
OPTIMIZATION OF SQL QUERIES FOR PARALLEL MACHINES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Waqar Hasan

December, 1995

c
 Copyright 1996 by Waqar Hasan

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold
(Principal Adviser)

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Hector Garcia-Molina

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Ravi Krishnamurthy

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Rajeev Motwani

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Jeffrey D. Ullman

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

iii

Abstract

Parallel execution offers a solution to the problem of reducing the response time of SQL queries

against large databases. As a declarative language, SQL allows users to avoid the complex proce-

dural details of programming a parallel machine. A DBMS answers a SQL query by first finding

a procedural plan to execute the query and subsequently executing the plan to produce the query

result. We address the problem of parallel query optimization which is: Given a SQL query, find

the parallel plan that delivers the query result in minimal time.

We develop optimization algorithms using models that incorporate the sources of parallelism as

well as obstacles to achieving speedup. One obstacle is inherent limits on available parallelism due

to parallel and precedence constraints between operators and due to data placement constraints that

essentially pre-allocate some subset of operators. Another obstacle is that the overhead of exploiting

parallelism may increase total work thus reducing or even offsetting the benefit of parallel execution.

Our experiments with NonStop SQL, a commercial parallel DBMS, show communication of data

across processors to be a significant source of increase in work.

We adopt a two-phase approach to parallel query optimization: join ordering and query rewrite

(JOQR), followed by parallelization. The JOQR phase minimizes the total work to compute a query.

The parallelization phase extracts parallelism and schedules resources to minimize response time.

We make contributions to both phases. Our work is applicable to queries that include operations

such as grouping, aggregation, foreign functions, intersection and set difference in addition to joins.

We develop algorithms for the JOQR phase that minimize total cost while accounting for the

communication cost of repartitioning data. Using a model that abstracts physical characteristics

of data, such as partitioning, as colors, we devise tree coloring algorithms that are efficient and

guarantee optimality.

We model the parallelization phase as scheduling a tree of inter-dependent operators with

computation and communication costs represented as node and edge weights. Scheduling a weighted

operator tree on a parallel machine poses a class of novel multi-processor scheduling problems that

iv

differ from the classical in several ways.

We develop and compare several efficient algorithms for the problem of scheduling a pipelined

operator tree in which all operators run in parallel using inter-operator parallelism. Given the NP-

hardness of the problem, we assess the quality of our algorithms by measuring their performance

ratio which is the ratio of the response time of the generated schedule to that of the optimal. We

prove worst-case bounds on the performance ratios of our algorithms and measure the average cases

using simulation.

We address the problem of scheduling a pipelined operator tree using both pipelined and

partitioned parallelism. We characterize optimal schedules and investigate two classes of schedules

that we term symmetric and balanced.

The results in this thesis enable the construction of SQL compilers that can effectively exploit

parallel machines.

v

Acknowledgements

I express my gratitude to the people and organizations that made this thesis possible. Gio Wiederhold

was a constant source of intellectual support. He encouraged me to learn and use a variety

of techniques from different areas of Computer Science. Rajeev Motwani helped enhance my

understanding of theory and contributed significantly to the ideas in this thesis. Jeff Ullman was

a source of useful discussions and I thank him for his helpful and incisive comments. Ravi

Krishnamurthy served as a mentor and a source of interesting ideas and challenging questions.

Hector Garcia-Molina provided helpful advice. Jim Gray helped me understand the realities of

parallel query processing.

My thesis topic grew out of work at Hewlett-Packard Laboratories and was supported by a

fellowship from Hewlett-Packard. I express my gratefulness to Hewlett-Packard Company and

thank my managers Umesh Dayal, Dan Fishman, Peter Lyngbaek and Marie-Anne Neimat for

management, intellectual and moral support.

I thank Tandem Computers for providing access to a parallel machine, to the NonStop SQL/MP

parallel DBMS, and permitting publication of experimental results. I am grateful to Susanne Englert,

Ray Glasstone and Shyam Johari for making this possible and for helping me understand Tandem

systems.

The following friends and colleagues were a source of invaluable discussions and diversions:

Sang Cha, Surajit Chaudhuri, Philippe DeSmedt, Mike Heytens, Curt Kolovson, Stephanie Leichner,

Sheralyn Listgarten, Arif Merchant, Inderpal Mumick, Pandu Nayak, Peter Rathmann, Donovan

Schneider, Arun Swami, Kevin Wilkinson, Xiaolei Qian.

This thesis would not have been possible without the support and understanding of my family.

