thereceiving CPU. The
packets are then assembled and written into the memory of the receiving process. Measurements
show an intraprocessor message to be significantly cheaper than an interprocessor message.

A mirrored disk consistsof two physical diskswithidentical datalayout. Asremarked earlier, a
write request is executed on both physical diskswhilearead isdirected to the disk that can process
it faster. A mirrored pair processes read requests faster than a single physical disk whilewrites run
at about the same speed.

2.3 Parallelismin NonStop SQL/MP

NonStop SQL/M P usesintra-operator parallelismfor scans, selection, projection, joinsand grouping
and aggregation. Intra-operation parallelism uses replication as well as partitioning. Interoperator
parallelism is not used. The system does not, for example, use pipelined parallelism, in which
disjoint sets of processors are used for the producer and consumer. It does, however, use pipelined
execution whenever possible, in which producers and consumers run concurrently.

In Section 2.3.1, we discuss the use of intra-operator parallelism. Section 2.3.2 discusses how
operators are mapped to a processes and processes to processors.

23.1 Useof Intra-operator Parallelism

Intra-operator paralelism is based on data partitioning and replication. Recall that base tables and
indexes may be stored horizontally partitioned over several disks based on key ranges. Scans and
groupings are paralelized using the existing data partitioning.

CHAPTER 2. PRICE OF PARALLELISM 16

Joins may repartition or replicate data in addition to using the existing data partitioning. Such
repartitioning or replication occurs on the fly while processing aquery and does not affect any stored
data. Datarepartitioning is based on hashing and equally distributes data across all CPUs.

Stored data is scanned by disk processes that implement selection, projection and some kinds
of groupings and aggregation. Since each disk has its exclusive disk processes, the architecture
naturally supports parallel scans.

Grouping is implemented in two ways, one based on sorting and the other on hashing. Sort
grouping first sorts the data on the grouping columns and then computes the grouped aggregates by
traversing the tuples in order. Hash grouping forms groups by building a hash table based on the
grouping columns and then computes aggregates for each group.

The strategy for parallelizing a grouping is to use the existing data partitioning. A separate
groupingisdonefor each partition followed by acombination of theresults. Dataisnot repartitioned
to change the degree of paralelism or the partitioning attribute.

A join of twotables(say T and S) may be parallelized in the following two ways corresponding
to Equations 1.2 and 1.1.

Partition Both: Both tables may be partitioned only when an equijoin predicateis available. If
both tables are similarly partitioned on the join column, the “matching” partitions may be joined.
Otherwise, one or both tables may be repartitioned.

Partition and Replicate: Another parallelization strategy isto partition S andjoineach partition
of S with al of table T'. This may be achieved in two ways. Thefirstisto replicate T' on all nodes
that contain a partition of S. The second is to repartition S (for example, to increase degree of
parallelism) and replicate T on al nodes with a (new) partition of S

Three methods are used for joins: nested-loops, sort-merge and hybrid-hash. Table 2.1 summa-
rizes the join methods used for each parallelization strategy.

When both tables happen to be partitioned similarly by the join column, sort-merge join is the
most efficient join method. Since the partitioning columns are aways identical to the sequencing
columnsin NonStop SQL, the sorting step of sort-merge is skipped and the matching partitions are
simply merged.

In the strategy of repartitioning both tables, both are distributed across all CPUs using a hash
function on the joining columns. In thisway, corresponding data from both tables or composites
is located such that it can be joined locally in each CPU using the hybrid hash-join method. The
strategy of repartitioning only one of the tablesis not considered.

The partition-and-replicate strategy considers both nested-loops and hybrid-hash. The inner

CHAPTER 2. PRICE OF PARALLELISM 17

Partition Both Partition and Replicate
Use Existing | Repartition || Existing Partitioning for one | Repartition one
Partitioning both replicate other replicate other
hybrid-hash X Vv Vv Vv
nested-loops X X Vv X
Sort-merge Vv X X X

KEY: 4/ indicates use of strategy for join method, x indicates not used.

Table 2.1: Pardlelization Strategies and Join Methods

table is replicated and the outer table is partitioned. If the existing partitioning of the outer is
used, then both nested-loops and hybrid-hash are considered. If the outer is repartitioned, then only
hybrid-hash is considered.

Nested-loopsjoin isimplemented by sending a message to lookup the inner table for each tuple
of the outer (thus incurring random 10 in accessing the inner). The inner isreplicated in the sense
that if two tuplesin different partitions of the outer have the same value of the join attribute, then
the matching tuples of the inner will get sent to both partitions. Thus, only the relevant portion of
theinner table is accessed and replication of tuples happens only if needed.

When used with partition-and-replicate parall€lization, hybrid-hash join replicates the inner
table. Either the existing partitioning of the outer is used or the outer is repartitioned across all
CPUs. A hashtableisbuiltontheinner at each participating CPU and subsequently probed by tuples
from the inner. When used with partition-both parallelization, both tables are repartitioned across
all CPUs. The hybrid-hash join agorithm has adaptive aspects such as adjusting to the amount of
available memory. The interested reader isreferred to Zeller and Gray [Z2G90] for details.

Nested-loopsaccesses only the rel evant tuples of theinner table. Since hybrid-hash accessesthe
entire inner, it avoids the random 1O incurred by nested-loops but also accesses tuples of the inner
that may not join. Nested-loopsis the only applicable method when there is no equijoin predicate.

2.3.2 Process Structure

A single SQL query is executed by use of multiple processes. Three kinds of processes are used.
First, there is the SQL Executor process, which consists of system library routines bound into
the user application. Second, slave processes called ESPs (for Executor Server Process) may be
spawned by the Executor. Third, there are disk processes which are system processes that are

CHAPTER 2. PRICE OF PARALLELISM 18

permanently in operation.

Scans are implemented by disk processes and the remaining work is divided between ESPs and
the Executor. The query result is produced by the Executor. The mapping of operators to processes
and allocation of processes to processors may be understood with respect to query trees in which
interior nodes represent operations such as joins and groupings and leaves represent scans. The
basicideain forming processesisto have an operator share processes with the prior (child) operator
as far as possible. New processes are created only when such combination is impossible due to a
data repartitioning or due to the fact that the prior operator is a scan. In the case of ajoin there
are two children. Since once of them is always a base table or index, the join is attempted to be
combined with the operator that produces the outer table.

Scans (the leaves of a query tree) are always executed by disk processes. Thus scans are
paralleized based on the partitioning of the data being read; there is one process for each disk that
containsapartition of thedata. While ESPs are capabl e of repartitioning their output, disk processes
are not. Thusif the result of a scan isto be repartitioned, one ESP is created per existing partition
of the datafor the sole purpose of repartitioning data.

A grouping is aways pardleized based on the existing partitioning of the data. It can be
combined into the same process as the prior operator, unless the prior operator is a scan and the
grouping is such that adisk process cannot implement it. Disk processes can implement groupings
in which the grouping columns are a prefix of the key columns.

The process structure for joins is more complex since a join has two operands. One of the
operands, the inner, is dways a base table. For nested-loops and merge-join, one ESP is used per
partition of the outer table. If possible, this ESP is the same ESP as for the operator that produces
the outer table. The inner is accessed by sending messages to disk processes. In the case of
nested-loops, one message is sent per tuple of the outer so as to retrieve only the relevant tuples.

We only describe the process structure of hybrid-hash for the case when both operands are
repartitioned. One ESP is used per existing partition of the inner to repartition data. If the outer is
a base table, one new ESP is used per partition of the outer to repartition data. On the other hand,
if the outer is not a base table, then the ESP that produces it also performs the repartitioning. One
ESPisused at each CPU to receive the repartitioned data and locally compute a hybrid-hash join.

CHAPTER 2. PRICE OF PARALLELISM 19

2.4 Startup Costs

Parallel execution requires starting up aset of processes and communicating dataamong them. This
section measures startup cost and the next section focuses on communication.

When aquery isexecuted in parallel, the Executor process startsup all hecessary ESP processes
and sends to each the portion of the plan it needsto execute and the identities of the other processes
it needs to communicate with. The ESP processes are created sequentially; each processis created
and given itsplan before the next processis created. ESPs are not terminated for 5 minutes after the
guery completes. In case another query is executed within five minutes, ESP processes are reused.

We measured the cost of starting up processesby running aquery that required 44 ESP processes.
Figure 2.2 plots the time at which successive processes got started and had received their portion
of the plan. The dotted line plots process startup when new processes had to be created. The solid
line plots the case when processes were reused.

We conclude that communicating the relevant portion of the plan to each ESP has negligible
cost. Startup cost is hegligiblewhen processes can bereused. Startup incurs an overhead of 0.5 sec
per process that heeds to be created. A possible enhancement would be to start the ESP processes
in paralle instead of sequentialy.

El apsed Ti me (seconds)

20
17.5
15
12.5
10
7.

N
o ul ol !

Process#

10 20 30 40

Figure 2.2: Process Startup: With (solid) and without (dotted) process reuse.

2.5 Costsof Operatorsand Communication

In this section we measure the cost of communication and put these costs in perspective by a
comparison with operators such as scans, joins and grouping.
We describe measurements of the cost of local, remoteand repartitioned communication. Local

CHAPTER 2. PRICE OF PARALLELISM 20

s 000900
6 —

Local Remote Repartitioned

Figure 2.3: Local, Remote and Repartitioned Communication

communication consists of a producer process sending data to a consumer process on the same
processor. Remote communication is the case when the producer and consumer are on distinct
processors. In repartitioned communication, a set of producers send datato a set of producers. The
cost of repartitioning varies with the pattern of communication used. We decided to focus on the
case where a single producer partitions its output equally among a set of consumers. This simple
pattern captures the overhead of a producer sending data to multiple consumersi.e. the additional
overhead of determining the the destination of each tuple. The producer applies a hash function
to an attribute value to determine the CPU to which the tuple is to be sent. Figure 2.3 illustrates
the forms of communication covered by our experiments. These cases were chosen due to their
simplicity. The costs of other communication patterns may be extrapol ated.

Table 2.2 summarizes the results of measurements that are described later in this section. It
turned out that the cpu time of all our queries was linear in the amount of data accessed. Even
operations that involved sorting behaved linearly in the range covered by our experiments. Thus
costs are stated in units of msec/Ktuple and msec/Mbyte. The two units are comparable, since 1K
tuples occupy 1 Mbyte for the table under consideration. Join costs were measured by joining two
tables, each with k tuples, to produce & output tuples. Join costs were linear in & and are therefore
reported in msec/Ktuple.

Our approach was to devise experiments such that the cost of an operation could be determined
as the difference of two executions. For instance the cost of local communication was determined
as the difference of executing the same query using two plansthat only differed in whether one or
two processes were used.

Section 2.5.1 provides an overview of our experimental setup. Sections 2.5.3 and 2.5.4 describe
experimentsthat measure the cost of communication and Sections 2.5.2, 2.5.5 and 2.5.6 addressthe

CHAPTER 2. PRICE OF PARALLELISM 21

| Transfer Operation | Cost (msec/Mbyte) || Computational Operation | Cost (msec/Ktuple) |
Scan 180 Aggregation 65
Loca Comm. 390 Sort-Merge Join 370
Remote Comm. 745 Hash Join 40
Repartitioning (4 CPUS) 1230 Hash Grouping 110
Sort Grouping 765

Table 2.2: CPU Costs of Operations (1K tuples occupy 1 Mbyte)
costs of operators.

251 Experimental Setup

We ran all experiments reported in this Section on a 4 processor Himalaya K1000 System. Each
processor was a MIPS R3000 processor with 64MB of main memory and several 2 GB disks. The
size of the cache associated with each disk was reduced to 300 Kbytes to reduce the effects of
caching on our experiments.

Thetables Si ngl e, Si ngl e2 and Quad used in our experiments had identical schema and
content. Quad was equally partitioned over four diskswhile Si ngl e and Si ngl e2 were stored
on single disks.

Each of thesetables had four columns: uni que, t went y, hundr ed and st r . Thefirst three
were integer columns and the fourth a 988 byte string. Theuni que column was the key and each
table was stored sorted by this column. The columnt went y was randomly chosen from 1. . . 20,
hundr ed randomly chosen from 1...100, and st r was a 988 byte string with an identical value
in each row. Each tuple occupied 1000 bytes. Each table had 50,000 tuplesresulting in atota size
of 50 Mbytes.

We forced query plans by the use of optimizer hooks that allowed us to specify plan € ements
such as the sequence and method for each join; whether parallel execution should be used or not;
and whether a join should repartition data or not, whether predicates should be combined with a
disk process or not and so on. The EXPLAIN command in NonStop SQL allowed usto view plans
to confirm the details of the execution.

We collected performance data by using MEASURE, a low overhead tool. MEASURE collects
statistics about objects of interest such as processors, disks, processes and fileswhileaprogramisin
execution. The collected statistics can later be perused using a query tool. MEASURE a so measures
the cost of processing interrupts that are generated by message arrival and 10 completions — these

CHAPTER 2. PRICE OF PARALLELISM 22

costs are not assigned to any process.

Each data point reported in this paper is an average over three executions. Typicaly, the three
executionsdiffered by lessthan 1%. All plotted curves were obtained using aleast squaresfit using
the Fit function in Mathematica.

25.2 Costsof Scans, Predicates and Aggregation

We used the following query to scan Si ngl e.

Queryl: select uniquefrom Single
where twenty > 50000 and unique < k

Thepredicatet went y >50000 isfalsefor al tuples. Thusnotuplesarereturned and the overhead
of communicating the result of the scan iseliminated. Sincethetablewas stored sorted by uni que,
thepredicateuni que < k alowed usto vary the portion of the table scanned.

Thequery plan used asingledisk process and combined predicate evaluation with thescan. The
cost of the plan consists of a scan and two predicate evaluations, one of which is a key predicate.
The dotted line in Figure 2.4 plots the cost as k& was varied from 5000 to 50000 in increments of
5000. Denoting cpu cost by ¢ and the number of Mbytes scanned by b, aleast squaresfit yieldsthe
equation ¢ = 0.31 4 0.185bh. Thus a scan with two predicates costs 185 msec/Mbyte.

We determined the cost of predicate checking by additional measurements. To measure the cost
of the key predicate, wetried two queries: onewith thepredicateuni que < 100, 000 andthe
other with no key predicate. Both queries scanned the entire table, since al key values were less
than 100,000, and ran in identical time.

To measure the cost of the nonkey predicate, we ran a query with two nonkey predicates. The
“where clause” of Queryl was changed to (twenty >50000 or hundred >50000) and
uni quel < k. The solid lines in Figure 2.4 plots the cost of a query. Curve fitting yields
t = 0.31+ 0.18b i.e. the cost increases by 5 msec/Mbyte due to the additional nonkey predicate.
Thus, we may expect a scan with no predicates to cost 180 msec/Mbyte.

The dashed line in Figure 2.4 shows the cost of applying an aggregation in the disk process
using the following query.

Query2: select max(str) from Single
where unique < k

CHAPTER 2. PRICE OF PARALLELISM 23

CPU Ti ne (seconds)
14t
12t

10¢

0 10 20 30 40 5o \bytes

Figure 2.4: Scan with 1 predicate(dotted), 2 predicates(solid), aggregation(dashed)

A least squarefit yielded theequation? = 0.31+ 0.245b. Subtracting scan cost, weinfer aggregation
to cost (245-180) msec/Mbyte which is 65 msec/Mbyte. Recall that st r isa 988 byte string with
an identical value in each row. Thus the aggregation uses 988 bytes of each 1000 byte tuple.

CPU Ti me (seconds) CPU Ti me (seconds)
50 ()
14
40 12 (b), (c)
' 10 a
30 P CY
8
20 6
10 4
2
. Moyt
0 10 20 30 40 50 yres 0 10 20 30 40 50 Mbytes
(A) 98.8% of scanned data communicated (B) 4% of scanned data communicated

Figure 2.5: Scan and Aggregation(dashed) with L ocal(solid) and Remote(dotted) Comm.

25.3 Costsof Local and Remote Communication

We measured the cost of local and remote communication by use of optimizer hooks that permitted
the creation of plans in which the aggregation in Query2 was moved to a separate process (the
Executor) and the process could either be placed on the same CPU as the disk process or on a
different CPU. Figure 2.6 shows the process structure for the three executions.

CHAPTER 2. PRICE OF PARALLELISM 24

When aggregation isin a separate process from scan, 988 bytes of each 1000 byte tuple haveto
be communicated across processes. Figure 2.5(a) plots the data pointsfor scanning and aggregation
in the disk process and also with the remote and local communication. The curves are marked (a),
(b) and (c) to show the correspondence with three process organi zations of Figure 2.6. Least squares
curve fitting shows slopes of 0.635 and 0.99 for the local and remote curves. Since scanning and
aggregation without communication has a slope of 0.245, we infer that local communication costs
390 msec/M byte and remote communication costs 745 msec/Mbyte.

We observe that the relative cost of communication is a function of the amount of data com-
municated. Figure 2.5(b) shows the case when Query2 is modified to aggregate ont went y. In
this case only 4 bytes of each 1000 byte tuple have to be communicated across processes and the
relative cost of communicationis negligible.

254 Cost of Repartitioned Communication

CPUDO CPUO CPUO __CPU1
@ Executor @ Executor
gggregation ggregation
©) ihegaion | © C
+aggregation scan scan
Single Single Single

(a) (b) (©)
Figure 2.6 Process structure: (a8) No communication (b) Local (¢) Remote

Repartitioning dynamically distributes data across all CPUs using a hash function. In general this
involves a combination of local and remote communication. Since tuples are routed based on a
hash function applied to some column, additional cost of deciding the destination must be incurred
for each tuple.

Given a system with 4 CPUs, we chose to focus on the case where a single producer equally
repartitions data among four consumers. Since one consumer was placed on the same CPU as
the producer, 1/4'th of the tuples may be expected to be transported using local messages and the
remaining 3/4'th by remote messages. The cost of repartitioning will vary depending on the number
of CPUs and the arrangement of producers and consumers.

CHAPTER 2. PRICE OF PARALLELISM 25

We devised the following query to create two executionsthat only differ inwhether or not datais
repartitioned. Smal | isasinglecolumntablewithtwenty values 0..19 stored in twenty tuples. The
result of joining Si ngl e and Srral | isidentical to Si ngl e and is grouped into twenty groups.

Query3: select max(str) from Singlew, Smal s
wher e w.twenty = s.unique and w.unique < k
group by w.twenty

We forced the two executions shown in Figure 2.7. Both use a simple hash join in which a hash
tableis built on Smal | and probed by Si ngl e. The hash join is followed by a hash grouping.
The first execution executes the join and grouping in the Executor process on a single CPU. The
second execution build a hash table on Smal | and replicates it on four CPUs. Then Si ngl e is
repartitioned and thejoin and grouping computed separately for each partition. Finally, the Executor
process merges the results of the separate groupings.

While Figure 2.7(b) shows several extracommunication arrows, only the repartitioning arrows
are significant. Between 5 and 50 Mbytes of data is repartitioned. In comparison, the hash table
on Snal | occupies about 0.00008 Mbytes, so replicating it has negligible cost. The result of each
grouping consists of 20 groups that occupy about 0.02 Mbytes, which is comparatively negligible.

CPUO CPU1 CPU2 CPU3

SQL Executor
\
g

B SR
/ V

Figure2.7: Loca and Repartitioned Execution

Figure 2.8 plots the costs of the two executions as as k£ was varied from 5000 to 50000 in
increments of 5000. Least squares curve fitting shows the slopes of the lines to be 0.785 and
2.015. Since the difference between the two executions is the cost of repartitioning, we conclude
repartitioning to cost (2.015 — 0.785) sec/Mbyte or 1230 msec/Mbyte. We remind the reader that
our measurements of repartitioning cost are for four CPUs.

CHAPTER 2. PRICE OF PARALLELISM 26

CPU Ti ne (seconds)

100+
80+
60+
40

20t

0 10 20 30 40 50 Mvtes

Figure 2.8 Local(dotted) and Repartitioned(solid) Comm.

255 Costsof Join Operators

We measured the cost of simple-hash, sort-merge and nested joins by joining Si ngl e with an
identical copy called Si ngl e2. We executed the following query using different join methods.
The query was modified for sort-merge join to require sorting on one operand by changing thejoin
predicatetowl. uni que = w2. hundr ed. Figure 2.9 plotsthe execution costs as k was varied
from 5000 to 50000 in increments of 5000.
Query4: Select max(w1l.str) from Singlewl, Single2 w2

where wl.unique = w2.unique and

wl.unique < k and w2.unique < k

Surprisingly all plotsin Figure 2.9 arelinear in k& even though we are joining two operands each
with & tuples, and producing aresult consisting of & tuples.

The nested join accesses theinner table (Si ngl e2) for each tupleof theouter (Si ngl e). Thus
the cost is linear in the size of the outer table. Each access to theinner table isarandom 10 which
explains the high cost of the nested join.

Hash-join builds a hash table on the qualifying tuples of Si ngl e2 and probesit using tuples
from Si ngl e. The one possible source of nonlinearity iswhen & probes are performed on a hash
table that contains & entries. We conclude that cost of aprobe isindependent of hash table size.

For sort-merge join, only one operand (Si ngl e2) needed to be sorted since the other was
pre-sorted on the join column. It may be surprising that the cost of sorting does not introduce any
nonlinear component into the cost. The explanation is that the system chose to sort by inserting
tuples into a sequenced file. The cost of insertion is independent of file size and the cost of

CHAPTER 2. PRICE OF PARALLELISM 27

CPU Ti ne (seconds)
100

80
60
40

20

Figure 2.9: Query using Simple-hash (dashed), Sort-merge (solid) and Nested Join (dotted)

comparisonsis not a significant cost in locating the correct page.

Least squares curve fitting shows cost of the query to be 1835, 855 and 1185 msec/Mbyte for
nested, hash and sort-mergejoin respectively. The“per Mbyte” should beinterpreted as* per Mbyte
of each operand”.

We may separate the cost of joining from the cost of scans, communication, and aggregation by
using our prior measurements.

For hash-join, we incur ascan for each operand. However, local communication is significant
only for Si ngl e. After projection, Si ngl e2 is reduced to 4/1000'th of its original size while
amost al (992/1000'th) of Si ngl e iscommunicated. Thus the cost of the join may be cal culated
by subtracting the cost of two scans, the cost of locally communicating Si ngl e, and the cost of
aggregation. Thisgivesus 855 — (2 x 180 + 390 + 65) = 105 msec/Mbyte.

Similarly, the cost of a sort-merge join may be calculated to be 370 msec/Mbyte. The cost of
anested-loops join cannot be broken down in this manner since it incurs a random 10 per tuple of
Si ngl e.

25.6 Costsof Grouping Operators

NonStop SQL uses two algorithms for grouping. Hash grouping forms groups by hashing tuples
into a hash table based on the value of the grouping column. Sort grouping forms groups by sorting
the table on the grouping column. The following query reads k records and forms twenty groups.

Query5s: select max(str) from Single
where unique < k

CHAPTER 2. PRICE OF PARALLELISM 28

group by twenty;

CPU Ti ne (seconds)

70}
60}
50} T
40}

30} -
20}
10}

0 10 20 30 40 50 'pvtes

Figure 2.10: Hash (solid) and Sort (dotted) Grouping Costs

Figure 2.10 plots the costs of hash and sort grouping as a function of k. Least squares curve
fitting shows the query to cost 1245 msec/Mbyte and 1400 msec/Mbyte respectively for hash and
sort grouping. Since the query incurs a scan, local communication, and aggregation, we conclude
that hash and sort grouping to cost 110 msec/Mbyte and 765 msec/Mbyte respectively.

2.6 Parallel Versus Sequential Execution

The distinction between parallel and sequential execution in Tandem systemsis the use of multiple
versus single SQL Executor processes to execute a query. Note that sequential execution may use
multiple disk processesiif it accesses data from multiple disks.

Parallel and sequential execution may be compared based on two metrics: work and response
time. The common intuition is that parallel execution reduces response time at the expense of
increased work. The basis for this intuition is that parallel execution will cost at least much as
sequential execution and will run at least as fast as sequentia execution. While true in some
cases, thisis not truein general. The relative costs of parallel and sequentia execution depend on
communication costs.

We present two examples in this section. The first shows that parallel execution can reduce
both work and response time by saving communication costs. The second shows that parale
execution can result in increased response time when the communication costs offset the benefit
from paralel execution. We are not aware of any instances of the remaining logical possibility

CHAPTER 2. PRICE OF PARALLELISM 29

of paralel execution offering reduced work but increased response time compared to sequentia
execution.