I thank my father, Dr. Amir Hasan, for providing the inspiration to pursue a PhD. I thank my

mother, Fatima Hasan, my brothers Safdar, Javed, and Zulfiquar, and sister Seemin for their love

and encouragement. I owe a debt to my wife Shirin and son Arif for putting up with my long hours

and for the support, love and encouragement that made this work possible.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Minimizing Response Time: Sources and Deterrents : : : : : : : : : : : : : : : 1

1.1.1 Sources of Speedup : 2

1.1.2 Deterrents to Speedup : 3

1.2 Model for Parallel Query Optimization : 4

1.2.1 Annotated Query Trees : 5

1.2.2 Operator Trees : 5

1.2.3 Parallel Machine Model : 7

1.3 Organization of Thesis : 8

1.4 Related Work : 9

1.4.1 Query Optimization for Centralized Databases : : : : : : : : : : : : : : 9

1.4.2 Query Optimization for Distributed Databases : : : : : : : : : : : : : : : 10

1.4.3 Query Optimization for Parallel Databases : : : : : : : : : : : : : : : : 10

2 Price of Parallelism 12

2.1 Introduction : 13

2.2 Tandem Architecture: An Overview : 14

2.2.1 Parallel and Fault-tolerant Hardware : 14

2.2.2 Message Based Software : 14

2.2.3 Performance Characteristics : 15

2.3 Parallelism in NonStop SQL/MP : 15

vii

2.3.1 Use of Intra-operator Parallelism : 15

2.3.2 Process Structure : 17

2.4 Startup Costs : 19

2.5 Costs of Operators and Communication : 19

2.5.1 Experimental Setup : 21

2.5.2 Costs of Scans, Predicates and Aggregation : : : : : : : : : : : : : : : : 22

2.5.3 Costs of Local and Remote Communication : : : : : : : : : : : : : : : : 23

2.5.4 Cost of Repartitioned Communication : : : : : : : : : : : : : : : : : : : 24

2.5.5 Costs of Join Operators : 26

2.5.6 Costs of Grouping Operators : 27

2.6 Parallel Versus Sequential Execution : 28

2.6.1 Parallelism can Reduce Work : 29

2.6.2 Parallelism Can Increase Response Time : : : : : : : : : : : : : : : : : 30

2.7 Summary of Findings : 30

3 JOQR Optimizations 32

3.1 A Model for Minimizing Communication : 33

3.1.1 Partitioning : 33

3.1.2 Repartitioning Cost : 34

3.1.3 Optimization Problem : 35

3.2 Algorithms for Query Tree Coloring : 36

3.2.1 Problem Simplification : 37

3.2.2 A Greedy Algorithm for Distinct Pre-Colorings : : : : : : : : : : : : : : 37

3.2.3 Algorithm for Repeated Colors : 39

3.2.4 Extensions: Using Sets of Colors : 42

3.3 Model for Methods and Physical Properties : 44

3.3.1 Annotated Query Trees and their Cost : : : : : : : : : : : : : : : : : : : 45

3.4 Extension of ColorSplit for Methods and Physical Properties : : : : : : : : : : : 47

3.5 Model With Join Ordering : 49

3.5.1 Join Ordering Without Physical Properties : : : : : : : : : : : : : : : : : 49

3.5.2 Join Ordering With Physical Properties : : : : : : : : : : : : : : : : : : 51

3.6 Usage of Algorithms : 52

viii

4 Scheduling Pipelined Parallelism 54

4.1 Problem Definition : 54

4.2 Identifying Worthless Parallelism : 57

4.2.1 Worthless Edges and Monotone Trees : : : : : : : : : : : : : : : : : : : 57

4.2.2 The GreedyChase Algorithm : 59

4.2.3 Lower Bounds : 60

4.3 The Modified LPT Algorithm : 60

4.4 Connected Schedules : 62

4.4.1 Connected Schedules when Communication is Free : : : : : : : : : : : : 63

4.4.2 BalancedCuts with Communication Costs : : : : : : : : : : : : : : : : : 66

4.5 Connected Schedules as an Approximation : 67

4.6 Heuristics for POT Scheduling : 71

4.6.1 A Hybrid Algorithm : 72

4.6.2 The Greedy Pairing Algorithm : 72

4.7 Approximation Algorithms : 74

4.7.1 A Two-stage Approach : 74

4.7.2 The LocalCuts Algorithm : 76

4.7.3 The BoundedCuts Algorithm : 79

4.8 Experimental Comparison : 85

4.8.1 Experimental Setup : 85

4.8.2 Experimental Comparison : 85

4.8.3 Performance of Hybrid : 86

4.8.4 Comparison of Hybrid, LocalCuts and BoundedCuts : : : : : : : : : : : 87

4.8.5 Behavior of Lower Bound : 88

4.9 Discussion : 88

5 Scheduling Mixed Parallelism 90

5.1 Problem Definition : 90

5.2 Balanced Schedules : 93

5.3 Symmetric Schedules : 98

5.4 Scheduling Trees with Two Nodes : 107

5.5 Discussion : 109

ix

6 Summary and Future Work 111

6.1 Summary of Contributions : 111

6.2 Future Work : 114

Bibliography 117

x

List of Tables

2.1 Parallelization Strategies and Join Methods : 17

2.2 CPU Costs of Operations (1K tuples occupy 1 Mbyte) : : : : : : : : : : : : : : : 21

3.1 Examples of Input-Output Constraints : 46

xi

List of Figures

1.1 Query Processing Architecture : 2

1.2 Phases and Sub-phases of Parallel Query Optimization : : : : : : : : : : : : : : 4

1.3 (A) Annotated Query Tree (B) Corresponding Operator Tree : : : : : : : : : : : 6