To sum up, in addition to the intuitive casein which parallel execution runsfaster but consumes
moreresources, itispossiblethat (a) parallel execution consumeslessresources aswell asrunsfaster
and (b) parald execution consumes more resources as well as runs slower. The main determinant
isthe cost of communication.

2.6.1 Paralldism can Reduce Work

The following query performs a grouping on atable that is equally partitioned across 4 disks, each
attached to adistinct CPU.

Query6: select max(str)
from Quad
group by twenty;

CPUO CPU1l cPU2 CPU3

SQLExecutor
\\

r

Quad| |Quad| [Quad| |Quad

CPUO CPU1 cPU2 CPU3

Grouping
} ESPs

DP

-
P@»@

S
(or2
T

NG

Quad

Q) (B)
Figure 2.11: Process Structure: Sequential and Parallel Execution

Figure 2.11 shows the process structure for sequential and parallel execution. When sequential
execution is used, SQL runs as a single process (Executor). This process must incur remote
communication to read the three partitions that reside on remote disks. When parallel execution is
used, the grouping is partitioned. Each partition of Quad is grouped separately by an ESP process.
The result of each grouping is communicated to the Executor to produce the combined grouping.
The local grouping at each CPU substantially reduces the amount of data to be communicated
resulting in reduced work. Response time is reduced both because of work reduction as well as
better load balancing.

CHAPTER 2. PRICE OF PARALLELISM 30

When sequentia execution was used the query used 49 sec CPU and had a response time of 78
sec. With parallel execution, the total CPU time fell to 36.5 sec and the response time fell to 26.5
Sec.

2.6.2 Parallelism Can Increase Response Time

Consider the query used in Section 2.5.4 with the sequential and parallel executions shown in
Figure 2.7. The parallel execution incurs greater work due to communication costs. Its response
time is also increased since the parallelism available in the plan does not suffice to offset the
increased work.

Consider the data point for £ = 50000. When sequential execution was used the query used 39
sec CPU and had aresponse time of 66.5 sec. With parallel execution, the total CPU time rose to
102 sec and the response time rose to 109.5 sec.

Surprisingly, the response time increases to 109.5 sec even though 102/4 isless than 39. The
explanation lies in the fact that there are sequential portions of the query, and the benefit from
parallelism is offset by communication costs for the parallel portions. Scanning and repartitioning
Si ngl e is inherently sequential. These operations can only be performed on CPU 0. Pearallée
execution only benefits the join and grouping. That speedup is not sufficient to offset the increase
in work due to repartitioning. No paralelism is available in scanning Sral | and building and
replicating ahash table on it. However, these operations had negligible cost compared to the rest of
the query.

It should be noted that the inherent sequentiaity illustrated in this example is not pathological.
Selection predicates can localize a scan to asingle disk (or a subset of the disks) even when atable
is partitioned across several disks.

2.7 Summary of Findings

The important conclusion from our experimentsisthat a query optimizer should be concerned with
communication costs but not with startup costs. Thisis based on the following findings:

e Startup costs are negligible when processes can be reused rather than created afresh.
e Communication cost consists of the CPU cost of sending and receiving messages.

e Communication costs can exceed the cost of operations such as scans, joins or grouping.

CHAPTER 2. PRICE OF PARALLELISM 31

Our experiments show that the cost of parallel execution can differ substantially from that of
sequential execution. The cost may be more or even less depending on what data needs to be
communicated.

It isworth observing that the cost of communication relative to the cost of operatorsisa strong
function of the quality of the implementation. For example if operators are poorly implemented,
communication costswill be relatively low. Further, such a poor implementation may actually lead
to the system exhibiting good scalability! This underlines the fact that scalability must be tested
with respect to the best implementation on a uniprocessor.

An interesting question is how communication can be avoided or its cost reduced. Architec-
tura techniques such as DMA are likely to help to some extent. However, most of the cost of
communications tends to be incurred at software levels that are higher than DMA interfaces. Use
of shared-memory is of limited value since the cost of communication through a shared piece of
memory rises as the number of processors increases.

Chapter 3
JOQR Optimizations

In this chapter! we develop models and algorithms for the JOQR phase that minimize the total
cost of computing a query. The models take a “macro” view of query execution. They focus on
exploiting physical properties such as the partitioning of data across nodes; determination of the best
combination of methods for computing operators; and fixing the order of joins. “Micro” decisions
about allocation of resources are the responsibility of the subsequent parallelization phase.

We start with asimple model that captures the communication incurred when data needs to be
repartitioned across processors. Minimizing communication is posed as a tree coloring problem
(related to classical Multiway Cut problems[DJP*92]) in which colors represent data partitioning.

We then enhancethe model intwoways. Firstly, we generalize colorsto represent any collection
of physical properties (such as sort-order, indexes) that can be exploited in computing an operator.
Secondly, we permit each operator to have several alternate methods by which it can be computed.
Thisalows usto captures effects such as the fact that a Grouping may be computed very efficiently
if the datais partitioned as well as sorted on the grouping attribute.

Thefina enhancement of the model isto alow joinsto be reordered. At the end of the chapter,
we describe several ways in which the agorithms may be used.

It isappropriate to contrast the model s and a gorithmsin this chapter with work in conventional
query optimization [SAC™ 79]. Besides incorporating communication costs, our contribution is to
show that choosing methodsand physical propertiescan be separated from join ordering. Whilejoin
ordering requires exponential time, methods and physical properties can be chosen in polynomia

Parts of this chapter have been published in the two papers
W. Hasan and R. Motwani: Coloring Away Communication in Parallel Query Optimization, VLDB95
S Ganguly, W. Hasan and R. Krishnamurthy: Query Optimization for Parallel Execution, Sgmod92

32

CHAPTER 3. JOQR OPTIMIZATIONS 33

time. Further, join ordering only applies to joins. The agorithmsfor choosing physical properties
and methods are applicable to any query tree. Thisopens up new ways of combining the different
aspects of query optimization even for conventional systems.

3.1 A Mode for Minimizing Communication

Partitioned parallelism which exploits horizonta partitioning of relations may require data to be
repartitioned among sites thus incurring substantial communication costs.

Example 3.1 AssumetablesEnp(enum nane, areaCode, nunber) andCust (name, ar eaCode,
nunber) arehorizontally partitioned ontwo siteson theunderlined attributes. Thefollowingquery
(in SQL2 [X3H92] syntax) determines the number of employees who are also customers in each
area code. An employee and a customer are guessed to be the same person if they have the same
name and phone number:

Select areaCode, Count(*)

From Cust I ntersect (Select name, areaCode, number From Emp)

Group by areaCode;

Figure 3.1 shows two query trees that differ only in how data is repartitioned. Since tuples with
the same ar eaCode need to come together, G- oupBy is partitioned by ar eaCode. However,
I nt er sect may be partitioned on any attribute. If we choose to partition it by ar eaCode,
we will need to repartition the (projected) Enp table. If we partition by name, we will need to
repartition the Cust table as well asthe output of | nt er sect . Thus one or the other query tree

may be better depending on the relative sizes of the intermediate tables. O
© Emp,: hash(name) mod 2 = 0 GroupBy@ (areaCode) GroupBy@ (areaCode)
w
E | Cush hash(areaCode) mod 2 =0
»n
Intersect (areaCode) Intersect ga (Name)
E Emp, : hash(name)mod2=1
g Cust hash(areaCode) mod 2 =1 Emp Cust Emp@ Cust
(areaCode) (name) (areaCode)

(name)

(a) Schema (b) Alternate Query Trees

Figure 3.1: Query Trees: Hatched edges show repartitioning

3.1.1 Partitioning

We begin with aformal definition of partitioning.

CHAPTER 3. JOQR OPTIMIZATIONS 34

Definition 3.1 A partitioningisapair (a, h) where a is an attribute and & is a function that maps
values of a to non-negative integers.

Given atable T, a partitioning produces fragments T, . . ., T

For example, the partitioning of Enp in Example 3.1 is represented as (nane, hash(nane)
nod 2). Thefunctionhash(nane) nod 2 isappliedto each tupleof Enp and thetuple placed
in fragment Emp,, or Emp, depending on whether the function returns 0 or 1.

Partitioning provides a source of parallelism since the semantics of most database operators
allows them to be applied in paralel to each fragment. Suppose Sy, ..., S, and Ty, ..., Ty ae
fragments of tables S and 7' produced by the same partitioninga = (a, k).

Definition 3.2 A unary operator f ispartitionablewith respect to a if and only if f(.S) = f(So)U
... U f(Sk). A binary operator f is partitionable with respect to « if and only if f(S,T) =
f(So,To) u...u f(Sk,Tk).

Definition 3.3 An attribute sensitive operator is partitionable only for partitionings that use a
distinguished attribute. An attribute insensitive operator is partitionablefor all partitionings.

The equation S < T' = U;(S; > T3) holds only if both S and T' are partitioned on the (equi-
)join attribute. Thus join is attribute sensitive. Similarly, grouping is attribute sensitive since it
reguires partitioning by the grouping attribute. UNI ON, | NTERSECT and EXCEPT (set difference),
aggregation, selection and projection are attribute insensitive. External functions and predicates
may be either sensitive or insensitive.

3.1.2 Repartitioning Cost

Communicating tuples between operators that use different partitionings requires redistributing
tuples among sites. Some percentage of tuples remain at the same site under both partitionings and
therefore do not need to be communicated across sites. We believe that the crucial determinant of
the extent of communication cost, given a“good” scheduler, is the attribute used for partitioning.
We argue the following all or nothing assumption to be reasonable.

Good Scheduler Assumption: If two communi cating oper ator susethe same partitioningattribute,
no inter-site communication is incurred. If they use distinct partitioning attributes then all tuples

need to be communicated across sites.

Consider the case of two operators with different partitioning attributes. The greatest savingsin
communication occur if the two operators use the same set of processors. If atable with m tuples

CHAPTER 3. JOQR OPTIMIZATIONS 35

equally partitioned across k sitesisrepartitioned on adifferent attribute, then assuming independent
distribution of attributes, (1 — %)m tuples may be expected to change sites. Thusit isreasonableto
assume al m tuples to be communicated across sites.

Now consider the case of two operators with the same partitioning attribute. We believe that
any good scheduler will choose to use the same partitioning function for both operators since it not
only saves communication cost but also permits both operators to be placed in a single process at
each site. For example, our assumptionis exactly true for symmetric schedulers (such as those used
in Gamma[DGS'90]) that partition each operator equally over the same set of sites.

3.1.3 Optimization Problem

We associate col ors with nodes as corresponding to the partitioning attribute.

Definition 3.4 The color of anode in a query tree is the attribute used for partitioning the node.
An edge between nodes ¢ and 7 ismulti-colored if and only if < and j are assigned distinct colors.

In aquery tree, the nodes for attribute sensitive operators or base tables are pre-colored while
we have the freedom to assign colors to the remaining uncol ored nodes.

We will associate a weight ¢, with each edge e to represent the cost of repartitioning. Since
this cost isincurred only if the edge is multi-colored, the total repartitioning cost is the sum of the
weights of al multicolored edges. Thusthe optimization problemiis:

Query Tree Coloring Problem: Given a querytree T = (V, E), weight c. for edgee € E, and
colors for some subset of the nodes in V', color the remaining nodes so as to minimize the total
weight of multicolored edges.

Conventional cost models[SAC™T 79] provide estimatesfor thesizes of intermediateresults. The
weight ¢, may be estimated as a function of these sizes. Our work is applicable regardless of the
model used for estimation of intermediate result sizes or the function for estimation of repartitioning
cost. We assume some method of estimating ¢, to be available.

Query tree coloring is related to the classical problem of multiway cuts with the difference
that multiway cut restricts pre-colored nodes to have distinct colors. Multiway cut is NP-hard for
graphs but solvable in polynomial time for trees [DIJPT92]. Chopra and Rao [CR91] devel oped
an O(n?) dgorithm (where n is the number of tree nodes) for multiway cut for trees using linear
programming techniques. The DLC agorithm in the next section is substantially simpler and has
arunning time of O(n). Erdos and Szekely [ES94] provide an O(n|C|?) agorithm (where |C| is

CHAPTER 3. JOQR OPTIMIZATIONS 36

number of colors) for the case of repesated colors. The ColorSplit algorithm in the next section is
an O(n|C|) adgorithm based on a better implementation of their ideas.

COUNT
EXCEPT
5 6
A UNION
AirParts 2
4

B
CarParts

C
BoatParts

0 (i) (ii)

Figure 3.2: (i) Query Tree; (ii) Coloring of cost 7; (iii) Minimal Coloring of cost 6

Example 3.2 Figure 3.2(i) showsthe query tree for a query to count parts used in manufacture of
aircraft but not of cars or boats. The three base tables are assumed to be partitioned on distinct
atributes(colors) A, B, and C. Figures 3.2(ii) and 3.2(iii) show two colorings. Thecost of acoloring
is the sum of the cut edges which are shown hatched. The coloring in Figure 3.2(ii) is obtained
by the simple heuristic of coloring an operator so as to avoid repartitioning the most expensive
operand. The minimal coloring is shown in Figure 3.2(iii); here, UNI ON is not partitioned on the
partitioning attributes of any of its operands. O

3.2 Algorithmsfor Query TreeColoring

Coloring nodes may equivalently be viewed as cutting/collapsing edges. An edge between nodes
of distinct colors is cut while an edge between nodes of identical colors is collapsed. This view
constrains colors of adjacent nodes to be identical or distinct without fixing actual colors.

We first present some simplifications of the problem in Section 3.2.1. In Section 3.2.2, we
consider the restricted problem in which all pre-colored nodes have distinct colors. We show this
problem to be solvable by asimple greedy algorithmthat runsinlinear time. Section 3.2.3 showsthe
greedy algorithm to fail when colors are repeated and develops a O(n|C|) dynamic programming
agorithm (n is the number of tree nodes and |C| the number of colors). Section 3.2.4 discusses
extensions to deal with optimization opportunities provided by choices in access methods (due to
indexes, replication of tables) and choicesin join and grouping attributes.

CHAPTER 3. JOQR OPTIMIZATIONS 37

3.21 Problem Simplification

The problem of coloring a tree can be reduced to coloring a set of trees which have the special
property that all interior nodes are uncolored and all leaves are pre-colored. This followsfrom the
following observations which imply that colored interior nodes may be split into colored leaves,
and uncolored leaves may be deleted.

(Split) A colored interior node of degree d may be split into d nodes of the same color and each
incident edge connected to adistinct copy. Thisdecomposesthe problem into d sub-problems
which can be solved independently.

(Collapse) An uncolored leaf node may be collapsed into its parent. This givesit the same color
asits parent which isminimal sinceit incurs zero cost.

C

c 4
c c
1 1 2 COOC
1
B A B

0 (if) (iii)

Figure 3.3: (i) Split colored interior node (ii) Collapse uncolored |eaves

The following procedure achieves the simplified form in time linear in the number of nodesin
theoriginal tree. Figure 3.3 illustrates the simplification process.

Algorithm 3.1 Procedure Smplify

1. whiled uncolored leaf [with parent m do

2 collapse ! with m;

3. whiled colored interior node m with degree d do

4 split m into d copies with each copy connected to distinct aedge.

3.22 A Greedy Algorithm for Distinct Pre-Colorings

We now focus on the restricted case when all pre-colored nodes have distinct colors. By the
discussion in the previous section, we only need to consider trees in which anode is pre-colored if
and only if itisaleaf node.

CHAPTER 3. JOQR OPTIMIZATIONS 38

Definition 3.5 A nodeisamother nodeif and only if al adjacent nodeswith at most one exception
are leaves. The leaf nodes are termed the children of the mother node.

Thea gorithm repeatedly picks mother nodes and processes them by either cutting or collapsing
edges. Each such step creates smaller trees while preserving the invariant that all and only |eaf
nodes are colored. We are finally left with a set of trivial trees that may be easily colored. The
following two lemmas make such processing possible.

Suppose m isamother nodewith edgeses, . . ., eqg toleaf children vy, . . ., vg. Assumewe have
numbered the children in order of non-decreasing edge weight, i.e., ce; < ¢e, < -+ < e,

Lemma 3.1 Thereexistsa minimal coloringthat cutses,...,eq 1.

Proof: The proof usesthefact that all leaves have distinct colors. In any coloring at least d — 1
leaves have acolor different from m. If the optimal colorsm differently from al leaves, thelemma
isclearly true. If not, then suppose m has the same color as leaf v; and let thiscolor be A. Let the
color of vz be B. Change all A-colored nodes (other than v;) to be B-colored nodes. Such a change
is possible since no pre-colored node other than v; may have color A. Since ¢; < c¢,, the new
coloring has no higher cost. O

Notice that after we cut edges using the above lemma, we are left with amother node with one
child. Consider the case in which the mother node has a parent. Then the mother nodeis of degree
2 and the following lemma shows how we can deal with thiscase. Let the incident edges be e; and
ez such that c., < ce,. Since m is not pre-colored, aminimal coloring will always be able to save
the cost of the heavier edge.

Lemma 3.2 Thereisaminimal coloring that collapseses.

Thelast caseiswhen the mother node has only one child and no parent. In other words, thetree
has only two nodes. Such trees are termed trivial and can be optimally colored by giving the child
the color of its mother.

Noticethat theinvariant that exactly leaf nodes are colored remainstrue after any of thelemmas
is used to cut/collapse edges. Thus, for any non-trivial tree, one of the two lemmas is aways
applicable. Since the application of a lemma reduces the number of edges, repeated application
leadsto aset of trivial trees. These observationslead to the algorithm given below for find aminimal
coloring.

Algorithm 3.2 Algorithm DLC

CHAPTER 3. JOQR OPTIMIZATIONS 39

while 4 mother node m of degree at least 2 do
Let m haveedgesey, .. ., egtod children; Letce, < ... < cey;
ifd>1thencutey, ..., eq_1
else Let e, bethe edge from m toits parent;
if ce, < ce, then collapsee; else collapsee,,.
end while;

N o g s~ wDd PR

color trivia trees.
Since each iteration reduces the number of edges, the running time of the algorithmislinear in
the number of edges.

3.23 Algorithm for Repeated Colors

C
EMP1 cust B Supp Emp,

0] (if) (iif)
Figure 3.4: (i) Query Tree (ii) Suboptimal DLC coloring (cost=9) (iii) Optimal coloring (cost=8)

Thefollowing example showsthat DL C may not find the optimal col oring when colorsare repested.

Example 3.3 Figure 3.4(i) shows aquery tree for a query that finds employees who are customers
aswell assuppliers. TakingthetablesSupp, Cust , and Enp to be partitioned on distinct attributes,
we pre-color them by colors A, B, and C respectively. We now have repeated colorsand two “widely
separated” leaves are both pre-colored A. The DL C agorithm finds the sub-optimal coloring shown
in Figure 3.4(b) since it makes alocal choice of cutting away the A leaves. The optimal coloring
shown in Figure 3.4(c) exploitsthe like colored leaves to achieve alower cost. O

Thus, repeated colorsmakeit difficult to makegreedy choicesof colors. Bruteforceenumeration
is undesirable since the number of coloringsfor ¢ colorsand n nodesis ¢™.

Recall from Section 3.2.1 that acolored interior node may be splitto decomposethe probleminto
smaller subproblemsthat areindependently solvable. Sinceinterior nodesareal initially uncolored,
this observation can only be exploited after coloring an interior node. A further observation that
we will make is that the subproblems can be posed in a manner that makes them independent of

CHAPTER 3. JOQR OPTIMIZATIONS 40

the color chosen for the interior node. We now develop an efficient algorithm based on dynamic
programming that expl oits problem decomposition while trying out different colors for each node.

Definition 3.6 Optc(i, A) is defined to be the minimal cost of coloring the subtree rooted at ¢ such
that ¢ is colored A. If node is pre-colored with acolor different from A, then Optc(i, A) = co.

Definition 3.7 Opt(¢) is defined as min, Optc(i, a), i.e., the minimal cost of coloring the subtree
rooted at ¢ irrespective of the color of 3.

i@ i i @
o8
Decompose oy az ay
A A

Figure 3.5: Problem Decomposition after Coloring Node ¢

Consider atree (Figure 3.5) inwhich root node: has children a1, ay, . . ., ag. Let theedge from
i to a; have weight ¢;, and let T; be the subtree rooted at «;. If we fix a color for node ¢, we can
decomposethetreeinto k “new” trees by splitting node z into k& copies. Since the only connection
between new trees was through 2, they may now be colored independently of each other. Thus
Optc(i, A) isthe sum of the minimal coloringsfor the k new trees.

Consider the jth new tree. The minimal coloring either pays for the edge (z, a;) or it does not.
If it paysfor the edge, then it can do no better than using theminimal coloring for T’;, thusincurring
acost of ¢; + Opt(c;). If it does not pay for the edge, it can do no better than the minimal coloring
that gives color A to node a; thus incurring a cost of Opte(a;, A). The next lemma follows by
taking the cost of coloring the jth new treeto be the best of these cases. It providesaway of finding
the cost of aminimal coloring.

Lemma 3.3 Theminimal cost Optc(i, A) of coloring the subtree rooted at ¢ such that ¢ gets color
Alis
00 1 pre-colored with color other than A
Opte(i,A)=1< 0 i aleaf, uncolored or pre-colored A
Y 1<j<k MiN[Opte(aj, A), cj + Opt(a;)] otherwise

Example 3.4 Figure3.6 showsOptc and Opt for thetree of Figure 3.4. Lemma3.3 may be applied
to fill up columns of these tables in aleft to right manner. The first column is for the Enp, node

CHAPTER 3. JOQR OPTIMIZATIONS 41

that is pre-colored by color A. By thefirst two cases of the formulaof Lemma3.3, therow for color
A inthiscolumn is 0 and the other two entries are co. The entry in the Opt table is the minimum
of the column values.

NODES (POSTFIX ORDER}

Emp; cust Intersect; SUpp Emp, Intersect, Union

® 0| w| 4| | o| 4| 8|,
giBwoaww7gE
3 o
3 o | | 7| 0] | 3| 9
(o[o] sl oJo]53]s]5

Figure 3.6: Opt and Optc tablesfor tree of Figure 3.4

Consider the last column of the table that represents entries for the Uni on node. This col-
umn is computed using the values in the columns for the children of the Uni on node, i.e,
columns for I ntersect ; and | ntersect . For example, Optc(Uni on, A) is the sum:
min[Optc(l nt er sect 1, 4),3+ Opt(l nt er sect 1)]+
min[Optc(l nt er sect ,, A),3+ Opt(l nt er sect ,)]. o

If the query tree has root 7, then Opt(3) is the cost of the any optimal coloring. If A isacolor
such that Opte(i, A) = Opt(t), then there must be an optimal coloring the gives color A to s.
Once we know an optimal color for ¢, we can pick optimal colorsfor the children of 7 by applying
Lemma3.3in“reverse” asfollows:

Lemma 3.4 If ¢ getscolor A in some minimal coloring, there exists a minimal coloring such that
child a; of ¢ hascolor A if Opte(aj, A) < ¢; + Opt(a;) and any color a for which Opte(aj, a) =
Opt(a;) otherwise.

Lemmas 3.3 and 3.4 lead to the following Color Split algorithm. Letting C' be the set of colors
used for pre-colored nodes, the algorithm has a running time of O(=n|C/).

Algorithm 3.3 Algorithm ColorSplit

1 for each node ¢ in postfix order do step 2

2 for each color a € C do steps3 and 4

3. compute Optc(i, a) using Lemma 3.3;
4 Opt(i) = min, Optc(, a)

CHAPTER 3. JOQR OPTIMIZATIONS 42

5 Let a € C besuchthat Opte(r, a) = Opt(r) where r isthe root

6 color(r) = a;

7. for each non-root node a; in prefix order do steps 8 to 11

8 Let < bethe parent of «;; Let ¢; be the weight of edge between ¢ and a;
9 if Opte(aj, color(i)) < ¢; + Opt(a;)

10. then color(a;) = color(i)

11. esecolor(a;) = a € C suchthat Optc(a;,a) = Opt(c;)

We further observe that Color Split does not require the input tree be such that all and only the
leaf nodes are pre-colored. It finds the optimal coloring for any tree. In other words, the tree need
not be pre-processed by the Smplify algorithm of Section 3.2.1. Having pre-colored interior nodes
actually reduces the running time of Color Split since the first two cases of Lemma 3.3, which are
simpler than the third case, may be used.

ColorSplit is a fast algorithm. While pre-processing with Smplify offers the possibility of
reducing the running time of ColorSplit (by reducing the number of colors in each new tree),
additiona gains may not be worth the implementation effort.

3.24 Extensions. Using Setsof Colors

We show that the mechanism of using a set of colors rather than a single color to pre-color anode
makes several extensions possible. Handling sets of colors does not increase the complexity of
ColorSplit. The intuitive reason is that any pre-coloring constrains the search space and thus can
only reduce the running time of the algorithm.

Pre-coloring with a set of nodes serves to restrict the choices of colors that the Color Split
algorithm may makefor anode. Thisrestrictionisimplemented by theformulagivenin Lemma3.3
which may be modified as shown below.

Lemma 3.5 (Modified Lemma 3.3) The minimal cost Optc(i, A) of coloring the subtree rooted at
1 such that ¢ gets color A isgiven by

00 Aisnotin set of pre-colorsfor ¢
Opte(i,A)=4 0 ¢ aleaf, uncolored or has A as pre-color
Y1<ji<k min[Opte(a;, A), c; + Opt(a;)] otherwise

This is the only modification needed for ColorSplit to work with a set of pre-colors. The
modified algorithm finds the optimal in O (»|C|) running time. Noticethat using a set of pre-colors

CHAPTER 3. JOQR OPTIMIZATIONS 43

does not change the worst case running time of the algorithm since any pre-coloring (set or single
color) reduces the running time of the agorithm by simplifying the computation of Optc.

AccessMethods: Typically, the columns needed from atable may be accessed in several aternate
ways. For exampleif atableisreplicated then any copy may be accessed. Further, anindex provides
a copy of the indexing columns as well as permits access to the remaining columns. Each access
method may potentially provide adifferent partitioning. We may mode thissituation by associating
a set of colors with each base table node, one color per partitioning. We observe that each access
method may have adifferent cost in additionto delivering adifferent partitioning. Such interactions
between the cost of computation and communication are handled in Section 3.3.

Compound Attributes: Thus far we have considered attribute sensitive operators such as joins
and groupings to have a single color. When such operators are based on compound attributes,
additiona opportunitiesfor optimization arise that may be expressed by sets of pre-colors.

Example 3.5 GiventhetablesEnp(enp#, dep#, city) andDep(dep#, city),thefol-

lowing query finds employees who live in the same city as the the location of their department.

Select e From Emp e, Dep d

Where e.dep# = d.dep# and e.city = d.city

Since ajoin operator hasto be partitioned on the join column, the required partitioning depends on
the predicate chosen to be thejoin predicate. In Figure 3.7, thefirst query tree usesthejoin predicate
ondep# and requiresthe Enp tableto berepartitioned. The second usesthejoin predicateonci ty

> . X
e.dep# = d.dep#@ (dep#) ©-City = d-City@ (city)

[J
Emp Dep Emp Dep
(city) (dep#) (city) (dep#)
Figure 3.7: Interaction of Repartitioning with Join Predicates
may be modeled by pre-coloring the join node by a set of two colors {dep#,ci ty}. We observe

that choice of thejoin predicate may impact the cost of the join-method. Such interactions between
the cost of computation and communication are postponed to Section 3.3. O

CHAPTER 3. JOQR OPTIMIZATIONS 44

Similar observationsapply to other attribute sensitive operators. Given agrouping of employees
by depart nent andci ty, wepre-color the GROUPBY operator by {dep#, city}. A partitioning
guarantees that tuples that agree on the partitioning attribute(s) are assigned to the same site. Given
some set of attributes X, a partitioning on any non-empty subset of X isaso apartitioning on X .
The most general way of modeling this situation is by pre-coloring an attribute sensitive operator
that has compound attribute X by aset colors, one color for each non-empty subset of X .

Partitioning Functions: Suppose two base tables are partitioned on the same attribute A using
different partitioning functions (We consider two attributes to be the “same” attribute w.r.t. aquery
if they are equated by an equality predicate.) For example, one table may be hash partitioned on A
and the other range partitioned. We will fix this situation by giving distinct colors (say B1 and B>)
to thetwo tables. Any attribute sensitive operator that needs a partitioning on A could use either of
the two partitions and will therefore be given the set of colors { By, B2}.

3.3 Model for Methods and Physical Properties

We have so far been concerned with communication costs incurred by repartitioning and have
blithely considered the cost of an operator to be independent of the partitioning attribute.

Severd dternate strategies, each with a different cost, may be available for an operator. The
following example shows that the cost of an operator depends on the chosen strategy as well
as severa physical properties of data. The partitioning attribute is simply one of these physical
properties.

Example 3.6 GiventheschemaEnp(enp#, sal ary, dep#, city) andDep(dep#, city),
the following query finds the average salaries of employees grouped by city for those employees
who livein the same city as the the location of their department.

Select ecity, avg(esdary)

From Empe, Depd

Where e.dep# = d.dep# and e.city = d.city

Group by e.city;

Suppose Enp is partitioned by ci ty and each partition is stored in sorted order by city.
Suppose Dep is partitioned by dep# and each partition has an index on dep#. Figure 3.8 shows
two query trees. The computation of Avg is assumed to be combined with G oupBy. The first
guery tree uses the join predicate on dep# and repartitions the Enp table. Due to the availability

CHAPTER 3. JOQR OPTIMIZATIONS 45

grp_method: hash grp_method: sortgroup

grp_attr: city GroupBy grp_attr: city GroupBy

<p:city, s:city, i:znone>

<pidep#, s:city, i:none>

join_method : sort-merge

join_method : nested-loops - ><
join_pred : e.dep# = d.depgt > join_pred : e.city = d.city
<p:city, s:city, i:nong><p Jep#, s:none, i:dep#> <p:city, s:city, i:nong> <p\dep#, s:none, i:dep#>
Emp Dep Emp Dep

Figure 3.8: Annotated Query Trees

of an index on Dep, a nested-loops strategy may be the cheapest for joining each partition of Enp
(outer) with its corresponding partition of Dep (inner). The grouping operator isimplemented by a
hash-grouping strategy.

Thesecond query treeusesthejoinpredicateonci t y and repartitionsthe Dep table. Since each
partition of Enp is pre-sorted, it may be cheapest to use a sort-mergejoin for joining corresponding
partitions. Since the output of merge join is pre-sorted in addition to being pre-partitioned on the
ci ty, the grouping operator uses a sort-grouping strategy. O

Theexampleillustrates several points. Firstly, while partitioning impacts communication costs,
other physical properties (sort-order and indexes) impact operator cost. We will generalize the
notion of a color to capture all physical properties. Secondly, a strategy expects itsinputs to have
certain physical properties and guarantees its output to have some other properties. We will specify
such input-output constraintsusing col or patterns. Thirdly, the overal cost isreduced when an input
to a strategy happens to have the expected physical property. We will therefore break the cost of
computing an operator into the intrinsic cost of the strategy itself and the cost of getting the inputs
into theright form. Thelatter will be model ed as are-coloring cost that may or may not beincurred.

3.3.1 Annotated Query Treesand their Cost

We now allow a query tree to have annotations. Each interior node of a query tree is annotated by
a strategy, an output color, and a color for each input. The leaf nodes have an output color but no
strategy.

We have so far used a color to represent the attribute on which data is partitioned. We now
generalize acolor to be atriple (p : a1, s : a,% : ag) where a; is the partitioning attribute, a, the
sort attribute and a3 the indexing attribute (this is easily generalizable to quadruples etc. if more
physical properties are to be modeled).

A strategy specifies a particular algorithm for computing an operator. It requires the inputs to

CHAPTER 3. JOQR OPTIMIZATIONS 46

satisfy some constrai nts and guarantees some propertiesfor itsoutput. We will usecolor patternsto
specify such input-output constraints. A constraint has the form Inputy, . . ., Inputy — Output,
where Input; and Output are color patterns. A color pattern is similar in syntax to a color but
allows the use of variables and wild-cards. Table 3.1 shows examples of input-output constraints
for several strategies.

If someinput is not colored as required, are-coloring is needed. Re-coloring requires reparti-
tioning, sorting, or building an index.

Example 3.7 The Enp table of Example 3.6 (Figure 3.8) has the output color (p : city,s :
city,i : none) while Dep has (p : dep#,s : none,: : dep#). In the first query tree of
Figure 3.8, the join uses the nested-loops strategy and its output has the color (p : dep#,s :
city,:none). Fromthefirst row of Table 3.1, thisimpliesthat the color of inputl (Enp) should
be (p : dep#,s : city,i: %) and that of input2 (Dep) should be (p : dep#, s : x,i : dep#). The
color of Dep matches the requirements but that of Enp does not. O

IStrategy Output Input1 Input2 IAdditional requirements|

Nested-Loops Join (p: X,s:Y,%: none) (p:X,s:Y,i:%) [(p:X,s:%,4:X) [Joinpredicaeon X

Sort-Merge Join 1 X,s:X,i: none) (X,s:X,i: %) |(p: X,s:X,i: %) (Joinpredicateon X

Hybrid-Hash Join 1 X,s5:Y,i: none) (X,s:Y,i:%) [(p:X,s:%,4:%) Joinpredicateon X

Sort Grouping 1 X,s:X,i: none)

t X, s X, 00) X isagrouping attribute

(p (p
(p (p
Hash Grouping (p:X,s:none,i:.none) (p:X,s:%,1:%) X isagrouping attribute
(p (p
(p (p

Hash Intersect : X, s none, i none) tX skl [(prX, 8000 k)

Table 3.1: Examples of Input-Output Constraints

Our goal isto devise an abstract cost model that is compatiblewith classical cost models. Such
classica models typicaly consists of two parts. (a) estimation of statistics (such as size, number
of unique values in columns) for intermediate results; and, (b) estimation of cost of an operator
given statistics and physical properties of operands. Our goal is not to provide new formulas but to
provide abstractions that make it possible to reason with formulas provided by existing modelsin a
more general manner.

Definition 3.8 R* isthe set of statisticsfor table R. R* depends only on the contents of table R,
not on how it is physically stored.

Definition 3.9 recolor(R?, cold, Cnew) IS the cost of re-coloring table R from c,i4 10 crew-

Definition 3.10 inpCol(s, 4, 7) isthe color pattern needed by strategy s for input j for the output
to be of color pattern A.

CHAPTER 3. JOQR OPTIMIZATIONS 47

Example 3.8 The color required for the first input of the nested-loops join in the first query tree
of Figure 3.8 iScpew = (p : dep#,s : City,s : x). Sincethe output color (cal it c,iq) Of Emp
differsin partitioning attribute, recolor(R, coid, cnew) iSthe cost of repartitioning Enp ontheci ty
attribute. O

The cost of an annotated query tree is the sum of the costs of al operators. The cost of an
operator consists of re-coloring the inputs to have colors needed by the chosen strategy plus the
cost of the strategy itself. Suppose the root of tree T' uses strategy s and has output color a. Let
c; = inpCol(s, a, j), the color required by strategy s for the j’th input. Let T have k immediate
subtrees T4, . . ., Ty, such that T'; produces table R; with color ¢;.

Cost(T) = StrategyCost(s, R, .. Zrecolor R}, cj,c J Z Cost(T.
j=1

If T isaleaf, we take its cost as zero since we count the cost of accessing operands as part of
the cost of a strategy. Since the output of a query is always shipped to an application, the root of
any query tree will be a unary operator that achieves the shipping. By convention, we will omit
showing this operator?.

Observe that no restriction is placed on the form of the StrategyCost() or recolor() functions.
This alows, for example, non-linear terms such as logarithms, product and division that do occur
in the classical System R [SAC* 79 cost model.

3.4 Extension of Color Split for Methods and Physical Properties

Wewill now devel op an extension of Color Split that given atree with colorsfor the leaf nodesfinds
aminimal-cost strategy as well asinput and output colors for each interior node.

Definition 3.11 Optc(¢, A) isdefined to betheminimal cost of the subtreerooted at node+ such that
i has output color A. OpteStrategy(i, A) is defined to be the strategy that achieves this minimal
value (pick any one strategy if severa are minimal).

For a leaf node ¢, Optc(i, A) = 0if ¢ is pre-colored with a color compatible with A and oo
otherwise. We will trest OptcStrategy(i, A) as undefined for leaf nodes.

2Consider a query that simply scans atable. It will have a query tree consisting of a Shi p with Scan as the only
child. Observethat the cost of scanning datais counted as part of Shi p.

CHAPTER 3. JOQR OPTIMIZATIONS 48

Definition 3.12 Strategies(i, A) isthe set of strategies applicable to the operator represented by
node ¢ and whose input-output constraint permits A as an output color.

Thefollowingisageneraization of Lemma3.3. Let node ¢ havechildren a;, . . ., ax. Suppose
the subtree rooted at a; computestable R; as its output. The minimum cost of the tree rooted at ¢
such that ¢ has output color A is abtained by trying out al strategies capable of producing output
color A. The lemma showsthat for any such strategy s, the lowest cost is achieved by individually
minimizing the cost of each input.

Lemma 3.6 For aleaf nodez, Optc(i, A)isOif¢ hasa color compatiblewith A and co otherwise.
For non-leaf node ¢, Optc(i, A) obeys the following recurrence.

Optc(i, A) = minges[StrategyCost(s, RS, ..., R})+
E?:l Min.cc [Opte(ay, ¢) + recolor(RS, ¢, inpCol(s, A, 7))]]
where § = Strategies(i, A)

OptcStrategy(i, A) is some strategy for which the minimaisachieved.

Using the lemma, the following a gorithm computes Optec and OpteStrategy by a bottom-up
followed by a subsequent top-down pass that extracts optimal colors and strategies.

Algorithm 3.4 Algorithm ExtendedColorSplit

1. for each node: in postfix order do step 2

2 Use Lemma 3.6 to compute Optc(z, a) and OptcStrategy(i, a) for each color a € C

3. Letr betheroot and a acolor st. Opte(r,a) < Opte(r,c)for adl colorsec € C

4. Optimd color for » isa and optimal strategy is OptcStrategy(r, a)

5. for each non-root nodein prefix order do step 6

6 compute optimal colors and strategies by top-down pass applying Lemma 3.6 in reverse.

The agorithm has a worst-case running time of n.S|C|? where S is the number of strategies,
|C| the number of allowable colors and n the number of nodesin the tree.

Sincen and S are typically small, the running time of the algorithm is dependent on |C|. |C|
can become large when we permit the extensions discussed in section 3.2.4. The magnitude of |C'|
may be kept small by observing (1) no strategy yields an output relation with an index. Thus only
2 components of the triple for colors are relevant for interior nodes (2) only colors that might be
useful to subsequent operator need to be considered.

CHAPTER 3. JOQR OPTIMIZATIONS 49

3.5 Modd With Join Ordering

We now show an example of how repartitioning costs interact with the order of joins.

> @ (skill#)

(emp#) il

(skill#)

[_ []
Emp EmpSkills Skills EmpSkills
(emp#) (emp#) (skill#) (emp#)

Figure 3.9: Interaction of Repartitioning with Order of Joins

Example 3.9 Suppose the tables Enp(enp#, city), EnpSkill s(enp#, skill#), and
Skills(skill#, skilltype) are partitioned by the underlined attributes. The following

query finds employeeswho livein Palo Alto and have analytical skills.
Select efrom Emp e, EmpSkillses, Skillss
Where e.emp# = es.emp# and es.skill# = s.skill# and
s.skilltype= Anaytical and ecity = Palo Alto

Figure 3.9(i) and (ii) shows two aternate query trees. The trees use different join orders and
incur different repartitioning costs. If “s. skilltype = anal yti cal ” isahighly sdective
predicate, the second tree may achieve a low cost due to the small size of the intermediate table
(SkilI's =1 EnpSki I I s). However, the first tree avoids the cost of repartitioning the possibly
very largeEnpSki | | s table. Thusrepartitioning cost impactsthe ordering of joins. Figure 3.9(iii)
illustrates the detail s of the strategy annotationsfor join operations. O

Commercialy adopted solutions to join ordering are typicaly variaions of the System R
algorithm [SACT79]. Our goal isto combinethe basic ideas from thisalgorithm with the Col or Split
algorithm. Wewill start by devel oping an abstraction of someaspects of the System R styledynamic
programming. Thiswill usto understand and analyze the basic ideas while ignoring many details
of the actual agorithm.

3.5.1 Join Ordering Without Physical Properties

Definition 3.13 A join tree is an annotated query tree in which al interior nodes represent 2-way
join operations and leaves represent tables.

CHAPTER 3. JOQR OPTIMIZATIONS 50

Since join operations are associative and commutative, they may be performed in any order.
GivenaSPJquery ontablesTy, . . ., Ty, thejoin ordering problemisto find aminimal cost join tree
for computing the query. A join treefixestheorder of joinsin additionto the strategy for each join.
We will use anested list notation to represent join trees. For example, the tree of figure 3.9(iii) may
be represented as [so, [s1, Skills, EmpSkills|, Emp]

For simplicity, wefirst consider the case when re-coloring haszero cost. In other words, physical
properties do not make a difference to cost and we have:

Cost(T) 0 if Tisaleaf
0s =
StrategyCost(s, R}, R:) + Cost(T;) + Cost(t,) ifT =[s,T,T,]

Thefollowinglemmafollowsfrom the structure of the cost formulaand impliesthat any subtree
of an optimal query tree must be an optimal query tree for the corresponding sub-query.

Lemma 3.7 If OptPlan(Q) = [s,T1,T] and Q@ = Q; U @, where T; computes the sub-query over
Q: and T, over Q. then OptPlan(Q;) = T; and OptPlan(Q,) = T

Thislemma leads to the following dynamic programming a gorithm:
Algorithm 3.5 Algorithm JO (Join Ordering)

Input: SPJquery ontables7 = {T4,...,Tn}
Output: Optimal join tree.
1. for i =1ton do OptPlan({T;}) =T;
2. fori=2tondostep 3
3. foreach@ C 7 st. |Q| = idosteps4and 5
4 bestCost = oo
5 foreach Q; #0,Q, # 0st. Q = Q;UQ, dosteps6and 7
6 Let R}, R be statisticsfor tables computed by queries @i, @
7 for each join strategy s do steps8to 11
8 if StrategyCost(s, R}, R2) < bestCost then
0. bestCost = StrategyCost(s, R}, R})
10. OptPlan(Q) = [s, OptPlan(Q:), Opt Plan(Q.)]
11. end if
The agorithm has a running time of O(3™). Since plans for all subsets of @ are cached, and
aplan for ¢ tables has storage cost proportiona to z, the space requirements of the algorithm are

CHAPTER 3. JOQR OPTIMIZATIONS 51

O(n2™). A bruteforce enumeration of all treeswould runin O(2n!/n!) timebut require only O(n)
space (for 1 plan).

Often systems choose arestricted class of shapes of jointrees. A popular restrictionisleft-deep
trees that require the left child of any interior nodeto be aleaf. This cutsthe number of treesto =!
and the dgorithm runsin O(n2") time.

3.5.2 Join Ordering With Physical Properties

Suppose strategy s requires input colors c; and c,.. Suppose sub-plan (subtree) T; producestable R;
with color ¢; (R, and ¢, for sub-plan T3.).

0 if Tisaleaf
Cost(T) = 4 recolor(R}, i, ¢;) + recolor(RE, ¢, c.)+
StrategyCost(s, R, R:) + Cost(T;) + Cost(T,) ifT =[s,T;,T,]

Let Opte(Q, A) be the cost of an optimal join tree for the set of tables @ such that the output
has physical property A.

Lemma 3.8 Optc(Q, a) obeysthe following recurrence:

Opte(Q,a) = ming, g, [MiNses[StrategyCost(s, Q1, Q)
+ Mingec[Opte(Q1, a) + recolor(Q;, a, inpCol(s, a,1))]
+ Mingec[Opte(Q-, a) + recolor(QZ, a,inpCol(s,a, 2))]]]

where Q; and Q.. areall setssuchthat @ = Q; U Q,, @; # 0, Q. # 0 and S isthe set of strategies
that produce property a.

Algorithm 3.6 Algorithm JOP (Join Ordering With Physical Properties)

Input: An SPJquery ontables7 = {T4,...,Tn}

Output: An optimal join tree.

1. fori=1tondostep?2

0 T; hasaccess method with physical property a

2. Opte(T;,a) = _
oo otherwise

w

for i = 2tondo step 4
for each @ C 7 st. |Q| = i do steps5 and 6

o

CHAPTER 3. JOQR OPTIMIZATIONS 52

EXCEPT @
SPJ
Extengal function
UNION INYERSECT
/ .\u
(N
SPJ T T
T1 2 2o,

Figure 3.10: Decomposition of a complex query

5 Optc(Q, a) = oo for each physical property a € C

6 foreachQ; #0,Q, #0st. Q =Q;UQ, dosteps7and 8

7. Let R}, R be statisticsfor tables computed by queries @i, @

8 for each physical property a € C dostep 9

9 for each strategy s that can produce property a do steps 10 and 11

10. Let scost = StrategyCost(s, R}, R?), a; = inpCol(s,a,1)and a;, = inpCol(s,a,?2)
11. for each physical property a; € C, a, € C do steps12to 16
12. Let newcost = scost + Opte(Qy, a;) + recolor(R;, ay, a;)
+O0pte(Qy, ar) + recolor(RE, ar, a;)
13. if newcost < Opte(Q, a) then
14. Optc(Q, a) = newcost
15. OptPlan(Q,a) = [s,OptPlan(Q1, a;), Opt Plan(Q, a.)]
16. end if

17.return Ming,ccOptPlan(T,a)

A complex query may bedecomposed into SPJqueriesconnected by other operators(Figure 3.10).
We remark that it is possible to integrate the JOP and ExtendedCol or Split algorithmsin a straight-
forward manner to produce an optimal annotated query tree. Thetreeis optimal with respect to all
allowed orderings within SPJ boxes and al possible annotations of nodes.

3.6 Usageof Algorithms

There are several ways in which the algorithms developed in this chapter may be used. One
possibility is to use ExtendedColor lit as a post-pass to a conventional optimizer. This has two

CHAPTER 3. JOQR OPTIMIZATIONS 53

advantages. First, no modificationsisrequiredto existing optimizers. Secondly, ExtendedCol or Split
runs in polynomial time. The disadvantage is that the query trees will have optimal annotations
given thejoin orders produced by the conventional optimizer. The second possibility is to produce
optimal join order aswell as annotation by using theintegration of the JOP and ExtendedCol or Split
as areplacement for a conventional optimizer.

Chapter 4

Scheduling Pipelined Par allelism

In this chapter!, we focus on the problem of scheduling a pipelined operator tree, which is an
operator tree in which al edges are pipelining edges. Pipeined paralelism permitsall operatorsin
such atreeto run concurrently. Scheduling such trees poses a parallelism-communication trade-off.
A producer and a consumer operator must either communicate data across processors to benefit
from and run on distinct processors, or they must share a processor but save communication.

We will measure the quality of scheduling algorithmsby their performanceratio [GJ79] which
is the ratio of the response time of the generated schedule to that of the optimal. Our god is to
devise algorithms that are near-optimal in the sense that the average performance ratio should be
closeto 1 and the worst performance ratio should be a small constant.

Westart by defining the problem moreprecisely. Wethen devel op and analyze severa algorithms
followed by an experimental comparison.

4.1 Problem Definition

Definition 4.1 Given p processors and an operator tree T' = (V, E'), ascheduleisa partition of V,
the set of nodes, into p sets F1, . . ., F, with set F}, alocated to processor k.

The cost of executing F, isthe cost of executing &l nodesin Fj, plusthe cost for communicating
with nodes on other processors. It isthus the sum of the weights of all nodesin F3, and the weights

Parts of this chapter have been published in the two papers
W. Hasan and R. Motwani: Optimization Algorithmsfor Exploiting the Parallelism-Communication Tradeoff in Pipelined
Parallelism, VLDB94
C. Chekuri, W. Hasan and R. Motwani: Scheduling Problemsin Parallel Query Optimization, PODS95

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 55

Idle fraction [0.2]

PROBE(h1) [0.8]

PROBE(h2) [0.7]

| scan) [0.3] |
Idle fraction [0.2]

[scanE) 03] |
o =l time 10

(A) Schedule (B) Gantt Chart

Processorl Processor2 processor3

Figure 4.1: A pipelined schedule and its execution

of al edges that connect anode within F, to anode outside. For convenience, we definec;; = 0 if
thereisno edgefromz toj.
Definition 4.2 Theload L on processor k is Y ;¢ [t + > j¢F, Cisl-

The response time, L, of a schedule may be derived by observing that pipelining constraints
force all operatorsin apipelineto start simultaneously (time Q) and terminate simultaneously at time
L. Fast operators are forced to “stretch” over alonger time period by the slow operators. Suppose
operator ¢ isallocated to processor k£ and usesfraction f; of the processor. The pipelining constraint
isthen:

fi = %[ti + Z ci;] foral operatorsi € V (4.1)
J¢Fy

The utilization of a processor is the sum of utilizations of the operators executing on it. Since

at least one processor must be saturated (otherwise the pipeline would speed up):

=1
1@@[%])
= : = i i A1
= L 1r<n]?2<p[2[tz+ D eijl] 1?1?%(,,1"“ using equation (4.1)

= =" {eFy J¢Fy,

Example 4.1 Figure 4.1(a) shows a schedule by encircling the sets Fj,. The cost of each set is
underlined. For example {PrROBE(h1)} costs 8 by adding up its node weight (7) and the weight of
the edge (1) connecting it to its child. Observe that we show edges as undirected since the paralle

constraint represented by pipelining edges is symmetric. Figure 4.1(b) shows a Gantt chart of the
execution specified by the schedule. The fraction of the processor used by each operator in shown
in parenthesis. O

The pipelined operator tree scheduling (POT) problem may now be stated as follows:

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 56

Input: Operator Tree T' = (V, E) with positivereal weightst; for each node: € V and ¢;; for
each edge (s, j) € E; number of processors p
Output: A schedule with minimal response timei.e., apartition of V' into F1, . . ., F, that

minimizesmaXi<i<p Y ;e p, [t; + EJ'¢F1 Cij)-

Definition 4.3 If F is a set of operators, cost(F) is the load on a processor that computes F'.
cost(F) = Y ;erlti + Y eF Cij)-

Since the special case in which al edge weights are zero is multiprocessor scheduling [GJ79,
GLLK79], POT isNP-hard. Since the number of ways of partitioning » elementsinto & digjoint
non-empty setsis {7} } (which denotes Stirling numbers of the second kind) [Knu73], the number
of distinct schedules for atree with n nodes on p processorsisy 1 <x<, {%}. Thisnumber is about
1.2 x 10°forn = p = 10and 5.0 x 103 for n = p = 20, thus ruling out enumerative approaches
to the problem.

A natura questioniswhether multiprocessor scheduling a gorithmssuch as LPT may be adapted
for POT. Multiprocessor scheduling is the problem of scheduling independent jobs with known
running times on a set of processors. LPT assigns the job with the largest running time to the least
loaded processor, repesting this step until al jobs are assigned. For p processors, LPT has a worst
case performance ratio of § — 55 [Gra69)].

LPT may be applied to POT by simply using the cost of each node (i.e. the node weight plus
weights of all incident edges) asitsrunning time. This Naive LPT algorithm performs poorly since
it is unaware of the tradeoff between parallelism and communication. Consider two operators each
of weight ¢ connected by an edge of weight ¢. To obtain a schedule for 2 processors, Naive LPT
will consider the cost of each operator to be ¢t + ¢ and place them on separate processors resulting
in a schedule with aresponsetimeof ¢ + ¢. LPT never saves communication cost by placing both
operators on a single processor which would achieve aresponse time of 2¢. Since cheap operators
and expensive communication can make the ratio tzf—t“ arbitrarily large, the worst case performance
ratio of Naive LPT isunbounded.

Our agorithms will use the operations of cutting and collapsing edges that correspond to
decisionsto place adjacent nodes on the same or different processors.

Definition 4.4 Collapse(i, j) modifies a tree by replacing nodes ¢ and 5 by a single new node ¢’

withweight ¢;; = ¢; + t;. Edges that were connected to either s or j are instead connected to '.

Definition 4.5 Cut(s,) modifiesatree by deleting edge (¢,) and adding its weight to that of the
nodesi and 7, i.e £7°% = 2! 4 ¢;; and 17 = 12 + c;;.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 57

If a schedule places both ¢ and j on processor &, the load on all processors is invariant when
7 and j are collapsed, and the new node is placed on processor k. If a schedule places: and j on
distinct processors, the load is invariant when (z, j) is cut.

Our analysis with often consider the following two special cases.

Definition 4.6 A star isatree with one non-leaf node. A pathisatree with two leaves.

4.2 ldentifying Worthless Parallelism

In this section we investigate the tradeoff between parallelism and communication cost and de-
velop the GreedyChase algorithm that “chases’ down and removes parallelism that is “worthless”
irrespective of the number of processors.

We start by characterizing worthless edges whose communication overhead is relatively high
enough to exceed any benefits from parallelism. We the identify a class of trees that we call
monotone. Such trees have no worthless parallelism in the sense that maximal use of paralelism
isin fact optimal. We show that repeatedly collapsing worthless edges results in a monotone tree.
Finally, we provide lower bounds on schedul es for monotone trees.

4.2.1 Worthless Edgesand Monotone Trees

In Figure 4.1, the cost incurred by MERGE in communicating with SCAN(E) is 4 seconds which
exceeds the cost of sCAN(E) itself. It isthus always better for the processor executing MERGE to
execute SCAN(E) locally rather than communicate with it. We now generalize this observation.

Definition 4.7 An edge e;; is worthless if and only if (¢;; > ¢; + Py cik) OF (cij > t; +
Ek;éi Cjk)-

Thefollowing theorem showsthat our definition of worthlessindeed captures edges whose high
communication cost offsets the advantage of parallel execution.

Theorem 4.1 Given p processors and an operator tree T' with worthlessedge (¢, 7), there existsan
optimal schedule of T for p processorsin which nodes: and j are assigned to the same processor.

Proof: We prove the theorem by showing that given a worthless edge (z, j) and an optimal
schedule S, we can generate another schedule S’ (for the same number of processors) with no higher
response timein which (¢, 7) is collapsed.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 58

Let F, and F; be the sets of nodes assigned to processors p and ¢ in S such that : € F, and
j € F,. Since (¢, j) isworthless, without loss of generality we may assume
cij >t + > cjn (4.2)
ki
We show S’ to consist of § modified by moving j from ¢ to p. This move changes the loads only
on p and ¢ and we show that neither |oad can increase.

Moving j onto processor p increases the load on p by at most [t; + > ic(v_r,) ¢jk] — Cijs
since p saves the cost of the edge between ¢ and 7, but incurs the additional cost of j aswell as
j communicating with nodes other than those assigned to p. Observing that Y ke(V—F,) Cik <
> ki Cjk, EQuation 4.2 shows thisincrease cannot be positive.

Removing j from processor ¢ increases theload on g by —c;; — t; + > e r, cjk, SINCe g SAVES
the cost of 5, and communicating with ¢, but must now incur the cost of the remaining nodes of F,
communicating with j. Observing that 3 rcr, cjk < > ki cje, Equation 4.2 shows this increase
cannot be positive. O
Definition 4.8 An operator tree is monotone if and only if any connected set of nodes, X, has a
lower cost than any connected superset, Y, i.e, if X C Y then cost(X) < cost(Y').

We now establish an important connection between worthless edges and monotone trees. The
following theorem alows us to transform any tree into a monaotone tree by collapsing al worthless
edges. More importantly, we can schedule the monotone tree rather than the original tree. This
follows since collapsing worthless edges does not sacrifice optimality (Theorem 4.1) and the
schedule for the original tree can be recovered from the schedule for the transformed tree.

Theorem 4.2 Atreeis monotoneif and only if it has no worthless edges.

Proof: [WORTHLESS EDGE IMPLIES NON-MONOTONICITY]
Assume edge (¢,) isaworthless edge. Without loss of generality, we assume

c; >t + Z Cik (4.3)
k#i
We show cost({i}) > cost({¢,7}) and hence the tree is not monotone.

cost({i}) = i+ cn
k

t; + ¢ + Zcik

k#£j
> i+ (t; + Z cij) + Z ¢;r. by Equation 4.3
k#i k#j

= cost({i,j})

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 59

[NON-MONOTONICITY IMPLIES WORTHLESS EDGE]

If atreeisnot monotone, there must be connected sets X and Y suchthat X C Y with cost(X) >
cost(Y'). Since X and Y are both connected sets, it must be possibleto arrangethenodesinY — X
in a sequence vy, . . ., vy, SUCh that Y can be created from X by adding these nodes one by one
and guaranteeing a connected set at al steps. That is, we progress through sets Fo, F1, ..., Fm
with F; = Fo U {v1,...,v;} being a connected set and with Fp = X and F,, = Y. Since
cost(Fp) > cost(F,,), there must be some vertex v,, such that cost(Fn_1) > cost(F,). Since
both F,,_1 and F,, are connected but acyclic sets, v,, isconnected to exactly onenodein F,, 1. Cal
that node 3.

cost(Fy) = cost(Fp_1) + ta — cap + Z Caj
I#£8

Using cost(Fn—1) > cost(Fy), wecan concludet, + 3,44 caj < cap Which proves (a, 8) to be
aworthless edge. O

4.2.2 TheGreedyChaseAlgorithm

Algorithm 4.1 The GreedyChase Algorithm

Input: An operator tree
Output: A monotone operator tree
1. while there exists some worthless edge (¢, 7)

2. Collapse(i,j)
3. end while

Since each collapse reduces the number of nodes, GreedyChase must terminate. The check for
the existence of aworthless edge is the crucial determinant of the running time. When aworthless
edgeis collapsed, adjacent edges may turn worthless and thus need to be rechecked. The agorithm
may be implemented to run in time O(nd), where n is the number of nodes and d is the maximum
degree of any node. Experimentally, the running time of our implementation of GreedyChase was
virtualy linear inn.

We remark that even though the order in which new edges turn worthless may depend on the
order of edge collapses, the monotone tree for an operator treeis unique.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 60

423 Lower Bounds

We will use GreedyChase as a pre-processing step in all our agorithms. The following lower
boundswill be useful in analyzing the performance ratios of our algorithms.

Lemma4d.l Let R; = [t; + > _;cy ¢i;] be the net weight of node i. The response time of any
schedul e (independent of number of processors) for a monotone operator tree has a lower bound of
R = maXx;cv R;.

Proof: It suffices to show ¢; + 3,y ¢;; to be a lower bound for any node . Suppose Y
is the set of al nodes that are assigned the same processor as ¢. Y may be decomposed into
maximal connected sets Y1, ...,Y,. Supposei € Y,. Since cost(Y) = 3, cost(Y;), we have
cost(Y) > cost(Y,). By definition of monotone trees, cost(Y,) > cost({i}). Thus, theload on
the processor executing i is at least cost({i}) whichist; + 3¢y cij;. O

Lemma 4.2 The response time of a p processor schedule for any operator tree (monotone or not)
has a lower bound of W = W/p where W = ¥, ¢; isthetotal node weight.

Proof: Thetota load isat least the sum of the node weights and some processor must have at
least the average load. O

4.3 TheModified LPT Algorithm

The modified LPT agorithm consists of running GreedyChase followed by LPT.

Example 4.2 Figure 4.2(A) shows traces the collapse of worthless edges by GreedyChase. Note
that edges may turn worthless as a result of other collapses. For two processors, modified LPT
produces schedule (B) with responsetime 11. Naive LPT on the other hand may produce schedule
(c) with response time 25. O

Modified LPT performs well when the LPT stage receives a monotone tree that is star-shaped.
Edgesin astar have low communication costs since the weight of an edge cannot exceed the weight
of theincident leaf without making the edge worthless.

Theorem 4.3 For trees that result in monotone stars, the worst-case performance ratio of the
modified LPT algorithmislessthan 2 + 1—1, Examples exist that achieve aratio of 2.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 61

)

Figure 4.2: (A) Trace of GreedyChase (worthless edges hatched) (B) modified LPT schedule (C)
naive LPT schedule

Proof: Consider astar in which the center node, labeled O, is connected to n — 1 nodes |abeled
1,...,n— 1. Let ¢; bethe weight of the edge from node O to node <. If all edges are cut, we get
n jobs. The job created from the center has weight o = 2o + >°1<;<,, ¢; and theremainingn — 1
jobshaveweightsa; = t; +¢; fore=1,...,n — 1.

Suppose LPT schedules these jobs to give a response time of L. Let 7 be the node that when
schedul ed caused theload on some processor to reach L. Since LPT assignsajob to theleast loaded
processor, the load on all processors must have been at least L — «; when j was assigned. Thusthe
total load on all processorshasto be at least (L — a)p + a;.

(L—aj)pt+ea; < Y a

0<i<n
1 1
L < (1——)aj—|—— Z a;
p P ocicn
1 1
= (l——)aj—l——[Z t; + 2 Z ci]
p P o<icn 0<i<n

The above steps are analogous to a standard analysis of the LPT agorithm. We can now exploit a
property particular to stars. Since all edges are incident with node 0, 3-1<; <, ¢; < ao.

I < (@1-Deg+(Y t)fp+ 2o
p 0<i<n p
Since the star is monotone, by Lemmas 4.1 and 4.2, both a; and (3 ¢;) /p are lower bounds on
the optimal responsetime L,p;. Thuswe conclude L/ Loyt < 2+ I—{
A ratio of 2 is achieved by a star consisting of (p+1) nodes. The center with weight 1 is
connected by edges with weight 0 to (p-1) nodes with weight 2, and by an edge of weight 1 — ¢ to
anode of weight 1. The optimal schedule achieves a response time of 2 by placing the two nodes

of weight 1 on the same processor and the remaining p — 1 nodes on distinct processors. The LPT

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 62

. l . 1 8. 1 L] L] L] .E 1

1+e €

»©®
©

1+

Figure 4.3: Example with Performance ratio = n/p for Modified LPT

stage of Modified LPT gets (p — 1) nodes of weight 2 and 2 nodes of weight 2 — e. It therefore
produces a schedule with responsetime 4 — 2e. O

The agorithm is till obliviousto the tradeoff between parallelism and communication. Edges
in a monotone path can have high weights. The algorithm does not attempt to save heavy edges by
assigning the incident nodes to the same processor.

Lemma 4.3 The wor st-case performance ratio of modified LPT is unbounded for paths.

Proof: Figure 4.3 shows a monotone path for which the LPT phase receives n jobs each of
weight 2 + €. It can produce a schedule with aresponsetimeof (2 + €)n/p ~ 2n/p. The optimal
is obtained by cutting the path into p pieces of equal length thus obtaining a response time of
2+ [n/ple ~ 2and aperformance ratio of n/p.]

4.4 Connected Schedules

A connected schedule requires the nodes assigned to any processor to be a connected set. This
restriction is equivalent to only considering schedul es that incur communication cost on p — 1 edges
(the minimal possible number) when using p processors.

A practical reason for investigating connected schedulesis execution efficiency. Code genera-
tion schemes such asthat employedinthe LDL system [CGK 90] generate a singlethread of control
for a connected sets of operators. The context switching between operators is efficiently built
into the generated code rather than being managed by more expensive mechanisms such as thread
packages. Unconnected sets require as many threads as the number of connected componentsin the
set. Thus connected schedules permit afaster implementation of intra-processor context switching.

While POT is NP-hard, we show that the optimal connected schedule can be constructed by
a polynomia algorithm. Subsequent sections show the optimal connected schedule to aso be a
near-optimal general schedule for path-shaped trees. It therefore finds a use in the construction of
the Hybrid algorithm in Section 4.6.

Cut Collapse

inter-fragment 18 intra-fragment
edges edges
« 3 «
11 Reconnect 1 Expand 12

|l—‘

Cut Edges = Collapsed Edges

Figure 4.4: Connected Schedule as Cutting and Collapsing Edges

A connected schedule for p processors dividesthe operator treeinto & < p fragments (i.e. con-
nected components) obtained by cutting £ — 1 edges and collapsing the remaining edges (Fig-
ure 4.4). Thus, one way of finding a connected schedule is to examine al O(2™) combinations of
cutting/collapsing edges. The next section shows how we can do better.

441 Connected Scheduleswhen Communication isFree

We now develop an algorithm for finding the optimal connected schedulefor treesinwhich all edge
weights are zero. The algorithm is generadized to handle edge weightsin the next section.

We will develop the agorithmin two steps. First, given abound B and number of processors p,
we develop an efficient way of finding a connected schedule with aresponse time of at most B, if
such a schedule exists. Second, we show that starting with B set to alower bound on the response
time, we can use asmall number of upward revisionsto get to the optimal connected schedule.

Definition 4.9 A schedule is (B, p)-bounded if and only if it is a connected schedule that uses at
most p processors and has a response time of at most B.

Definition 4.10 A nodeisamother nodeif and only if all adjacent nodeswith at most one exception
are leaves. The leaf nodes are termed the children of the mother node.

We first consider the simple case of a mother node m with a single child » to see how the
decision to cut or collapse an edge can be made. Supposet, + ¢, > B. Clearly, the edge (m, r)
should be cut since otherwise we shall exceed the bound. Now supposeinstead ¢, + t,,, < B. We
claim that the edge (m, r) can be collapsed. Sincer is connected only to m, if the connecting edge
were cut, » would get a processor, say p,, to itsdf. Putting m on p, reduces thetota work for other
processors without causing the bound to be exceeded on p,., and thus can never hurt. This basic

(=

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 64

ideawill be generalized to derive an efficient algorithm. Some of the ideas are similar to those of
Hadlock [Had74] for arelated but different problem.

Thefollowinglemmasnarrow the set of scheduleswe need to examine. Weassumem isamother
node with childrenrq, . . ., 74 inthe order of non-decreasing weight, i.e. t,, <t,, <...<t.,.

Lemma4.4 If a (B, p)-bounded schedule S places m and r; in the same fragment and »; in a
different fragment where i < j (i.e. t,; < t,;), then the schedule S"inwhich r; and r; exchange
placesisalso (B, p)-bounded.

Proof: Let F,,, and F; respectively be the fragments containing m and r;. Swapping »; and
r; cannot increase the cost of F,, sincet,; < t... It suffices to show that the cost of F; does not
increase beyond B. Since S is a connected schedule and leaf »; is not in the same fragment as its
mother node, r; must be the only node in F;. Since the origina schedule was (B, p)-bounded, no
individual node weight exceeds B. Thus swapping cannot increase the cost of F; beyond B. a

Repeated application of Lemma4.4 resultsin:

Lemma 4.5 If thereexistsa (B, p)-bounded schedule, then there existsa (B, p)-bounded schedule
such that (1) if (m, ;) iscollapsed then sois(m, r;_1) (2) if (m, ;) iscut then sois(m, 7;1)

Let I be the largest number of children that can be collapsed with m without exceeding bound
B, that is, themaximum such that ¢, + 3 1<;<; tr; < B

Theorem 4.4 Ifthereexistsa(B, p)-bounded schedul e, thenthereexistsa (B, p)-bounded schedule
such that (1) (m, r;) iscollapsedfor 1 < j < 1(2) (m,r;)iscutforl < j < d.

Proof: By Lemma 4.5 there exists a (B, p) schedule such that all collapsed children precede

al cut children. Assumet,,, .. .t,, arecollapsed and ¢, ..,tg arecut. Let F' be the fragment

vy
containingm, t,,, .. .t,,.

Clearly I’ < I sinceotherwisethebound B will beexceeded. Sincecost(F) < B, wecanreplace
the fragments F, {t,, .},...,{t-} by two fragments F' — {m,t,,,...,t,,} and {m, ¢, ,.. .t}
each of which isbounded. O

Theorem 4.4 gives us a way of finding a (B, p)-bounded schedule or showing that no such
schedule exists. We pick a mother node and traverse the children in the order of non-increasing
weights. We collapse children into the mother node as long the weight of the mother staysbelow B

and then cut off therest. We repeat the process until no more mother nodes are left or we have cut

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 65

p — 1l edges. If theweight of the last fragment isno more than B, we have found a (B, p)-bounded
schedule, otherwise no such schedule is possible.

Algorithm 4.2 The BpSchedule Algorithm

Input: Operator tree T' with zero edge wts, bound B

Output: Partition of T' into fragments Fy, . .., F, St. cost(F;) < Bfori=1,...,p—1
1. while there exists amother node m

2. Let m havechildrenry,...,rqgst. t,, < ... <,

3 Let! < dbethemax!st. t,, + Y<i<ity < B
4 for j = 1toldo

5. collapse(m, r;)

6 forj =1+ 1toddo

7 cut(m,r;)

8. if total number of cutsisp — 1 goto 10

9. end while

10. return resulting fragments Fi, . . ., F,

We will find the optimal connected schedule by setting B to a lower bound on the response
time and repeatedly revising B by as large an increment as possible while ensuring that we do not
overshoot the optimal value. For each such value of B we run BpSchedule and check whether
cost(F,) isat most B.

We can use an unsuccessful run of BpSchedule to derive an improved lower bound. For each
fragment F; produced by BpSchedule, let B; be the cost of the fragment plus the weight of the
next node that was not included in the fragment (i.e. the valuet;1;, when acut ismadeinline 7
of BpSchedule). For are-run to be successful, some fragment must become larger. Thus B must
increase to at least B*, the smallest of the B;.

Lemma4.6 B* = min; B; isalower bound on the optimal response time.
Using the lower bounds given by Lemmas 4.1 and 4.2 and the revision procedure given by
Lemma4.6, we devise the algorithm shown bel ow.

Algorithm 4.3 The BalancedCuts Algorithm

Input: Operator tree T' with zero edge weights, number of processors p
Output: Optimal connected schedule
1. B =max([X;cy ti/p] , MaXicv t:)

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 66

2. repeat forever

3. Fi,...,F,=BpSchedule(T, B)

4. ifcost(Fp) < Breturn Fi,..., F,

5 Let B; = cost(F;) +wt of next nodenot in F;
6. B = min; B;

7. end repeat

The following theorem shows BalancedCuts to terminate in at most O(np) iterations and thus
have arunning timeof O (n?p). The remarks bel ow show how theimplementation may beimproved
to O(np).

Lemma 4.7 BaancedCutsterminatesinat most 1 + (p — 1)(n — p) iterations.

Proof: Suppose we label the edges by integers starting at 1 in the order they were considered
by BpSchedule. Any schedule can now be described by avector ¢ = ey, . . ., ¢,—1 Of the indices of
the p — 1 cut edges. Noticethat ¢; < ¢2 < ... < ¢p—1. Given two sequences ¢ and ¢/, we say ¢
is dominated by ¢’ if every entry of ¢ is no larger than the corresponding entry of ¢’. The method
for revising B guarantees that the increment is large enough for at least one fragment to increasein
size. Thus at least one cut must moveto a strictly higher label and no cut movesto an edge with a
lower label. The sequence of schedules constructed by BalancedCuts gives a sequence of vectors
where each vector strictly dominatesal the preceding vectors. The length of any sequence of such
vectorscan beat most 1+ (p — 1)(n — p) since the:’th element of the vector may only change from
aminimumvalueto ¢ to amaximumvaueof n — p + 4. O

A more careful analysis (and implementation) of thisideagivesusabound of O(nk). Whenever
the B value is updated, the total work done in finding a new candidate solution can be charged
to the nodes which migrate from a component to a previous one. It is easy to verify that the
implementation cost works out to be O(1) for each such node migration. Since any one node can
migrate at most p times, the total work can be bounded by O (np).

4.4.2 BalancedCutswith Communication Costs

Generdlizing BalancedCuts to take care of communication requires two changes. Firstly, the input
tree must be pre-processed by running GreedyChase. Secondly, BpSchedule must consider the
children of a mother node in the order of non-decreasing t; — ¢;,,. Both changes are required to
make BpSchedule work correctly.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 67

F, Fp
€ | €3 Epl__| Cp+1) _ Ep+iyr
PN ﬂi —@ ‘e ®
’v‘l L ‘ Wo PP PP Wp epr Wp+1 PP

Figure 4.5: Fragments formed by BpSchedul e before the |ast stage of BalancedCuts

BpSchedule assumes that adding more nodes to a fragment, while retaining connectivity, can
only increaseitscost. Themonotonetreesproduced by GreedyChaseguarantee exactly thisproperty.
Since the schedule for the origina tree can be recovered from the schedule for the “ pre-processed”
tree, it suffices to schedule the monotone tree.

BpSchedule greedily “grows’ fragments by collapsing children with their mother node as long
as the fragment cost remains bounded. The children were ordered by non-decreasing weights, and
the weight of each child was a measure of how much the weight of the fragment would increase by
collapsing the child into the mother node. With non-zero edge weights, the mother node must pay
the cost of communicating with the child when it is adifferent fragment. Thus collapsing the child
1 with the mother m increases the cost of the fragment by ¢; — ¢;,. Ordering the children of the
mother node in the order of non-decreasing ¢; — ¢;.,, sufficesto generalize Lemmas 4.4 and 4.5 and
Theorem 4.4.

4.5 Connected Schedules asan Approximation
The optimal connected schedule is a good approximation for paths but not for stars.

Theorem 4.5 For path-shaped operator trees, the wor st-case performanceratio in using the opti-
mal connected scheduleisat most 2 — 1/p. Examples exist that achieve aratio of 2 — @

Proof: We shall prove the theorem by considering the situation preceding the last iteration of
the BalancedCuts algorithm (Algorithm 4.3).

Suppose the BpSchedule procedure chooses mother nodes in a left-to-right manner, thereby
cutting the path into maximal fragments Fi, . . ., F;, (see Figure 4.5). Let the first node of fragment
F; have weight w;, and let the weights of the edges to the left and right of w; be e; and e,
respectively (take ey; = 0, and if w1 isthelast node, take e, 11y, = 0). Let A; = cost(F;) and
B; = cost(F; U {w;11}).

The procedure for revising bounds chooses the minimum of the B;’s. Therefore before the
last round we must have, for ¢ = 1,...,p, that B; > L¢ where L¢ is the response time of

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 68

the connected schedule. Adding these p inequalities, and using B; = cost(F; U {w;y1}) =
Ai + wit1 + egir1ye — i1y We get the following inequality.
Z (A; + wiy1 + €(i+1)r — e(z’-|—l)l) > ple
1<i<p

This may be rearranged as follows (recall that e;; = 0).

1 1
o v +epine + Y, (Ai— e — €(¢+1)1)] + ’ l > (wi+ e + eir)] > Le

1<i<p 1<i<p

Note that (4; — e;; — e(z-+1)l) is the sum of the all node weightsin the 7'th fragment. Further,
since there are no worthless edges, e, 1), is |ess than the sum of the weights of all nodes to the
right of wp1. Therefore, [wp11 + e(pi1yr + 21<i<p(Ai — €ir — eqy1y)] isa most the sum of all
node weights. Further, (w; + e; + e;») isthe weight of a node plus the weight of incident edges.
Letting W (sum of nodes weightsdivided by p) and R (maximum node weight plusincident edges)
represent the lower bounds given by Lemmas 4.1 and 4.2, the last equation may be rewritten as
W+22R > Lo.

Letting Lop: be the response time of the optimal unconnected schedule, Loy + ’%Lopt > Le,
or equivaently J{JTZ <2-1%.

We now demonstrate examplesthat achievearatioof 2— 1/ [’%1] i.e,2p/(p+1)foroddvalues
of pand (2p + 2)/(p + 2) for even values. We will construct examples for which L /W equas
the claimed ratio. We then show that when n islarge enough, L, equals W (see Figure 4.6). We
will consider the cases of odd and even p separately.

Case 1 (p odd): For a path with (p 4+ 1) nodes assign weights of (p — 1)/2 and (p + 1)/2
to aternate nodes. The total node weight is p(p + 1)/2 giving W = (p + 1)/2. A connected
schedul e needs to combine two adjacent nodes and will therefore have a response time of p giving
Lc /W =2p/(p+1).

We now show paths with p + d nodes for which L¢/ Loyt = Le/W = 2p/(p + 1) when
d > (p + 1)/2. Such paths are constructed by replacing an end-node (with weight (p — 1)/2) by
d nodes with the same total weight. Thus L and W remain constant but it becomes possible for
an unconnected schedule to obtain a response time of W by appropriately matching the new nodes
with the lighter nodes. Theweight (p — 1),/2 may be distributed among the d new nodes as follows:
give weight 1 to thefirst (p — 3)/2 nodes and equally distribute the remaining weight of 1 among
the remaining nodes. Now, an unconnected schedule may pair each of the nodes of weight 1 with
anodewithweight (p — 1)/2 and put all nodes with weight less than 1 with the remaining node of
weight (p — 1)/2.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM

p n EXAMPLE
2 3 Lo/l gp= 3/2 1 2 1
LW =372 e—o— 0
4 Lc/L o= 312 12 112 2 1
LW =312 o—o9—0—9°
3 4 Lo/l o= 32 1 2 1 2
LW =312 &—e—0—0
5 L/l o= 3/2 12 12 2 1 2
LW =372 —6—o0— 0 6
4 5 LC/LJ)ptz 5/4 2 3) 3 2
LW =5/3 &—06—@—0—0
LW =513 o—© e e—6—0O
5 6 Le/Lgp= 5/4 2 3 2 3 2
LW =5/3 o—06—o e ® (]
7 Lo/l gp= 5/3 1 3 2 S 2 3
LW =5/3 &—06—0—0—06—9

1

Figure 4.6: Exampleswith £c- =2 — _1_

Lops i

69

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 70

Case 2 (p even): For apath with (p + 1) nodes assign weightsp/2 and 1 + p/2 to alternate
nodes. We obtain W = (p + 2)/2and L¢ = p + 1thusgiving Le/W = (2p+ 2)/(p + 2). The
remaining argument is similar to Case 1. O

Thereisasmall gap between proved worst-case performanceratio of 2 — 1/p and the examples
that achieve2 — 1/ [’%1] . The following theorem tightens the proof to meet the examples for the

case of zero communication costs.

Theorem 4.6 For path-shaped operator trees with zero communication costs the wor st-case per-

1

formanceratio in using the optimal connected scheduleis2 — TR
2

Proof: From the proof of last lemma, the condition B; > L¢ may be written as followsfor the
case of zero communication costs:

Ai‘|‘wi+12LC fore=1,...,p (4.4)
Separating the odd and even values of p, it suffices to show

Lc 22 for p odd

< p+l (4.5)
Lopt N % forp even
Case 1 (p odd): Adding up the ’%1 equations for the odd values of 7 in (4.4), we have
+1
Y Agjiiitwy > P2 1o (4.6)
1<t
Observing Az; > wo;,
+1
wpy1+ Y, A > P 5 Lo 4.7)

1<i<p
Thelhsisat most W, the sum of al node weights. Since W/p isalower bound, pLo,: > W. Thus

we have

Case 2 (p even): Adding up the 2 equations for the odd values of i and the equation for i = p
in (4.4), we have

2
L¢

I
Ap + wpi1 + Z Agjq1 + wo; > P
1<j<8

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 71

Figure 4.7: Performance ratio=3 for star of 10 nodes scheduled on 5 processors

Using A; > wy; and rearranging,
+2
wpri+ (wp+ Y Ai) 2 B Lo
1<i<p
Note that w,, + Elgigp A;isat most W and pL,,: > W. Further L,,: > w,41 Since the weight of

any node isalower bound (Lemma4.2). Therefore,

Lopt + pLopt > I%ZLC

Le o 2042
Lopt = pt2

a

Connected schedules are not a good approximation for stars since all fragments except the one
containing the center are forced to consist of a single node.

Lemma 4.8 The worst-case performance ratio in using the optimal connected schedule is un-
bounded for stars.

Proof: Consider a star in which al nodes have weight 1 and all edges have weight zero. A
connected scheduleis forced to place asingle leaf on al processors except one, and the remaining
star on the remaining processor. Thus a connected schedule has a response time of n — p + 1.
An unconnected schedule achieves a response time of [n/p]. Thus, the performance ratio is
(n —p + 1)/[n/p] which may have an arbitrarily high value. Figure 4.7 shows an example for
n = 10 and p = 5 that achieves a performance ratio of 3. O

4.6 Heuristicsfor POT Scheduling

We now describe two heuristics for the POT problem. We show the heuristics to have worst-case
performance ratios of about 2 for several restricted cases. We failed to generate counter-examples

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 72

even by use of simulations over millions of examples and therefore conjecture these heuristics to
have aworst-case performance ratio of about 2 in general.

We have the interesting situation in which the modified LPT a gorithm works well for stars but
not for paths, while connected schedules are a good approximation for paths but not for stars. This
naturally motivatesthe combination of thetwo a gorithmsinto aHybrid algorithm (Section4.6.1). In
Section 4.6.2, we discuss the GreedyPairing a gorithm which has the advantage of being extremely
simple.

4.6.1 A Hybrid Algorithm

BalancedCuts performs poorly on stars since the constraint of connected schedules is at odds
with load balancing. While the algorithm is cognizant of communication costs, it is poor at
achieving balanced loads. On the other hand, LPT isvery good at balancing loads but unaware of
communication costs.

One way of combining the two agorithms is to use BalancedCuts to cut the tree into many
fragments and then schedul ethe fragmentsusing LPT. LPT can be expected to “ cleanup” casessuch
as stars on which connected schedul es are a bad approximation.

Algorithm 4.4 The Hybrid Algorithm

Input: Operator tree T', number of processors p
Output: A schedule

1. T' = GreedyChase(T)

2. fori=ptondo

3 P, Fy, ..., F; = BalancedCuts(T',1)

4. schedule= LPT({F1, F», ..., Fi},p)

5. end for

6

. return best of schedulesfoundin steps2to 5
Note that Hybrid has a performance ratio no worse than that obtained by using BpSchedule or

by modified LPT. Thisis because the case ¢ = p will provide an optimal connected schedule, while
the case ¢ = n will behave as the maodified LPT algorithm. Thusthe performance ratio is no worse
than 2 — 1/p for paths and no worse than 2 + 1/p for stars.

4.6.2 TheGreedy Pairing Algorithm

We now describe an algorithm which is based on greedily collapsing that pair of nodeswhich leads
to the least increase in response time.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 73

GreedyPairing starts by first pre-processing the operator tree into a monotone tree by running
GreedyChase. Then it chooses the pair of nodes, < and j , such that cost({z, j}) is the minimum
possibleand collapsesthem. Tiesare broken by favoring the pair which offers the greatest reduction
in communication. This process is continued until the number of nodes is reduced to p, and then
each node is assigned a distinct processor. Note that collapsing two (hon-adjacent) nodesin atree
will not necessarily maintain the property of being atree.

We can prove the agorithm to have a worst-case performance ratio close to 2 for the case of
zero edge weights.

Theorem 4.7 The GreedyPairing algorithm has a tight worst-case performance ratio of 2 —
2/(p + 1) when all edge weights are zero.

Proof: Consider the penultimate stage of this algorithm, i.e. when there remain p + 1 nodes.
Label thenodesasO, 1, . . ., p. Without lossof generality, assume that the last collapseisof the pair
S ={0,1}.

Wefirst claim that if the responsetime L of thefinal scheduleis not given by cost(S) = to+ ¢1
then GreedyPairing produces an optimal schedule. Suppose that the response time is larger than
cost(S), thenthereexistsan¢ > 1suchthatt; > to+¢1. Butthens must beoneof theorigina nodes,
since GreedyPairing would always prefer to collapse the nodes 0 and 1 before ever performing the
collapse which would result in a node of cost ¢;. Since ¢; is alower bound (Lemma4.1) on the
optimal response time, we obtain that the responsetime L = ¢; isoptimal.

Consider now the remaining case where L = cost(S) = to + t1. By the definition of Greedy-
Pairing, we havethat for al ¢, 5 € {0,1,...,p}, L = to+ t1 < t; +t;. Summingover al ¢ and j,

we obtain that
p(p+1)
TL < Z (t; + ;)
0<i<j<p
D
= Pzti
i=0
S szopt

where the last inequality followsfrom Lemmas 4.2 and 4.1. We concludethat L < I%Lopt which
gives the desired bound on the performance ratio.

That this bound istight can be seen from the following example. Suppose there are p nodes of
weight 1 and p nodes of weight p. The optimal solution pairs off one node of each type achieving a
responsetime of p + 1. On the other hand, GreedyPairing merges the nodes of weight 1 to abtain,

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 74

a the penultimate stage, p + 1 nodes of weight p. At this point it is forced to pair two nodes of
weight p each, giving aresponsetime of 2p. a

4.7 Approximation Algorithms

We first discuss atwo-stage approach to devel oping approximation algorithms and then develop the
Local Cuts and BoundedCuts a gorithms.

4.7.1 A Two-stage Approach

We divide the POT scheduling problem into two stages, fragmentation followed by scheduling.
Fragmentation produces a connected schedule assuming unlimited processors. Scheduling assigns
the fragments produced by the first stage to the real processors.

Thetwo stage approach offers conceptual simplicity and does not restrict the space of schedules.
Any schedule defines a natural fragmentation corresponding to cutting exactly the inter-processor
edges. For any given schedule, some scheduling algorithm will produceit from its natural fragmen-
tation. Noticethat the scheduling stage may assign two fragmentsthat were connected by a cut edge
to the same processor thus “undoing” the cutting. Thus, severa fragmentations may produce the
same schedule. In our anaysis, we will ignore the decrease in communication cost caused by this
implicit undoing of an edge cutting operation. This can only over-estimate the cost of our solution.

Thetwo-stage approach allows us to use standard multiprocessor scheduling algorithmsfor the
second stage. We choose to use the LPT [Gra69] agorithm. Given the use of LPT for scheduling,
we may develop the conditions for a good fragmentation. There is an inherent tradeoff between
total load and the weight of the heaviest connected fragment. If an edge is cut, communication cost
isincurred thusincreasing total load. If an edgeis collapsed, anew nodewith alarger net weight is
created, potentialy increasing the weight of the largest connected fragment. Lemma4.11 captures
thistrade-off and provides conditions on fragmentation for a bounded performance ratio.

Recall our choice of notation from Section 4.2.3. R; = ¢; + }_; ¢;; is the net weight of node i
and R = max; R;. W = Y. t; isthe sum of the weightsof al nodesand W = W/p isthe average
node weight per processor.

Assuming fragmentation to produces ¢ fragments with weights My, ..., My, we make the
following definitions.

Definition 4.11 M = max; M; istheweight of heaviest fragment. C isthethetotal communication

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 75

cost incurred, which istwice the sum of theweightsof the cut edges. L = (W +C)/pistheaverage
load per processor.

We use the subscript OPT to denote the same quantities for the natural fragmentation corre-
sponding to an optimal schedule, for example, M,y for the weight of the heaviest fragment. We
have:

Lenma4.9 W < L < L. Inparticular, W < Lopt < Lopt-
Lemma4.10 R < M < L. Inparticular, R < Mop; < Lopt.

In the following lemma, k; captures the effect of size of the largest fragment and &, the load
increase due to communication.

Lemma4.11 Given a fragmentation with M < kj L,y and L < kp Ly, scheduling using LPT
yields a schedule with L/ Loy, < max{k1, 2k,}.

Proof: Let p;, beaheaviest |loaded processor in an LPT schedule with responsetime L. Let M;
be the last fragment assigned to pr. We will divide the analysis into two cases based on whether
M; isthe only fragment on p;, or not.

If M; istheonly fragment on pg, L = M; and by our assumption,

L:MJ SMSleopt

Now consider the case when the number of fragments on p;, isat least 2. Since LPT assigns ajob
to the least loaded processor, the load on any processor must be at least L — M; when M; was
assigned to pr. Thetota load 3", L, may be bounded as

> L > (L My)p+ I,
k

1 1
= L<-= Lk—|—(l——)M-
P Xk: p)
= L< L + Mj.
Since LPT chooses the least |oaded processor, the first p jobs are scheduled on distinct processors.

Sincetherewas at |east one other fragment on py, before M ;, there are at least p + 1 fragments, each
of them no lighter than M. Thus,

> Li > (p+ 1)M;
k

1 —
> M;j<——SILp<L

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 76

Combining the two inequalities shown above and using the assumption L < szo,,t, we obtain

L < I—I—MJ’
2L

IN

< 2k ZIopt .

Combining the two cases, we conclude L/ Lo, < max{k1, 2ko}. O

Using the above lemma, the best we can do is to find a fragmentation with k1 = k, = 1
which would guaranteed a performance ratio of 2. However, finding the best fragmentation is
NP-complete.

Theorem 4.8 Given a star T' = (V, E), bounds B and C, the problem of determining whether
thereisa partition of V' such that no fragment is heavier than B and the total communicationisno
more than C' is NP-compl ete.

Proof: (Sketch) We reduce the classical knapsack problem [GJ79] to the above problem. Let an
instance of the knapsack problem be specified by abag size S and » pairs (w;, p;) where each pair
corresponds to an object of weight w; with profit p;. We can assume without |oss of generality that
p; < w; for al i since all p; can be scaled. Consider a star T with n 4+ 1 nodes obtained from the
knapsack instance. We label the nodes of T' from 0 to n with the center as 0. We set ¢;0 = p;/2
andt; = w; +c;and B = S + Y, ¢;. We claim that the minimum communication cost for the star
instanceis C if and only if the maximum profit for the knapsack instanceis ", p; — C. O

We remark that the problem is polynomially solvable when the tree is restricted to be a path.
The next two subsections focus on algorithms to find a fragmentation that guarantees low values
for k1 and k».

4.7.2 TheLocalCutsAlgorithm

We now develop alinear time algorithm for fragmentation called LocALCuTs. We show bounds
on the weight of the heaviest fragment as well as on the load increase due to communication.
Application of Lemma4.11 shows the algorithm to have a performance ratio of 3.56.

LocaLCuTs repeatedly picks aleaf and determines whether to cut or collapse the edge to its
parent. It makes the decision based on local information, the ratio of the leaf weight to the weight
of the edgeto its parent. The basic intuitionisthat if theratio islow, then collapsing the edge will
not substantially increase the net weight of the parent. If the ratio is high, the communication cost

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 77

incurred by cutting will berelatively low and can be amortized to the weight of the node cut off. One
complication is that cutting or collapsing an edge changes node weights. Our analysis amortizes
the cost of cutting an edge over the total weight of all nodes that were collapsed to produce the leaf.

In the following discussion we assume that the tree 7' has been rooted at some arbitrary vertex.
We will refer to the fragment containing the root as the residual tree. A mother node in a rooted
treeisanodeal of whosechildren are leaves. The agorithm usesa parameter a > 1. We will later
show (Theorem 4.9) how this parameter may be chosen to minimize the performance ratio.

Algorithm 4.5 The Local Cuts Algorithm

Input: Monotone operator tree T', parameter o > 1.
Output: Partition of T into fragments Fy, . . ., Fy.
1. whilethere isamother node m with achild 5 do
2. ift; > acjm then cut e,
3. €esecollapsee;n,
4. end while
The running time of the LocAaLCuTs agorithmis O(n). The following lemma shows a bound
on the weight of the resulting fragments.

Lemma4.12 Any fragment produced by LocALCuUTS has weight less than a R, which implies
M < aR.

Proof: Consider an arbitrary fragment produced in the course of the algorithm. Let m be the
highest level node in the fragment, with children 1, . . ., d. The node m is picked as a mother node
at some stage of the algorithm. Now, R, = ¢mp + tm + ¢m1 + - . . + g Where ¢, iSthe weight
of the edge from m to it’s parent. Collapsing child j into m, corresponds to replacing ¢,,; by t;.
Since the condition for collapsing ist; < acp,;, collapsing children can increase R,, to a most
aR,, whichisno greater than aR. O

We now use an amortization argument to show that the communication cost incurred by the
LocaLCuts agorithm is bounded by a constant factor of the total node weight, 1.

Lemma 4.13 Thetotal communication cost of the partition produced by the LocaLCuTs algorithm
isbounded by —£: W, thatisC < _2;W.

Proof: We associate a credit p; with each node ¢ and credit p;, with each edge ej. Initially,
edges have zero credit and the credit of a node equals it's weight; thus, the tota initia credit is

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 78

W. Thetotal credit will be conserved as the algorithm proceeds. When anodeis cut or collapsed,
it's credit is taken away and either transferred to another node or to an edge that is cut. The proof
is based on showing that when the algorithm terminates, every edge that is cut has a credit equal
to (a — 1) timesit's weight. This alows us to conclude that the total weight of the cut edges is
bounded by W/(a — 1). Thiswould then imply that C < ﬁW. We abuse notation by using ¢;
for the current weight of anodein the residual tree. We now prove the following invariants using
an inductive argument.

1. Each node has a credit greater than or equa to it's current weight in the residud tree, i.e.,
pi > t;.

2. Each cut edge e;,,, has a credit equd to (a — 1) timesit'sweight, i.e, pim = (a — 1)cim.

As the base case, these invariants are trivially true at the beginning of the algorithm. Asthe
inductive step, suppose these invariants are true up to & iterations and we consider leaf node j with
mother m inthe (k + 1)st iteration. If j iscollapsed, te* = t,, + t;. We use the superscript new to
indicatethevaues at the next iteration. By transferring the credit of j tom, weget ple* = p; + pm.
Sincep; > t; and p,,, > t,,, by theinductive hypothesiswe have pl,* > ¢7°* and both invariants
are preserved.

If 7 iscut, t2¢* = t,, + ¢jm. We need to transfer a credit of ¢;,,, to m to maintain the first
invariant. The remaining credit p; — ¢;» May be transferred to the edge e;.,,. By the induction
hypothesis, we have p; — ¢jm > t; — cjm and since edge ej,, Was cut, p; — ¢jm > (a — 1)cjm.
Thus sufficient credit is available for the second invariant as well. O

The previoustwo lemmas combined with Lemma4.11, allow usto bound the performance ratio
guaranteed by LocaLCuTts. The following theorem states the precise result and provides a value
for the parameter a.

Theorem 4.9 Using L PT to schedulethefragmentsproduced by LocALCuTswitha = (3++/17)/2
gives a performanceratio of (3 + v/17)/2 ~ 3.56.

Proof: From Lemma4.13 and Lemma4.9,
W4+ C < at+l_— a+1

L= < Io .
P T a-— lW ~ -1
Combining thiswith Lemma4.12 and using Lemma4.11 we conclude
2
S max {a, M}
opt a—1

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 79

Observing that the max is minimized when a = 2(a + 1)/(a — 1), we obtain a = (3 4 v/17)/2
and L/ Lp: < (3+/17)/2. O

The performance ratio of LOCALCUTS is tight. Consider a star in which the center node with
weight é is connected by edges of weight 1 to n — 1 |eaves, each of weight a = 3.56. Suppose the
star is scheduled on p = n processors. LocALCuUTS will collapse al leaves and produce a single
fragment of weight (n — 1)a + 6. The optimal scheduleconsistsof cuttingal edgesto producen — 1
fragments of weight 1 + a and one fragment of weight » — 1 + §. Whenn > 5, the performance
ratiois((n — 1)a + 8)/(n — 1+ §) which approaches a as § goes to zero.

4.7.3 TheBoundedCutsAlgorithm

The LocALCuTs agorithm determines whether to collapse aleaf into its mother based on the ratio
of the leaf weight to the weight of the edge to itsmother. The decision isindependent of the current
weight of the mother node. From the analysis of LocALCUTS, we see that the weight of the largest
fragment is bounded by a R,,, where m is the highest level node in the fragment (Lemma 4.12).
If R, issmall compared to M,,:, we may cut expensive edges needlessly. Using abound that is
independent of R,,, should reduce communication costs.

The analysis of LocaLCuTs showed the trade-off between total communication (C < ﬁW)
and the bound on fragment size (M < aR). Reduced communication should allow us to afford a
lower vaue of a, thus reducing the largest fragment size and the performance ratio.

We now discuss a modified algorithm called BOUNDEDCUTS that uses a uniform bound B at
each mother node. It also cuts off light edges in amanner similar to LocALCuUTS. Our analysiswill
show that the modified algorithm improves the performance ratio to 2.87. We will show the ratio
to be tight. Our analysis of communication costs uses lower bounds on C,,;, the communication
incurred in some fixed optimal schedule.

Theagorithm below isstated intermsof three parameters o, 3 and B that are assumed to satisfy
B >a>1and My < B < Ly,. Our analysis uses these conditions and we shall later show
how the values of these parameters may be fixed.

Algorithm 4.6 The BoundedCuts Algorithm

Input: Monotone operator tree T', real parameters o, 3, and B where 3 > a > 1and B > R.
Output: Partition of T into connected fragments 7, . . ., Tk.

1. while there exists a mother node m

2. partition children of m into sets N1, N, such that

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 80

childj € Nyifandonlyif ¢j/cm; > 5;

3. Cut e,; for j € Nq; (B rule)

4, if Bn + 3 5em,(t — ¢mj) < aB then
5. collapsee,; foral j € Ny

6. elsecut e, foral j € No; (arule)
7. end while

8. return resulting fragments Ty, . . ., Tk.

Lemma 4.14 Anyfragment produced by BOUNDEDCUTS hasweight at most a B. Asa conseguence,
M S aLopt.

Proof: Sincetheweight of afragment increases only when some edge is collapsed, the explicit
check in line 4 ensures the lemma. O

Let C denote the set of edges cut by BOUNDEDCUTS. We cut edges using two rules, the 8 rule
inStep 3andthea rulein Step 6. Let Cg and C,, denote the edges cut using the respectiverules. Cg
and C,, aredigointandCg U C, = C. Let Cg and C,, denote the communication cost incurred due
to edgesin Cg and C,, respectively. We bound Cg and C,, in Lemmas 4.15 and 4.17.

-1
Lemma4.15 C, < %Copt.

The proof of the lemmarequires several definitions and lemmas.

Definition 4.12 Let T; = (V;, E;) denote asubtree of T = (V, E) rooted at ¢, defined as follows:
V; includes ¢, children of 7 that are not cut off by the 8 rule, and all nodes that eventually collapse
into achild of ¢; E; consistsof al edgese; € F suchthat k, j € V;. Theweight of an edgein E;
isthe same as the corresponding edgein E. Theweight of node j € V; istheweight of j in T plus
the weights of all incident edgesthat are not in E;, i.e., tg.T") = th) + Y ev_v; Cje-

Figure 4.8 illustrates the definition of T;. With respect to the figure, the weight of m in 7,,
equalsthe origina weight plus the weight of the two edges that connect m to nodes not in Ty,,.

Definition 4.13 W; isthetotal weight of all nodesin T;.

Definition 4.14 C,,; is defined to be the set of edges in tree T' that are cut in a fixed optimal
solution.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 81

Figure4.9: C

opt

Definition 4.15 Cj;pt is set of edges formed by starting with the edges C,p,; N E; and deleting all
edges e; for which there existS e,,s € Copt N E; With m being an ancestor of k.

C};pt is a subset of the edges of T; that are cut in the optimal. Figure 4.9 shows the edges in
T that are cut by afixed optimal schedule as thick edges. The subset of edges that formsCZ7, are
checked off.

Definition 4.16 C?, is defined to be the set of edges in tree T; that are cut by the a rule. C?, isthe
total weight of the edgesin CL.

Lemma4.16 If m andm' aredistinct mother nodeswherewe cut usingthe a rule, thenCZ,’;,tﬂCZ];,'t =
pandCT NC™ = ¢,

Proof: The lemmafollows since, by their definition, trees T, and T;,,» do not share any edges
(see Figure 4.8). O

PROOF OF LEMMA 4.15

Proof: By Lemma4.16, it suffices to establish

m ﬂ_lm
Ca Sﬁ opt

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 82

for each mother node m where we use the a rule to cut edges. Let the set C™, consist of s edges

opt

€miz1s - - > €m,z,- 1 NESE €dges partition T, into s + 1 fragments. From the definition of C77, it
followsthat one fragment, F,,,, contains nodes m and my, . . ., m, (Some of these may be the same
asm). Let theremaining fragments be F1, . . ., Fy, with F; containing node z;. We have
OPt - Z Cmjz;
1<5<s

Since no fragment in the optimal islarger than M,,,, thetotal nodeweight in fragment F,,, isat most
Mop: — ZKJQ tm;jz;- THUS, letting @ ; be the total node weight in fragment F} for j = 1,.

we have

Mopt — D Cmjzj + >, Qi > W

1<j<s 1<j<s
We appliedthea ruleat m. Sincechildren cut by thea ruleareinT,,, W, > aB. Since B > My,
we have W,,, > aM,y,; which reduces the above equation to:
Z (QJ - cTanj) > (a— l)MOPt

1<j<s

Since no edge in Tr,, was cut by the 8 rule, we must have Q; < Bep,;-; which resultsin

> (B = 1)emyz; > (a0 — 1) Mop

1<j<s

-1 B-1 m
= Mopt< 1 Z cm]'z]—a_ C

opt*
1<j<s

Since C}' < Ry, < Moy, We have the desired result:
moB-1
Ca - a— l opt
a

Using techniques similar to those in the proof of Lemma4.13, we show the following bound on

Cs.
2 a—-1
L 417 < — o
emma Cﬂ_ﬂ_lW ﬂ_lc
Proof: We use a credit based argument similar to that of Lemma4.13. For each edgeinCg we

associate acredit of (8 — 1) timesit'sweight and for each C,, edge we maintain acredit of (a — 1)
timesit’sweight. The proof for Cg edgesissimilar to that in Lemma4.13. For C,, edges, we cannot
use a similar argument since the weight of the leaf being cut off, is not necessarily a times the

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 83

weight of the edge to it's parent. But consider all the edges cut off a a mother node. From the
dgorithmwe have Ry, + 3 ,en,(t; — ¢mj) > aB. From this we see that even though each leaf is
not heavy enough, the combined weight of all the leaves being cut off at a mother node is sufficient
for acredit of (a — 1) timesthe weight of the edges cut. Since we start with an initial credit of W,
theresult follows. O

Combining Lemmas 4.15 and 4.17, we obtain the following.

2 8 —a
. = <
Lemma4.18 C C’ﬁ—|—C’a_ﬂ_lW—|—a_1

We need the following technical lemma before we prove the main theorem.

Copt.

Lemma4.19 For 8 > a > 1, thefunction

2(8+1) Z(ﬂ—a)}
B-1" a-1

m(a, B) = max {a,
IS minimized when

oo AB+1) 2B —a)

g-1 a—1
The minimumvalueis2.87 when a ~ 2.87and 8 ~ 5.57.

Proof: We observe that f(a,8) = a isstrictly increasing in «, h(a,8) = 2(8 — a)/(a — 1)
isstrictly decreasing in a, g(a, 8) = 2(8 + 1)/(8 — 1) isstrictly decreasing in 3, and h is strictly
increasing in 3. From thisit iseasy to verify that at the optimum point, both f and ¢ must be equal
to the optimum value. If either them is not the max-value of the max, then appropriately change
a/f to make this happen, and note that this can only reduce the value of A. From thisit follows
that al threeterms are equal at the optimum. Eliminating 8 from the above two equations gives us

a—a?—4a-4=0

which on solving yields the claimed values for «, 4 and the minimum. O

Theorem 4.10 Using LPT to schedule the fragments produced by BOUNDEDCUTS with a = 2.87,
and 8 = 5.57 gives a performanceratio of 2.87.

Proof: Using Lemma4.18, we have

_ W+C 2 8- a

L= < w C,

» >~ W—I_,B—l ‘|’a_1 pt
18-—a

g } =
< maxi —— Lopt.
= { "L a—1) " et

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 84

Using the bound on L from the above equation and from the bound on M from Lemma 4.14, we
can apply Lemma4.11 to obtain

e GG =)

A

2(8+1) 28— a)}
< .
< max{a, 5 1 o 1
From Lemma 4.19, the right hand side of the above inequality is minimized at the values stated in
the theorem, and thisshowsthat L/ L,,: < 2.87. a

Theperformanceratio of BOUNDEDCUTS istight. Theexampleissimilar tothat for LocALCUTS
i.e. astar in which the center node with weight ¢ is connected by edges of weight 1ton — 1 leaves
each of weight a = 2.87. Supposethe star is scheduled on p = n processors. The optimal schedule
consistsof cutting al edgesto producen — 1 fragments of weight 1+ « and onefragment of weight
n—1+46. Takingn > 4, Mpt = Lopt = n — 1+ §. BOUNDEDCUTS will collapse al leaves and
produce asingle fragment of weight (n — 1)a + § (Since B = Ly, thisdoes not exceed aB). The
performance performance ratio istherefore ((n — 1)a + §)/(n — 1 + §) which approaches o as §
goes to zero.

The results in this section rely on the fact that the bound B used in BOUNDEDCUTS sétisfies
Mop: < B < Lop:. Since we do not know the optimal partition, we do not know M,p: OF Lope.
However, we can ensure that wetry avaueof B that is as close as we want to L,,:. Thefollowing
theorem makes the idea more precise.

Theorem 4.11 For anye > 0, we can ensurethat we run BOUNDEDCUTS with a bound B satisfying
Lopt < B < (14 €)Lope. Thisyields a performance ratio of (1 + €)2.87 with a running time of
O(e lnplogn).

Proof: From Lemmas 4.9 and 4.10, max{W, R} is a lower bound on L,,;. W isan upper
bound since we can aways schedule the entire tree on asingle processor. Thus, W < Loy < pW.
We can try the value B = kW for each integer k satisfying 1/e < k < p/e. For each such value,
we run BOUNDEDCUTS followed by LPT and take the best schedule. This guarantees that we will
useabound Lop: < B < (14 €)Lop:. Fromthe previousanalysis, if we use such abound, we get a
performance ratio of (1 + €)2.87. Thereare (p — 1)/e valuesfor &, LPT requires O(n logn) time,
and BOUNDEDCUTS requires O(n). Thusthetotal timefor al valuesof BisO(elnplogn). O

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 85

4.8 Experimental Comparison

In this section, we experimentally compare the average-case performance of the algorithms devel-
oped in previous sections. We first discuss the experimental setup and then describe the results.
The overal result isthat Hybrid has the best average case behavior.

4.8.1 Experimental Setup

All experiments were done by random sampling from spaces of monotone trees. The space was
specified by four parameters. shape, size, edgeRange and nodeRange. We restricted ourselves to
monotone trees since all agorithms pre-process the input tree into a monotone tree.

The shape of trees was controlled by specifying the maximum number of children that a node
could have. Given this maximum, the actual number of children of a non-leaf node was randomly
chosen from between 1 and the maximum. Two interesting classes of shapes are narrow and wide
trees. Narrow trees restrict a node to have at most two children while wide trees allowed a node to
have any number of children. Narrow trees represent the shapes that are commonly encountered in
practice since most database operators have 1 or 2 arguments.

EdgeRange and nodeRange specified the integer ranges from which edge and node weights
could be chosen. The size specified the number of nodesin the trees to be generated.

Given fixed values for shape, size, edgeRange and nodeRange, we randomly generated trees
of at least the given size and filtered those whose corresponding monotone trees was of the exact
size needed. For each specification of the space that we experimented with, we generated 2500
monotone trees and stored them in afile.

Each reported data point is an average over 2500 monotone trees. This number of sampleswas
always sufficient to guarantee an error of less than 5% with a confidence of 95%.

4.8.2 Experimental Comparison

All experiments reported in this section are on trees with 30 nodes with both edgeRange and
nodeRange set to 1. ..100. The shapes of the trees are either narrow or wide. We again note that
narrow trees represent the shapes that are commonly encountered in practice.

Experiments with spaces in which the tree size or shape was different did not yield any new
lessons. Changes to edgeRange and hodeRange do change the difference between curves but did
not, in our observation, change the relative ordering of algorithms.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 86

Avg. Perfornmance Ratio

AN
0.5
0% 10 15 20 25 30 o0

Figure4.10: Performance of Hybrid(solid), BalancedFragments(dotted) and Modified L PT(dashed)
on Wide Trees

Since computing the optimal schedule has prohibitive cost, all performance ratios are with
respect to alower bound on the optimal. The lower bound was taken to be the largest of two lower
bounds. The lower bounds given by Lemma4.2 can be improved using the following lemma. The
second lower bound was from Lemma4.1.

Lemma 4.20 If Cg isthe sum of the weights of the cheapest p — 1 edges and W the sum of all
node weights in a monotone tree with at least p nodes, then (Cg + W)/p isalower bound on the
optimal response time.

Proof: The optimal schedule for a monotone tree with at least p nodes must cut at leastp — 1
edges. O

4.8.3 Performance of Hybrid

Figures 4.8.3 and fig:nhyb plot performance ratios for the Hybrid agorithm as well as the two
algorithms out of which Hybrid was constructed.

We observe that Modified L PT outperforms BalancedFragments for wide trees but the situation
reverses for narrow trees. The explanation liesin the fact that narrow trees are close to paths while
wide trees are close to stars. Connected schedules produced by BalancedFragments are a good
approximation for paths (Theorem 4.5) but not for stars (Lemma 4.8). Schedules produced by
Modified LPT are agood approximation for stars (Theorem 4.3) but not for paths (Lemma4.3).

Hybridization of the two algorithms helps since for an specific tree either one or the other
algorithm performs well.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 87

Avg. Perfornmance Ratio

2

0 processors
5 10 15 20 25 30

Figure4.11: Performance of Hybrid(solid), BalancedFragments(dotted) and Modified L PT (dashed)
on Narrow Trees

Avg. Perfornmance Ratio

2

1.5 S —
1

0.5

0 processors
5 10 15 20 25 30

Figure4.12: Comparison of Hybrid(solid), Local Cuts(dashed) and BoundedCuts(dotted) on Narrow
Trees

484 Comparison of Hybrid, L ocalCuts and BoundedCuts

Figures 4.8.4 and 4.8.4 compare Hybrid, L ocal Cuts and BoundedCuts.

We first observe that even though BoundedCuts has a better worst-case performance ratio than
Loca Cuts, L ocal Cuts performs better on theaverage. The explanation liesin the fact that whilethe
weight of the largest fragment is lower in BoundedCuts (as compared to L ocal Cuts) the lowering
comes at the expense of cutting more expensive edges. This increases the average performance
ratio.

The second observation is that Hybrid outperformsthe other two algorithms. We a so note that
while we could prove worst-case bounds on the performance ratio of Hybrid only for stars and
paths, we do not know of any examples on which Hybrid has a performance ratio of more than 2.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 88

Avg. Perfornmance Ratio

2

I

1

0.5

0 processors
5 10 15 20 25 30

Figure 4.13: Comparison of Hybrid(solid), L oca Cuts(dashed) and BoundedCuts(dotted) on Wide
Trees

485 Behavior of Lower Bound

Computing the optimal schedule even for asingletreeis prohibitively expensive when the trees get
large. In our implementation, it took a few days to compute the optimal schedule for atree with 15
nodes. All reported performance ratio are therefore with respect to alower bound on the optimal.

Figure 4.8.5 plot the performance ratio of the optimal (i.e. optimal response time divided by
lower bound) for trees with 10 nodes and compares it with the performance ratio of Hybrid.

We observe that a reason for the humped nature of all curves is that the lower bound itself
follows this pattern. When the number of nodes far exceeds the number of processors, the average
node weight tends to be a good lower bound. When the number of node is almost the same as the
number of processors, the maximum net weight is a good lower bound. The lower bounds are not
as good in the intermediate region.

4.9 Discussion

We devel oped severa algorithmsfor managing pipelined paralelism and eval uated their average as
well as worst-case performance ratios. Of these, we consider Hybrid to be the algorithm of choice
since it has the best average performance ratio and a worst-case performance ratio of about 2 for
many cases. We conjecture Hybrid to have a performance ratio of about 2 in general.
Some of the other algorithmsdevel opedinthischapter have propertiesthat are worth discussing.
GreedyPairing has the advantage of being extremely simple. It isaso easily usable when some
of the operators are pre-allocated to processors. Thisisimportant in architectures where adisk may

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 89

Avg. Perfornmance Ratio

1.

ocooo
O N MO O FL N

processors
10

Figure 4.14: Performance of Optimal (dotted) and Hybrid(solid)

be scanned only by the processor that “owns’ it.

Connected schedules have the practical advantage that certain code generation schemes (such
asin LDL [CGK90]) can generate code with a single thread of control for a connected sets of
operators. The context switching between operators is efficiently built into the generated code
rather than being managed by more expensive mechanisms such as thread packages. Unconnected
sets reguire as many threads as the number of connected components in the set. Thus connected
schedul es permit afaster implementation of intra-processor context switching.

Local Cuts and BoundedCuts have the advantage providing a guarantee on the worst-case per-
formance ratio. We experimented with variations of Local Cuts such as the use of multiple values
of a and trying out multiple choices of the root. Such variations improve average performance
bringing is closer to the performance of Hybrid.

Chapter 5

Scheduling Mixed Parallelism

In this chapter, we address the problem of scheduling a pipelined tree using both pipelined and
partitioned parallelism. Thisproblem isthecontinuousversion of the discrete optimization problem
addressed in the last chapter. When using only pipelined parallelism, each operator is allocated to
a unigue processor (a 0/1 assignment). Partitioned parallelism permits an operator to be allocated
to a set of processors. Each processor executes some fraction of the operator.

Allowing partitioned parallelism enlarges the space of schedules. Interestingly, the problem
gets simplified for the case when communication has zero cost. However, when communicationis
considered, the problem becomes NP-hard and is a continuous optimization problem that does not
fall into classes such as convex or quadratic programming.

After defining the model, we investigate two interesting classes of schedules. Balanced sched-
ules put equal load on al processors and symmetric schedules that divide each operator equally
over all processors. We develop characterizations of the optimal schedule. We aso show asimple
rule for optimally scheduling trees with two nodes.

5.1 Problem Definition

Definition 5.1 A scheduleisan x p matrix A withentriesa;;, > 0 such that ElSkSP a;, = 1. The
number a;i isthe fraction of operator ¢ executed by processor k.

To understand communi cation costs, suppose operator ¢ produces adatastream that is consumed
by operator j. Assuming uniform production, fraction a;; of the data stream will be produced on
processor k. Assuming uniform redistribution of tuples, fraction a;, is consumed by the [ocal clone
of operator j and fraction 1 — aj; by non-local clones (In the terminology of Chapter 3, we are

90

CHAPTER 5. SCHEDULING MIXED PARALLELISM 91

Processorl Processor2

, build 2 build [7/22]
build build A
6 6 é scan [15/22]
3 o
8 ~ -
S >< 1 y build [9/22]
17}
16 ! 3 scan [5/22]
12, 4 8
scan sCan scan a IDLE [8/22]
Operator Tree Communication Pattern Gantt Chart

Figure 5.1: Execution with Mixed Parallelism

focusing on the case where each nodeis of adifferent color). Thus, on processor &, operator ¢ incurs
a communication cost of ¢;;a;x(1 — aj) with operator j. Generalizing, the total communication
cost (with all other operators) incurred by < on processor k is 3>« <y, @ik(1 — ajr)cij.

Definition 5.2 Theload L; on processor k is

Z a;pt; + Z azk a]k Cij

1<i<n 1<i<n
1<5<n
We will use L (A) to denote the load on processor & in schedule A.

The response time, L, of a schedule is derived by reasoning similar to that in the last chapter.
The pipelining constraints force al operators in a pipeline to start simultaneously (time 0) and
terminate simultaneously at time L. Letting f;x be the fraction of operator ¢z executed by processor
k, the pipelini ng constraint is:

f'ik = t + Z azk — Gjk cz]] (51)

Since at least one processor must be fully utilized, we have:

max el = 1

1<k<p 1<zgnfk

L = max [t; :)] = max L using equation (5.1
= 1‘“@1g;n —+§jak — aji)Cij]] max Ly geq (5.1)

Example 5.1 Figure 5.1 shows an operator tree with 2 nodes scheduled on two processors. Taking
the SCAN operator to be operator 1 and BUILD to be operator 2, the schedule being illustrated has
a1 = 3/4,a12 = 1/4,and ap; = a2z = 1/2. Processor 1issaturated and the schedul e has response
time 22. O

We now state the POTP (Pipelined Operator Tree with Partitioning) scheduling problem as the
following continuous optimization problem:

CHAPTER 5. SCHEDULING MIXED PARALLELISM 92

Input: Operator Tree T' = (V, E) with positiverea weightst; for each node: € V and ¢;; for
each edge (s, j) € E; number of processors p

Output: n x p matrix A that minimizes L = maXi<x<p Lk subject to
a;r >0 forl1<i<n, 1<k<p
Yi<k<p @ik = 1 forl<i<mn

We first observe that Lemma4.2 appliesto POTPand W = W/p where W = Y, t; isalower
bound on the response time of any schedule. Since operators are now divisible, the lower bound
given by Lemma 4.1 does not apply (as a counter-example, consider a tree consisting of a single
node scheduled on two processors).

Lemma5.1 POTP is NP-complete.

Proof: (Sketch) The problemisin NP sincethe response time of a scheduleis easily computed.
To see the problem to NP-hard, consider a path with 2n nodes in which aternate edges have
weights oo and 0. Since edges with co weight must be collapsed, the problem reduces classica
Multiprocessor scheduling of the resulting » nodes and is thus NP-hard. In Section 5.2, we will
show this proof ideato apply with finite edge weights. O

Our formulation of POTP has an objective function that is not smooth due to the presence of
max. Continuity of first and second derivativesis desirable in continuous anaysis. The following
equivalent formul ation achieves smoothness:

Minimize z subject to

z—Ly > 0 forl<k<p
aiy > 0 fOflSiSn,lSkSp
1<k<p

Since Ly isaquadratic function in terms of a;, the constraint z — L > 0isnon-linear. Thus
POTPdoesnot fall intothe classof linear programming (objectivefunctionand al constraintslinear)
or quadratic programming (quadratic objectivefunction, linear constraints). It also doesnot fall into
the class of convex programming problems which have the useful property that alocal minimum
is adso a globa minimum. For a problem to be convex, the objective function must be convex,
equality constraints must be linear and inequality constraints must be convex. Unfortunately, the
constraint z — Ly > Oisneither convex nor concave due to its quadratic nature. This can be seen

CHAPTER 5. SCHEDULING MIXED PARALLELISM 93

more formally by observing that for n = p = 2, the Hessian for z — Ly > 0 is indefinite with
eigenvalues-2, -2, 0, 2, 2.

Wewill find it useful to distinguish between two schedul eswith equal responsetimeby preferring
the one that lowers |oad on some processors while keeping it constant on the remaining processors.
The following definition states this precisely.

Definition 5.3 A < A’ if and only if one of the following conditionsis true:
o L(A) < L(A)

o L(A)= L(A')and Li(A) < L(A’) for all processors k and there exists some processors k'’
such that Lkl(A) < Lkr(AI)

Two schedules are equal if neither isless than the other.

We will find it useful to reason with the partia derivatives of load functions.

OLy ti+ 21ci<n(l— 2a5)ci; ifhk1=k
= == . (5.2)
Oa;r, 0 otherwise
’L —2¢;; ifk=ki=Fk
L _ i v (5.3)
Oair, 0ajr, 0 otherwise
oL,

Definition 5.4 We will use 4;; as a convenient notation for Bar-

5.2 Balanced Schedules

Definition 5.5 A balanced schedule has equal 1oad on all processors.

In this section, we investigate properties of balanced schedules. This allows us to develop
necessary conditions for minimal schedules. In particular, we will show that if aminimal schedule
is not balanced then any processor k& that has more load than some other processor must have
a;, = 0 or 1 for al operators ¢. Further, if S isthe set of operators for which a;;, = 1, then
(Vi€ S)ti +Xjgs cij < Xjes Cij-

Though scheduling in paralel systemsisoften termed “load balancing”, the following example
shows that there may be more than one balanced schedul e and none of the balanced schedul es may
be optimal.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 94

Example 5.2 Consider an operator tree with 2 nodes each of weight 1 and an edge of weight 4. If
scheduled on two processors, the loads are;

L1 = a1+ ax + 4aina2 + a2nair)

Ly = a2+ axp + 4aizan + axair)

Theconditionfor abalanced scheduleis L; = L, andmay besimplifiedtoyieldai1+az; = 1. Thus,
there are infinitely many balanced schedules. For example, the schedule with a11 = a1 = 1/2
is balanced and symmetrically divides each operator over al processors giving a response time
of 3. Another balanced schedule is a pipelined schedule in which each operator is assigned to a
different processor (e11 = 1 and ap; = 0) and has a response time of 5. The optimal schedule
places both operators on the same processor to yield aresponse time of 2. (The optimality follows
by Theorem 5.1 which is proved later in this chapter.) O

Lemmab5.2 Givenan arbitrary schedule A and operator ¢, A;x < Ofor at most one processor k.

Proof: We will assume A;;, < 0 for two processors k1 and &, and derive acontradiction. Using
Definition 5.4, A;, < 0 may bewritten as 3(¢; + Yicicn i) < Picicn GikCij

A, + A, < 0
=t + Z cij < Z (ajk, + jk,)Cij
1$5<n 1$5<n

which is acontradiction since ajx, + ajr, < landt; > 0. a

Lemma55.3 For anylocal minima A4, if A;x < Othena;, = 1.

Proof: Assuming a;z < 1 in alocaly minima schedule A, we derive @ contradiction by
showing the existence of neighboring schedule A’ < A. If a;x < 1, then there exists some
processor k; such that a;, > 0. We construct A’ by increasing a;, and decreasing a;x,. Since
A;r <0, by Lemmab.2 A;x, > 0. Thus A’ < A sinceload is reduced on k1 and does not increase
onk. a

Lemma 5.4 Suppose locally minimal schedule A is not balanced and k., iS @ processor with
maximal load. Then for any operator ¢, either a;,,,, = 1 and A
A

< 0or ai,,, = 0and

ikmaz

> 0.

ikmaz

Vi[(@ikmaz = 1A Aikpae < 0)V (@ikpae = OA Aipn, > 0)]

CHAPTER 5. SCHEDULING MIXED PARALLELISM 95

Proof: For arbitrary operator 7, we consider the cases A;x,,,, < 0and A > 0.
If Aik,... < Othenby Lemma5.2wemust have A;x > Ofor dl k& # kpgs. If aik,,,. < 1,then
there must be some k4 such that a;x, > 0 and A;z, > 0. We may reduce load on both k., and

ikmaz

k1 by increasing aig,, .. and decreasing a;x,. This contradicts the assumption of A being a local
minima.

Now consider the case A > 0. Since A is nhot balanced there must a processor k,y,;, With

ikmaz

strictly less load than k. If aig,,,, > 0, we may reduce the load on k., by reducing a;k,,,,

and increasing a;x, .. (possibly increasing the load on k,,,;,,). The resulting scheduleislessthan A

min

thus contradicting the assumption of A being alocal minima. O

Lemma5.5 If S isthe set of operatorson the bottleneck processor in an unbalanced local minima
then each operator 7 € S satisfies

ti+ Y cij <Y cij

i¢s JjES
Proof: Letting k.. be the bottleneck processor, ¢ € S if and only if a;,,,, = 1.

Aikpmae = ti+ Y _(1- 2ajx)ci;

J
= ti‘|‘zcij_zzcij
J

jes
=) ei—)
igs jes

Thus the condition A

ikmee < 0 May bewritten ast; + >igs Cij < Xjes Cij a
Lemmas 5.4 and 5.5 yield conditions that must be satisfied by the bottleneck processor in any
unbalanced local minima. It isinteresting to ask whether these lemmas can be applied recursively
to the remaining processors.
Let P be some subset of the processors. Given schedule A for tree T', we may view the portion
of the tree scheduled on subset P asanew tree TF with schedule AT . Tree T* differsfrom T only

in the values of the node and edge weights. Let a;p be the total fraction of operator ¢z on subset P.

Definition 5.6 The projected tree T* has node and edge weights given by

P _ i DO
ti = ta;p + Z a'LPajpc'LJ
J
P
C;; — QipQajpCij
where a;p = Z aik

keP

CHAPTER 5. SCHEDULING MIXED PARALLELISM 96

The projected schedule AT has af, = a;./a;p.

Given A to be alega schedule, A isalegal schedule sinceal, > 0and ¥ ,cpal, = 1. The
following two Lemma establish that 1oads and strong minimality are invariant under projection.

Lemma 5.6 Theload on processor k& € P under schedule A for tree TF isidentical to the load
under schedule A for tree T'.

Proof: It suffices to show the load on processor k& due to operator z to be identical under the
two schedules.

P,P P P\.P
apt; + Z a;(1— ajp)ci;
J
aik
= E[tiaiP + Y aipagpeil+)
* J J

= @pli +) @ip0pCii +) AikQPCi; —) GikjkCij
7P
, , F

7

ik ajk
(1- ——=)aipajpc;
a;p ajp

J

= a;pt; + aik(l — ajk)cij sinceajp tap= 1
- J
J

a

Loca minimality comesin two forms: weak and strong. Strong minimality requires existence
of aneighborhood in which all other schedules are strictly less than the minima. Weak minimality
permits the neighboring schedul es to have the same response time.

Strong minimality isretained by projection. Weak minimality may not beretained. For example,
consider aneighbor A’ of a weak minima A that keeps load constant on the bottleneck processor,
increases load on the processor with second highest load and decreases it on some other processor.
While A’ = A, wehave A" < AP,

Lemma 5.7 If A isastronglocal minimafor tree T, then AT isastrong local minima for tree TF
where P isany subset of the processors.

Thus, Lemma5.4 and 5.5 may be applied recursively to unbalanced schedules that are strong
local minima. Thisyieldsthe structure illustrated in Figure 5.2. If S isthe set of operators on any
of the unbalanced processors, then each operator i € S satisfiest; + Zj¢5 ¢ij < jes Cij-

A proof of Lemmab.1, is given below (using Lemma5.3):

Lemma 5.1 POTP is NP-complete.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 97

g=0orl

a=0or1

Balanced

num

Processors

Load

Figure 5.2: Structure of (Strongly) Minima Schedule

Proof: Given a path with aternate edges of weights ¢ and 0, we show that the optimal must
collapse all edges of weight ¢ for large enough values of ¢. Let ¢ and 5 be neighboring nodes
connected by an edge of weight c.

We first consider the case a;z, ajr < § for all k. The total communication incurred between 4
andjis

Cij = Zaik(l— ajr)c
k
> ¢(1- 5)Zaik =c¢(1-9)
k

Any schedule that incurs communication larger than p >~ ¢; cannot be optimal since we can form a
better schedule by putting all operators on a single processor. Thus, a schedule with a;z, ajr < é
cannot be optimal if ¢(1— §) > p Y, t; whichmay bewrittenasé§ < 1 —p Y, t;/c.

Now consider the other case: a;, > & for somesd, k. Thus A, = t; + (1 — 2a;,)c and A, < O
provided a;, > 1/2+ t;/2¢c. By Lemmab.3, if Aj, < 0, then ajr = 1. Thusajx > a; > 6 and
a;x = laswel. Thusa;r > § > 1/2 + t;/2¢ assures that nodes < and j will be collapsed in the
optimal.

Combining thetwo cases, 1 — p >, t;/c > 6§ > 1/2 + t;/2¢c assures that al edges of weight ¢
will be collapsed in the optimal. Such avalue of § can befound provided ¢ > 2p(3>; t;) + maz;t;.

0

CHAPTER 5. SCHEDULING MIXED PARALLELISM 98

5.3 Symmetric Schedules

The symmetric schedule partitions each operator equally over al processors. In this section, we
shall establish some properties of such schedules. We will show that symmetric schedules are
optimal when communication is free. They are locally minimal for trees of size 2 but may not
be locally minimal for larger trees. However, under extremely likely conditions, the symmetric
schedule has the same response time as any interior local minima. Finally, symmetric schedules
may be arbitrarily more expensive than the global minimum.

Definition 5.7 The symmetric schedule has a;; = I—{ for al operators ¢, processors k.

The symmetric schedulehas Ly = % whene;; = 0. ThusL = % which isoptima since
the lower bound of Lemma4.2 is achieved.

Lemma 5.8 The symmetric scheduleis optimal when communication isfree.

However, when communicationisnot free, symmetric schedulesmay bearbitrarily sub-optimal.
Consider a path with nodes of weight 1 and edges of weight ¢. For two processors, the symmetric
schedule has aresponsetime of L = n/p + 2(p — 1)(n — 1)c/p?. If the path is long enough, the
optimal schedulewill chop the path into p piecesthus obtaining aresponsetimeof Lo, = n/p+ 2c.
Whenn/pislarge L/ L,y goesto 1 + 2c.

Lemma 5.9 The symmetric schedule hasan unbounded performance ratio when communicationis
not free.

We will understand symmetric schedules further by investigating the Kuhn-Tucker conditions
for local minima (see standard textbooks such as[GMW8L1, Lue89] for areview). Since symmetric
schedules lie in the interior of the feasible space, it is useful to investigate the class of interior
schedules.

Definition 5.8 A schedule A is an interior schedule iff every processor is alocated a non-zero
fraction of every operatori.e. 0 < a;x < 1for al operatorsi and processors k.

Thefollowing is a consequence of Lemmas 5.3 and 5.4.

Lemma55.10 If interior schedule A isalocal minima, then A isa balanced scheduleand A;; > 0
for all operatorsz, processors k.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 99

The POTP problem is restated below. We will use uz > 0, a;x > 0 and A; respectively asthe
Lagrange multipliersfor the three kinds of constraints. In our use of matrices, we will treat the the

variablesintheorder z, a1, . .., a1p, 21, .. ., 422, .. . An1, . . ., Anp.
Minimize z
subject to
z— Ly > O forl1<k<p
a;gr > 0 forl<i<mn, 1<k<p
Z ar = 1 forl1<i<mn
1<k<p

Ataninterior schedule, the constraint a;; > 0isnot active and may beignored. The Lagrangian
function istherefore

L = Z—Z#k(Z—Lk)—Z)‘i(Z“ik -1)
k i k

By the Kuhn-Tucker conditions, a minimacan occur only at stationary points. A feasible point
issaid to be stationary if VL = 0. The conditionsfor the z and a;;"th components of V Lto be zero
are;

I
=

(5.4)

Zﬂk
A
—prAir+ A = 0 1<i<nandl<k<p (5.5)

Lemma5.11 The symmetric scheduleis a stationary point.

Proof: We need to show that the symmetric scheduleisfeasibleand VL = 0. Sincea;; = I—f,the
constraintsax > 0and Y, <.<, aix = laresatisfied. Forany processork, Ly = 3 %ti—l—zij 1%(1_
Deij = L[t + B2 Xyj 0. Thusz — Ly > Oissatisfied with z = 1[50, t; + B2 Y5 ¢4,
This establishesthe feasibility of the symmetric schedule.

Observethat 4;; = ti—l—zj(l—zajk)(:ij = 1t1-—|-”%2 >j Cij isindependent of k. By Equation 5.5,
thisimpliesthat u isindependent of k£ and Equation 5.4 gives uy, = 1—1,. Itfollowsthat A; = pt;+(p—
2) >_j ¢ij- ThusthesymmetricscheduleseatisfiesV L = Owith pg, = I—l,and A = pti+(p-2) > Cij-

0

Lemma5.12 Ifinterior schedule A isastationary pointthen Ay, ..., A, andps, . . ., pp arestrictly
positive.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 100

Proof: By Equation 5.5, A;; = ;}—k Since A;, > 0 by Lemmab.10 and pi > 0, we must have
A; > 0and pe > 0. a

We will now establishthat for n = 2 and arbitrary p, the symmetric scheduleistheonly interior
stationary point that could be alocal minima (Lemma 5.13) and that it is indeed alocal minima
(Lemma5.14)

Lemma5.13 For n=2 and arbitrary number of processors, the symmetric schedule is the only
interior stationary point that may be a local minima.

Proof: A local minimamust satisfy Equation 5.4 and, by Lemma 5.10, must be balanced. We
show that this permits exactly one solution, the symmetric schedule, for n = 2.
By Equation 5.5, A;; = "}—k a a stationary point. Using Definition 5.4, thismay be rewritten as

1 i
Doaikei = Slti+) e —]
J J

HEk

Sncen = 2,3 ajrei; = agperz fori = 1and aygeqp for < = 2. Thus, for any fixed &,
1 A 1 A
ar = =—[t2+ c1a — =2 and an = =—[t1+ca— 5 (5.6)
2c12 Pk 2c12 Pk
The load on processor & is derived as follows. Equation 5.7 is obtained by substituting (5.6)
and simplifying.

Ly = Y apti+) aw(l— ajk)ci;
i L,

= awts + azet2 + (a1k + a2e)c12 — 2a1pa26C12

i1t t1+1t+c¢ A1
_ 12_|_ 1ti2+ci2 122 (5.7)
2¢12 2 2612,uk

By Lemma5.10, an interior local minimais balanced and thus Ly, is independent of k. Given
(5.7), this requires p2 to be independent of k. By Lemma5.12, p > 0 and thus p isindependent
of k.

From Equations (5.6) it followsthat the values of a1 and az; must be independent of . Thus
the symmetric schedul e is the only possible solution. O

Lemmab5.14 For n=2 and arbitrary number of processors, the symmetric schedule is a local
minima.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 101

Proof: Lemmab.11 established the symmetric schedul eto be astationary point and Lemma5.12
showed the Lagrange multipliersto be positive at any stationary point. Thusit suffices to show the
projected Hessian of the Lagrangian function to be positive definite.

We will establish ZTW Z be positive definite where W = (G — 33, f:G:) is the Hessian of
the Lagrangian function (G; is the Hessian and f; the Lagrange multiplier for the ¢'th constraint,
G isthe Hessian for the objective function) and Z is a matrix whose columns form a basis for the
null space of A, the Jacobian matrix of the constraints. We first give the proof for p = 2 and then
generdize.

[PROOFFORT = p = 2]

Our optimization problemfor n = p = 2is:

Minimize z
subject to

z— I 0
z—L, > 0
1

v

a1+ ap =
an+axp = 1

Since A;, = "}—k by Equation 5.5, the Jacobian of the constraints may be written as (our
conventionisto list variablesin the order z, a11, @12, a1, a2)):

1 -2 0 -2 ¢

0 O 0 1 1

Thematrix Z whosecolumnsformabasisforthenull spaceof AisZ = [0 A, —X, —A1 AT .
Since the objective function and the last two constraints are linear, G = G, = G, = 0. From

Equation 5.3, aafigi,-k = —2c;; is independent of & and thus G, and G, are equa. Since

p1+ p2 = 1by (5.4), wehave u1G, + p2G,, = G, WhichyiddsW = -G ;. Sincec;; = 0, we
have:

0 0 0 0 0
0 0 0 -2 O

W=-G,=|0 0 0 0 -2
0 -2, O 0 0
0 0 -2, O 0

CHAPTER 5. SCHEDULING MIXED PARALLELISM 102

Multiplyingout ZTW Z yieldsthe 1 x 1 matrix 8A1Azc10. Thustheonly eigenvalueis8A1Ase1o
which is positivesince A1, A2 > 0 by Lemma5.12.

[PROOF FOR i = 2, p ARBITRARY]

We now sketch how the proof generdizes for arbitrary p. (Figure 5.3 illustrates the val ues of
some of the matrices for p = 3).

The matrix A has asimpler form if we multiply the row for z — L by pg. The matrix A isthe
following (p 4 2) x (2p + 1) matrix inwhich I isap x p identity matrix.

_ " -
2
. : —Ad —Aol
Hp
0 1...1
| O 0...0 1...1 |

The null space of A is the following (2p + 1) x (p — 1) matrix Z. The sub-matrix R is a
p X (p— 1) matrix inwhich all elementsof thefirst row are 1. The bottom-|eft to top-right diagonal
of theremaining (p — 1) x (p — 1) matrix consistsof —1's and the remaining elements are zero.

0...0
A2R

The matrix W hasthe value —G ,, by reasoning similar to the case p = 2 and isthe following
(2p+ 1) x (2p 4 1) matrix where I isthep x p identity matrix and 0 isthep x p matrix of zeros.

7 =

[0 0.0 0..0 |
: 0 —2e¢10]
0
W =
0
: —2c10] 0
0

CHAPTER 5. SCHEDULING MIXED PARALLELISM 103

[u | M O 0 X, O 0
| O P 0 X O
A= M3 0 0 —)\1 0 0 _)\2
0 1 1 1 0 0 0
) 0 0 1 1 1
. 0]
A2 A2
0 “X2
X O
7 =
) P
0 A1
A1 0
0 0 0 0 0 0 0]
0 0 0 0 ~2c1, O 0
0 0 0 0 0 ~2c1, 0
0 0 0 0 0 0 —2¢12
W =
0 —2c1, 0 0 0 0 0
0 0 —2c1, 0 0 0 0
0 0 0 —2¢15 0 0 0
2 1

Figure 5.3: Matricesforp = 3

CHAPTER 5. SCHEDULING MIXED PARALLELISM 104

Multiplyingout ZTW Z yields 4c1pA10,X where X isa(p — 1) x (p — 1) matrix in which the
diagonal entries are 2 and the remaining entries are 1. The determinant of X — 81 may be shown
tobe (8 — p)(8 — 1)»=2. Thus X has only positive eigenvalues and is positive definite.

0

Lemma 5.15 If atree containsamother node m with distinct leaf children s and d st. - # i
then, for any number of processors, any interior minima hasthe sameresponsetimeasthesymmetric
schedule.

Proof: A local minimamust satisfy Equations5.4 and 5.5 and by Lemma5.10 must be balanced.
We show, given # #* c':n—dd these conditionsimply that all interior minimahave the same response
time as the symmetric schedule.

We first use # #* c':n—dd and Equations 5.4,5.5 to show g = 1/p. We then show > ikCij
to have a value independent of £ and use it to show the total communication cost at any interior
stationary point to equal that of the symmetric schedule. Since aninterior local minimais balanced,
we may the response time of any interior minimato equal the symmetric schedule.

By Equation 5.4, A;; = "}—k a a stationary point. Using Definition 5.4, thismay be rewritten as

A;
22 ajpci; = t; + Z Cij — E (58)
J J

Taking i = d and noting that the only neighbor of d ism, we obtain

A
2arnkcrnd =tg+ Cmd — 24 (59)
HE
1 .
= 2emd = p(ta+ cmd) — Ad Y — summing over k
k HE
1 . .
= A= (pta+ (p— 2)ema)/ Z — rearranging and renaming & to !
I Hi

Substituting back in Equation 5.9 and rearranging

tq P p—2
Sdp = 21— — P gy P72
k cmd[#kZzl/m] pr > 1/

A similar derivation for = s leads to another expression for a,y.
ts

P p—2
D = 21— —P gy P72
k Cms[,ukzzl/m] pr > 1/

CHAPTER 5. SCHEDULING MIXED PARALLELISM

105

Since = # ct—dd the above equations are consistent only if 1 — p/[ps Y-, 1/p] = O or

1k Xl: m=p
= O m)d m=r summing over k
P 1
= Y lw=p° using Equation 5.4
= ,ulk =1/p substituting back in 5.10

We now show that px = 1/p implies 3 ajkc;; = 1/p3;cij. Substituting gy

Equation 5.8

pAi =ti+ > (1- 2aj)ci;
J
= phi=ptit+ (-2 ¢ summing over k
J

t: (p—2)
= N=—+ C;s

Substituting the value of A; in Equation 5.11 and simplifying gives

1
Z akCij = Z Cij
J J

(5.10)

= 1/pin

(5.11)

(5.12)

(5.13)

We now show that the communication cost to be the same at each stationary point. The total

communication cost of ascheduleis}”; ; , a;x(1 — ajx)c;; whichis 3, - c;;

Z Ak AjpCij = Z Ak Z A jkCsj
ik j

n,5,k

1 . .
= > @ik > e applying Equation 5.13
ik i

1
= - Z Z @ik Cij
p j,k

i

1 . .
= > 3 e applying Equation 5.13
ik

i

1
= ;%:c”

= Di jk Bk @ik Cij-

Thetotal communication cost is therefore ’%1 > i Cig whichisequal to the communication cost of

the symmetric schedule.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 106

Node2 Node3

Figure 5.4: Counter-Example: Tree for which Symmetric Schedule is a Saddle Point

By Lemmab.10 an interior minimaisbalanced. It followsthat the response time of any interior
minimaeguals that of the symmetric schedule. O

It is worth observing that the set of eguations 5.13 along with the constraint " a;z = 1 has

solutions other than the symmetric schedule. For example for n = 3, p = 2 any solution of the

a11 = a12 = 1/2; ap1 = 3 +deis/er; azp = 5 —ders/erzaz = 3 —d; axp = 3+ d; isasolution

for any 0<d< min(%clz/cl;g).
Lemma 5.16 The symmetric schedule may not be a local minima.

Proof: (Counter-Example)
Consider the tree shown in Figure 5.4 to be scheduled on two processors. Observing that ¢13 = 0,
the load on processor 1isgiven by:
L1 = ait1 + antz + azitzs + a11(1 — az1)ei2 + a21(1— a1r)er2
= a11+ ax + 2az1 + c12(a11 + a1 — 2a11a21)
Noting that for two processors, a;» = 1 — a;; and equal communication is incurred by both
processors
Ly = (1-an)ti+ (1—a2)t2+ (1 — az)ts + ci2(a11 + a1 — 2a11a21)
= 4— a1 — ap1 — 2a31 + ci2(a11 + a1 — 2a11a21)
The condition for a balanced schedule is L1 = L, which gives a11 + ap1 + 2a31 = 2. The

response time of a balanced schedule is given by the load on any processor which we may now
write as:

L

a1 + az1 + 2a31 + ci2(a11 + a21 — 2a11a21)

2+ c12(a11 + a2 — 2a11a21)

CHAPTER 5. SCHEDULING MIXED PARALLELISM 107

Figure5.5: Plot of z = a11 + az1 — 2ag1ap; With a11 ON X-axis, a1 Ony-axis

Figure 5.5 shows a plot of the function z = a1 + a2 — 2a11a21 that makes it clear that the
symmetric scheduleis a saddle-point. O

5.4 Scheduling Treeswith Two Nodes

We will now establish the following theorem that showsthat tree with two nodes may be scheduled
optimally by asimple method. The proof is based on the two lemmas presented bel ow.

Theorem 5.1 For n=2, the optimal schedule is either the symmetric schedule or a schedule that
computes the entire tree on a single processor.

Lemma 5.17 For n=2, any balanced schedule A in which processors @ = {1,..., ¢} compute
both operatorsand @1 = {¢ + 1, ..., p} compute only operator 1 is either not a local minima or
no better than the symmetric schedule.

Proof: Figure 5.6 illustrates the assumptions of the Lemma. We will show A to be inferior to
the symmetric schedule for ¢ > 2 and to be not alocal minimafor ¢ = 1.

Since A is alocal minima Ag must also be alocal minima (Lemma 5.6). Clearly Ag isan
interior schedule and thus (by Lemmas5.13 and 5.14) must be the symmetric schedule. Thisimplies
(by Definition 5.6) that a;; isindependent of & for & € ¢). Since each processor k € 1 computes
only operator 1 and processor loads are balanced, a;;, isindependent of & for k € Q.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 108

If a is the tota fraction of operator 1 on @, aix = a/q,ax = 1/q fork € @ and ay, =
(1—a)/(p—q),azx = 0for k € Q1. Thetotal communication, C, in schedule 4 is

C = D law(l— az)e1z + azk(1l— aw)erd]
%
2ac1o

= 2c10— 2e12) G182k = 2012 —
k

Similarly, the communication cost of a symmetric schedule is 2¢12 — 2¢12/p. Among balanced
schedule, a schedule with lower communication has lower response time. The condition for A to
beat the symmetric scheduleisthereforea/q > 1/p or ay, > 1/pfork € Q.

Theloads on processors are:

Ly

aikty + azktz + a1x(1l — agg)erz + aze(l — agx)er2

= awl1 + axtz + (awk + azk)c12 — 2a1pa2%C12
at1/q+ta/q+ (a+ 1)cia/q — 2ac1p/q? ifkcQ

{ (t2 + c12)(1 - a)/(p— q) ifk € Q1

Sincea/q > 1/p may berewrittenas (1 — a)/(p — ¢) < 1/p, we have Ly < (&2 + c12)/p for
k € Q1. Usingtheequationfor k£ € Q, wemay derive Ly > (&2 + c12)/q + ac12/q[1 — 2/4q]. Thus
the schedule is not balanced provided ¢ > 2.

We now show that if ¢ = 1, then the schedule is not alocal minima. We will show that Ay is
negative for k£ = 1 and positivefor £ > 1. Thus we cannot have alocal minimasince the load on
all processors may be reduced by increasing a.

Now, A11 = &1+ (1— 2a21)c12 = t1 — ¢. We observe the condition for balanced loadsfor ¢ = 1

aty +t2 4 (a + 1)c12 — 2ac12 = (t2 + c12)(1—a)/(p — 1)
= (t2+ c12) + a(t1 — e12) = (t2 + c12)(1 - a)/(p - 1)

Since (1 —a)/(p — 1) < 1, we may conclude t; — c12 < 0. For & > 1, we have Ay, =
t1+ (11— 2ap%)ci2=1t2+ (p— 2+ a)/(p — 1) whichisclearly positivesincep > 2.

Lemma 5.18 For n=2, any balanced schedule is either not a local minima or no better than the
symmetric schedule.

CHAPTER 5. SCHEDULING MIXED PARALLEL ISM 109

[JHK)
\><4 v T
= /
| | | |
Q={12 ..,q9} Q ={0g+1, ..., p}

T

o @
| | | |
Qz Operator 2 only Q : Both operators QOperator 1 only

Figure 5.7: Balanced Schedule for n=2 (Some communication arcs omitted)

Proof: We will assume A to be a balanced local minima and argue it to be no better than the
symmetric schedule. A balanced schedule for a tree with two nodes has the structure shown in
Figure 5.7 where the load on all processors isidentical. The set of processors ¢ compute both
operators, 1 computes only operator 1, and @, computes only operator 2. Applying Lemmab.17
twice completes the proof. O

5.5 Discussion

We have developed a model for exploiting both pipelined and partitioned paralelism. We investi-
gated the classes balanced and symmetric schedules.

We showed that there may be more than one balanced schedule and none of the balanced
schedules may be optimal. We characterized the structure of optima schedules. If a minimal
schedule is not ba anced then any processor & that has more load than some other processor must

CHAPTER 5. SCHEDULING MIXED PARALLELISM 110

have a;; = 0 or 1 for al operators:. Further, if S isthe set of operators for which a;, = 1, then
(Vi€ S)ti + X jgs cij < Yjes Cij-

We showed symmetric schedules to be optimal when communication isfree. They are locally
minimal for trees of size 2 but may not belocally minimal for larger trees. However, under extremely
likely conditions, the symmetric schedul e has the same response time as any interior local minima.
Finally, symmetric schedules may be arbitrarily more expensive than the globa minimum.

While we have characterized the problem and developed severa results, further research is
needed to yield practical agorithmsfor the problem.

Chapter 6

Summary and Future Work

6.1 Summary of Contributions

In this thesis we have addressed the problem of optimizing SQL queries for parallel machines.
Exploiting parallel machines has led to new query processing strategies based on exploiting several
forms of parallel execution. Further, the decreasing cost of computing motivates minimizing the
response time to produce the query result as opposed to the traditional practice of minimizing the
machine resources consumed in answering the query. The problem of finding the best procedura
plan for a declarative query poses fresh challenges since we are dealing with a new space of
procedural plans as well as a new optimization objective.

The response time of a query may be reduced by two complementary tactics, reducing total
work and partitioning work among processors. Partitioning work among processors may not
yield ideal speedup due to two obstacles. First, timing constraints between operators and data
placement constraints place intrinsic limits on available parallelism. It may become impossible
to partition work equally over al processors thus reducing the speedup from parallel execution.
Second, partitioning work generates extra work due to the resulting need to communicate data
across processors. This may reduce or even offset the benefit from exploiting parallel execution.

Our two-phase architecture (Figure 6.1) for parale query optimizationis arefinement of ideas
due to Hong and Stonebraker [HS91, Hon92b]. We apply thetwo tacticsfor reducing response time
astwo phases. Thefirst phase, JOQR (for Join Ordering and Query Rewrite), minimizestotal work
while the second phase, parallelization, partitions work among processors. Breakup into phases
provides away of congquering problem complexity. It eases the understanding of problems as well
as the development of solutions.

111

CHAPTER 6. SUMMARY AND FUTURE WORK 112

We started with a performance study to understand how use of parallel execution can result
in the generation of extra work. The study was conducted on NonStop SQL/MP, a commercial
paralld database system from Tandem Computers. Since a query is executed in pardlel by a set
of cooperating processes, we measured two kinds of overhead costs of parallel execution, startup
and communication. Startup consists of obtaining and initializing the processes. Communication
consists of datatransfer among processes. Our experimentsled to three findings. First, startup costs
become negligible when processes are reused rather than created afresh. Second, communication
cost consists of the CPU cost of sending and receiving messages. Third, communication costs can
exceed the cost of operators such as scanning, joining or grouping.

OPTIMIZATION
Ir ~ 7 T Jo0rR 7 "PARALLELIZATON —'l
| ' parallel
Annotated r— aralle

SQL | Join Ordering Query E Operator § | Plan
Query & Tree & s | Tee 2 | (Schedule)

| & i N |

| — |

| I

L — — — e e e e e e e e e — o — — — — A

Figure 6.1 Phases and Sub-phases of Paralel Query Optimization

One conclusion from our experiments is that startup costs can be effectively controlled by
modifying a query execution system to reuse processes rather than creating them afresh. Com-
munications costs, on the other hand, appear endemic to parallel execution. Machine architecture
changes, such as offloading communication to specialized processors, hold the possibility of reduc-
ing communication costs. However, much of CPU cost of communication is incurred by software
layers above the communication layer and will therefore still be substantial. Thisis a consequence
of the low levels of abstraction offered by communication layers due to the need to cater to many
different applications. We therefore concluded that query optimization should be based on models
that incorporate the cost of communication but omit the cost of startup.

In Chapter 3, we developed algorithmsfor a series of increasingly sophisticated models for the
JOQR phase. We started by posing the minimization of communication costs as a tree coloring
problem (related to the Multiway Cut [DJP+92] problem) where colors represent data partitioning.

CHAPTER 6. SUMMARY AND FUTURE WORK 113

We then enhanced the model by two generaizations. The first generalization was to capture the
interaction of computation and communication costs by supporting a set of aternate methods for
each operator. The cost of amethod can be an arbitrary function of the color and statistical properties
of the inputs. Each method has an input-output constraint that provides guarantees on the color
of the output as a function of colors of the inputs. The second generalization was based on the
observation that communication may be viewed as resulting from changing the physical location
of data. Since other physical properties of data such as sort-order or the existence of an index also
impact the cost of a method, we generalized colors to represent collections of physical properties.
Thefinal enhancement of the model was to permit joinsto be reordered.

Our work on the JOQR phase shows that optimally exploiting physical properties may be
separated from join ordering. The separation has some advantages. Firstly, we showed that physical
property optimization may beachieved by afast polynomia agorithm. In contrast, only exponentia
algorithmsare known for optimal ordering of joins. Secondly, physical property optimizationis not
limited to SPJ queries, it applies as well to query trees that contain operators such as grouping and
foreign functions. Thirdly, we open up aternate ways of combining physical property optimization
with join ordering. Another contribution of our work is an explanation and formalization of the
basic ideas used in existing commercia query optimizers.

After addressing problemsin the JOQR phase, we moved onto theproblemsintheparallelization
phase. We addressed the problem of POT (pipelined operator tree) scheduling which is to exploit
pipelined parallelism for operator trees with only pipeining edges. Our model of response time
captured the fundamental tradeoff between parallel execution and its communication overhead. We
assessed the quality of a scheduling algorithm by its performance ratio which is the ratio of the
response time of the generated scheduleto that of the optimal. We devel oped worst-case bounds on
the performance ratio by analytical methods and measured the average performance ratios by use
of experimental benchmarks. Of the several agorithms developed, we consider Hybrid to be the
algorithm of choice since it has the best average performance ratio and a worst-case performance
ratio of about 2 for many cases.

Our work on POT scheduling has severa aspects that are interesting in their own right. We
developed the notion of worthless parallelism which is parallelism that is never beneficial. Such
parallelism may be efficiently removed from operator trees to yield a subclass of operator trees that
weterm monotone. Monotonetrees have an additional lower bound that proved useful in analyzing
the performanceratio of algorithms. We showed that the optimal connected schedul es may befound
by an efficient polynomial-time algorithm. Connected schedules have the practical advantage that

CHAPTER 6. SUMMARY AND FUTURE WORK 114

certain code generation schemes can generate code with a single thread of control for a connected
sets of operators. The context switching between operators is efficiently built into the generated
code rather than being managed by more expensive mechanisms such as thread packages.

The agorithmsthat “lost” to Hybrid have features that make them useful. The GreedyPairing
algorithm has the advantage of being extremely simple. It isalso easily usable when data placement
constraints pre-allocate some of the operators to specific processors. While we could prove the
worst-case performance ratios of Hybrid and GreedyPairing for some cases, we could not prove or
find counter-examplesfor the remaining cases. On the other hand, the Local Cuts and BoundedCuts
algorithms have the advantage providing a guarantee on the worst-case performance ratio.

Thelast problem addressed in thisthesisisthe POTP (pipelined operator tree with partitioning)
problem of exploiting both pipelined and partitioned parallelism in scheduling a pipelined operator
tree. POTPisthecontinuousversionof POT scheduling sincepartitioned parallelism permitssevera
processors to each execute some fraction of an operator. POTP expands the class of permissible
schedules as compared to POT. One effect of this expansion is to simplify the problem for the
case of zero communication costs. While the zero-communication case is NP-hard for POT, it is
easily solvablefor POTP (asymmetric scheduleis optimal). However, when communication costs
are non-zero, POTP has an NP-hard problem embedded in it and falls in the class of non-linear,
non-convex continuous optimization problems. We investigated two classes of schedules: ba anced
and symmetric. This led to a characterization of optimal schedules and severa results on local
minimization. We also showed that trees of size 2 may be optimally scheduled by asimplerule.

The overal contribution of our thesisis the development of models and algorithms for parallel
guery optimization that account for the benefit as well as the cost of paralld execution. We have
used aformal approach in addition to experimentation on rea systemsand simulations. Our models
capture opportunitiesfor parallelism and obstacl esto speedup that are likely to be applicabl e beyond
database query processing to paralel computing applications such as N-body simulations[Her88,
Kat89, Sal90, Sin93] in scientific computing and radiosity computations[M.F85, P. 91] in graphics.

6.2 FutureWork

Thereareseveral open problemsintheareaof parallel query optimization. Somemay beinvestigated
within the models that we have proposed, other require extensions.

Integration of JOQR and Parall€elization: An openissueisto devise and evaluate approaches
for integrating the two phases of optimization so asto produceglobally optimal plans. Aninteresting

CHAPTER 6. SUMMARY AND FUTURE WORK 115

approach isto produce a set of plans as the output of the JOQR phase, parall€lize each of them and
take the best. Interesting questions are the criteriafor choosing the set of plans, the size of the set,
and an anaysis of how close we get to the optimal plan.

Space-Time Trade-off: Since main memory is available at increasingly lower prices, an
important problem is to exploit the space-time tradeoff in scheduling. Additional memory can be
exploited to reduce the 1/0O and CPU cost of operators such as sorting. In a paralel machine, more
memory may be obtained for an operator by partitioningit over alarger number of processors—thus
I/0 and CPU can be traded for memory and communication. It is chalenging to devise modelsand
algorithms that minimize response time subject to limits on maximum memory usage while taking
thistrade-off into account.

Heterogeneous Ar chitectures: It isstandard for work in parallel query optimizationto assume
all nodes of a paralld machine to be identical. However, heterogeneity arises for severa reasons.
One often touted advantage of parallel machines is the ability to incrementally add components
(processors, disks). It should be noted that by the time more computing power is heeded, newer
and faster components are likely to be available. A more general scenario for heterogeneity is
the existence of alarge number of diverse machinesin most offices. Many of these machines are
under-utilized, especially at night. Commadity interconnects such as Myrinet, FDDI or an ATM
switch may be used to turn idle machine cycles into a useful paralled machine. Thus, optimization
for heterogeneous parallel machinesis an important problem.

Dynamic/Pre-emptive Optimization: The machine resources available for executing a query
may change while the query isin execution. For example, another query may complete and release
resources. This motivates the need for pre-emptive scheduling that allows dynamic revision of
scheduling decisions [Roy91, Der92]. Optimization decisions other than scheduling may also
benefit from revision at execution time. Join ordering is sensitiveto estimates of intermediate result
sizes. It iswell known that such estimates may have large errors and better information may be
available at execution time. We observe that the additional freedom to revise scheduling decisions
givestwo advantagesin classical scheduling problemssuch as multi-processor scheduling. Firstly, it
typically makesthe algorithmic problemeasier. Secondly, pre-emptive schedul e are better than non-
preemptive schedules. Animportant question iswhether pre-emptive scheduling yields advantages
in parallel query processing. Oneissueis the cost of pre-empting a query that uses alarge number
of resources on a parallel machine. Designing pre-emptive schemes requires innovations in both
guery execution and optimization.

CHAPTER 6. SUMMARY AND FUTURE WORK 116

Data Placement and Precedence Constraints: Data placement constrains the allocation of
scan operators to specific processors. While this aspect can be easily incorporated into some of
the algorithms such as GreedyPairing, we have not explored the issue in depth. We have aso not
devel oped scheduling a gorithmsthat account for precedence constraints. Whilethereis substantial
work on precedence constraints in scheduling theory, the chalenge is to account for the cost of
communication. Since edges in operator trees represent the flow of data, a precedence constraint
implies materialization of a set of tuples. Transferring such a set incurs substantial communication
cost.

Bibliography

[AHY83]

[ASU79]

[BBT88]

[BC81]

[BCCH90]

[BGW+81]

[CGK90]

[CLYY92]

[CMT7T]

PM.G. Apers, A.R. Hevner, and S.B. Yao. Optimization Algorithms for Distributed
Queries. |EEE Transaction on Software Engineering, 9(1), 1983.

A.V. Aho, Y. Sagiv, and J.D. Ullman. Efficient Optimization of a Class of Relational
Expressions. Transactions on Database Systems, 4(4):435-454, 1979.

B.Bdl, W. Bartlett, and S. Thompson. Tandem’s Approach to Fault Tolerance. Tandem
Systems Review, 4(1), February 1988. Part Number 11078.

P. A. Bernstein and D.W. Chiu. Using Semi-Joinsto Solve Relational Queries. Journal
of the ACM, 28(1):25-40, January 1981.

H.Bord, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Val-
duriez. Prototyping Bubba, A Highly Parallel Database System. |EEE Transactions
on Knowledge and Data Engineering, 2(1), March 1990.

PA.Bernstein, N. Goodman, E. Wong, C.L. Reeve, and J.B. Rothnie. Query Processing
in a System for Distributed Databases (SDD-1). Transactions on Database Systems,
6(4):602—625, December 1981.

D. Chimenti, R. Gamboa, and R. Krishnamurthy. Abstract machine for LDL. In
Proceedings of the Extending Database Technol ogy Conference, 1990.

M-S Chen, M-L Lo, PS. Yu, and H.C. Young. Using Segmented Right-Deep Trees for
the Execution of Pipelined Hash Joins. In Proceedings of the Eighteenth International
Conference on Very Large Data Bases, pages 15-26, June 1992.

A. K. Chandraand P. M. Merlin. Optimal Implementation of Conjunctive Queriesin
Relational Databases. In Proceedings of the Ninth Annual ACM Symposiumon Theory
of Computing, pages 77-99, 1977.

117

BIBLIOGRAPHY 118

[CNW83]

[CRO1]

[CS94]

[Day87]

[Der9?]

[DGS*90]

[DIP+92]

[ES94]

[GHQO5]

[GJ79]

[GLLK79]

S. Ceri, S. B. Navathe, and G. Wiederhold. Distribution Design of Logica Database
Schemas. |EEE Transactions on Software Engineering, 9(4):487-563, July 1983.

S. Chopra and M.R. Rao. On the Multiway Cut Polyhedron. Networks, 21:51-89,
1991.

S. Chaudhuri and K. Shim. Including group-by in query optimization. In Proceedings
of the Twentieth Inter national Conference on Very Large Data Bases, Santiago, Chile,
September 1994.

U. Dayal. Of Nestsand Trees: A Unified Approach to Processing Queries That Contain
Nested Subqueries, Aggregates, and Quantifiers. In Proceedings of the Thirteenth
International Conference on Very Large Data Bases, Brighton, England, 1987.

M.A. Derr. Adaptive Optimizationin a Database Programming Language. PhD thesis,
Stanford University, 1992. In Preparation.

D.J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-l. Hsiao, and R. Ras-
mussen. The Gamma database machine project. |EEE Transactions on Knowledge
and Data Engineering, 2(1), March 1990.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
Complexity of Multiway Cuts. In Proceedings of the 24th Annual ACM Symposium
on the Theory of Computing, pages 241-251, 1992.

PL. Erdos and L.A. Szekely. On Weighted Multiway Cuts in Trees. Mathematical
Programming, 65:93-105, 1994.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data ware-
housing environments. In Proceedings of the Twenty First International Conference
on Very Large Data Bases, Zurich, Switzerland, September 1995.

M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and
Company, 1979.

R.L Graham, E.L. Lawler, JK. Lenstra, and A.H.G Rinnooy Kan. Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of
Discrete Mathematics, 5:287-326, 1979.

BIBLIOGRAPHY 119

[GMWS81] PE. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press,

[Gra69)]

[Gra90]

[GW8T]

[Had74]

[Hal76]

[Her88]

[HFLP8Y]

[HLY 93]

[Hon92al

[Hon92b]

1981.

R.L. Graham. Boundson Multiprocessing Timing Anomalies. S AM Journal of Applied
Mathematics, 17(2):416-429, March 1969.

G. Graefe. Encapsulation of Paralelism in the Volcano Query Processing System.
In Proceedings of ACM-SIGMOD International Conference on Management of Data,
May 1990.

R.A. Ganski and H.K.T Wong. Optimization of Nested SQL Queries Revisited. In
Proceedings of ACM-S GMOD International Conference on Management of Data,
1987.

F.O. Hadlock. Minimum Spanning Forests of Bounded Trees. In Proceedings of the
5th Southeastern Conference on Combinatorics, Graph Theory and Computing, pages
449-460. Utilitas M athematica Publishing, Winnipeg, 1974.

PA.V. Hall. Optimization of a Single Relational Expressionin aRelational Data Base.
IBM Journal of Research and Devel opment, 20(3):244-257, May 1976.

L. Hernquist. Hierarchical N-body Methods. Computer Physics Communications,
48:107-115, 1988.

L.M. Haas, J.C. Freytag, G.M. Lohman, and H. Pirahesh. Extensible Query Pro-
cessing in Starburst. In Proceedings of ACM-S GMOD International Conference on
Management of Data, June 19809.

K.A. Hua, Y. Lo, and H.C. Young. Including the Load Balancing Issue in The Opti-
mi zation of Multi-way Join Queriesfor Shared-Nothing Database Computer. In Second
International Conference on Parallel and Distributed Information Systems, San Diego,
Cdlifornia, January 1993.

W. Hong. Exploiting Inter-Operation Paralldism in XPRS. In Proceedings of ACM-
S GMOD International Conference on Management of Data, June 1992.

W. Hong. Parallel Query Processing Using Shared Memory Multiprocessorsand Disk
Arrays. PhD thesis, University of Cdlifornia, Berkeley, August 1992,

BIBLIOGRAPHY 120

[HS91]

[Kat89]

[Kim82]

[King1]

[Knu73]

[LMH*85]

[LMS94]

[LST91]

[Luesg]

[M.F85]

[ML86]

W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plansin XPRS.
In Proceedings of the First International Conference on Parallel and Distributed
Information Systems, December 1991.

J. Katznelson. Computational Structure of the N-body problem. SIAM Journal of
Scientific and Statistical Computing, 10(4):787—815, 1989.

W. Kim. On Optimizing an SQL-like Nested Query. Transactions on Database
Systems, 7(3), September 1982.

J. J. King. Query Optimization by Semantic Reasoning. PhD thesis, Stanford University,
1981. Stanford CS Report STAN-CS-81-857.

D. E. Knuth. The Art of Computer Programming, Vol 1: Fundamental Algorithms.
Addison-Wesley, 2nd edition, 1973.

G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P. Selinger, and P. Wilms.
Query Processing in R*. In W. Kim, D. Reiner, and D. S. Batory, editors, Query
Processing in Database Systems. Springer Verlag, 1985.

A.Y.Levy,|.S. Mumick,and Y. Sagiv. Query optimization by predicate move-around.
In Proceedings of the Twentieth Inter national Conference on Veery Large Data Bases,
Santiago, Chile, September 1994,

H. Lu, M-C. Shan, and K-L. Tan. Optimization of Multi-Way Join Queriesfor Parallel
Execution. In Proceedings of the Seventeenth Inter national Conference on Very Large
Data Bases, Barcelona, Spain, September 1991.

D.G. Luenberger. Linear and Nonlinear Optimization. Addison-Wesley Publishing
Company, second edition, 1989.

M.F.Cohen and D.PGreenberg. The Hemi-cube: A Radiosity Solution for Complex
Environments. In Proceedings of S GGRAPH, 1985.

L.F Mackertand G. M. Lohman. R* Optimizer VValidation and Performance Eval uation
for Loca Queries. Technica report, IBM Research Division, January 1986. IBM
Research Report RJ 4989.

BIBLIOGRAPHY 121

[OV91]

[P 91]

[PHHO2]

[PMC+90]

[Roy91]

[SAC*79]

[Sal90]

[SchoO]

[SE93]

[Sin93]

M.T. Ozsuand P. Valduriez. Principlesof Distributed Database Systems. Prentice-Hall,
1991.

P. Hanrahan, D. Satzman, and L. Aupperle. A Rapid Hierarchical Radiosity Algorithm.
In Proceedings of S GGRAPH, 1991.

H. Pirahesh, JM. Hellerstein, and W. Hasan. Extensible/Rule Based Query Rewrite
Optimizationin Starburst. In Proceedings of ACM-S GMOD International Conference
on Management of Data, June 1992.

H. Pirahesh, C. Mohan, J. Cheung, T.S. Liu, and P. Selinger. Parallelismin Relational
Data Base Systems: Architectural Issues and Design Approaches. In Second Interna-
tional Symposiumon Databasesin Parallel and Distributed Systems, Dublin, Ireland,
1990.

S. Roy. Adaptive Methods in Parallel Databases. PhD thesis, Stanford University,
1991. Stanford CS Report STAN-CS-91-1397.

P. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access
Path Selection in aRelationa Database M anagement System. In Proceedings of ACM-
S GMOD International Conference on Management of Data, 1979.

J.K. Salmon. Parallel Hierarchical N-Body Methods. PhD thesis, California Institute
of Technology, December 1990.

D. A. Schneider. Complex Query Pracessing in Multiprocessor Database Machines.
PhD thesis, University of Wisconsin—M adison, September 1990. Computer Sciences
Technica Report 965.

J. Srivastava and G. Elsesser. Optimizing Multi-Join Queries in Parallel Relational
Databases. In Second International Conference on Parallel and Distributed I nforma-
tion Systems, San Diego, Cadifornia, January 1993.

J. P. Singh. Parallel Hierarchical N-Body Methods and their Implications for Mul-
tiprocessors. PhD thesis, Stanford University, March 1993. Stanford CSL Report
CSL-TR-93-565.

BIBLIOGRAPHY 122

[SYTO3]

[Ten]

[Tan94]

[UI175]

[UlI89]

[WY 76]

[X3H92]

[YLO5]

[2G90)]

[2ZBS93]

E. J. Shekita, H.C. Young, and K-L Tan. Multi-Join Optimization for Symmetric
Multiprocessors. In Proceedings of the Nineteenth International Conference on Very
Large Data Bases, Dublin, Ireland, 1993.

Tandem. Cyclone/R Message System Performance. Technical report, Tandem Com-
puters.

Tandem. NonStop SQL/MP Reference Manual, December 1994. Tandem Part Number
100149, Release ID D30.00.

J.D. Ullman. NP-Complete Scheduling Problems. JCSS, 10:384-393, 1975.

J. D. Ullman. Principles of Database and Knowl edge-base Systems. Computer Science
Press, 1989.

E. Wong and K. Youseffi. Decomposition - A Strategy for Query Processing. Trans-
actions on Database Systems, 1(3):223-241, September 1976.

X3H2. Information technology - database language sql, July 1992. Also available as
International Standards Organization document 1SO/IEC:9075:1992.

W. P. Yan and P. A. Larson. Eager Aggregation and Lazy Aggregation. In Proceed-
ings of the Twenty First International Conference on Very Large Data Bases, Zurich,
Switzerland, September 1995.

H. Zdler and J. Gray. Hash Join Algorithmsin a Multiuser Environment. In Proceed-
ings of the Sxteenth International Conference on Very Large Data Bases, Brisbane,
Australia, 1990.

M. Ziane, M. Zait, and P. BorlaSalamet. Paralel Query Processing in DBS3. In
Second International Conference on Parallel and Distributed Information Systems,
San Diego, Cdlifornia, January 1993.