2.1 (a) Tandem Architecture (b) Abstraction as Shared-Nothing : : : : : : : : : : : : 14

2.2 Process Startup: With (solid) and without (dotted) process reuse. : : : : : : : : : 19

2.3 Local, Remote and Repartitioned Communication : : : : : : : : : : : : : : : : : 20

2.4 Scan with 1 predicate(dotted), 2 predicates(solid), aggregation(dashed) : : : : : : 23

2.5 Scan and Aggregation(dashed) with Local(solid) and Remote(dotted) Comm. : : : 23

2.6 Process structure: (a) No communication (b) Local (c) Remote : : : : : : : : : : 24

2.7 Local and Repartitioned Execution : 25

2.8 Local(dotted) and Repartitioned(solid) Comm. : : : : : : : : : : : : : : : : : : 26

2.9 Query using Simple-hash (dashed), Sort-merge (solid) and Nested Join (dotted) : : 27

2.10 Hash (solid) and Sort (dotted) Grouping Costs : : : : : : : : : : : : : : : : : : : 28

2.11 Process Structure: Sequential and Parallel Execution : : : : : : : : : : : : : : : 29

3.1 Query Trees: Hatched edges show repartitioning : : : : : : : : : : : : : : : : : 33

3.2 (i) Query Tree; (ii) Coloring of cost 7; (iii) Minimal Coloring of cost 6 : : : : : : 36

3.3 (i) Split colored interior node (ii) Collapse uncolored leaves : : : : : : : : : : : : 37

3.4 (i) Query Tree (ii) Suboptimal DLC coloring (cost=9) (iii) Optimal coloring (cost=8) 39

3.5 Problem Decomposition after Coloring Node i : : : : : : : : : : : : : : : : : : : 40

3.6 Opt and Optc tables for tree of Figure 3.4 : 41

3.7 Interaction of Repartitioning with Join Predicates : : : : : : : : : : : : : : : : : 43

3.8 Annotated Query Trees : 45

3.9 Interaction of Repartitioning with Order of Joins : : : : : : : : : : : : : : : : : 49

3.10 Decomposition of a complex query : 52

xii

4.1 A pipelined schedule and its execution : 55

4.2 (A) Trace of GreedyChase (worthless edges hatched) (B) modified LPT schedule

(C) naive LPT schedule : 61

4.3 Example with Performance ratio = n=p for Modified LPT : : : : : : : : : : : : : 62

4.4 Connected Schedule as Cutting and Collapsing Edges : : : : : : : : : : : : : : : 63

4.5 Fragments formed by BpSchedule before the last stage of BalancedCuts : : : : : 67

4.6 Examples with LC
Lopt

= 2� 1
d p+1

2 e
: 69

4.7 Performance ratio=3 for star of 10 nodes scheduled on 5 processors : : : : : : : : 71

4.8 Subtrees Tm, Tm0 ; Tm00 for nodes m;m0; m00 : 81

4.9 Cmopt : 81

4.10 Performance of Hybrid(solid), BalancedFragments(dotted) and Modified LPT(dashed)

on Wide Trees : 86

4.11 Performance of Hybrid(solid), BalancedFragments(dotted) and Modified LPT(dashed)

on Narrow Trees : 87

4.12 Comparison of Hybrid(solid), LocalCuts(dashed) and BoundedCuts(dotted) on Nar-

row Trees : 87

4.13 Comparison of Hybrid(solid), LocalCuts(dashed) and BoundedCuts(dotted) on

Wide Trees : 88

4.14 Performance of Optimal(dotted) and Hybrid(solid) : : : : : : : : : : : : : : : : 89

5.1 Execution with Mixed Parallelism : 91

5.2 Structure of (Strongly) Minimal Schedule : 97

5.3 Matrices for p = 3 : 103

5.4 Counter-Example: Tree for which Symmetric Schedule is a Saddle Point : : : : : 106

5.5 Plot of z = a11 + a21 � 2a11a21 with a11 on x-axis, a21 on y-axis : : : : : : : : : 107

5.6 “One Sided” schedule : 109

5.7 Balanced Schedule for n=2 (Some communication arcs omitted) : : : : : : : : : 109

6.1 Phases and Sub-phases of Parallel Query Optimization : : : : : : : : : : : : : : 112

xiii

Chapter 1

Introduction

Database systems provide competitive advantage to businesses by allowing quick determination of

answers to business questions. Intensifying competition continues to increase the sizes of databases

as well as the sophisticationof queries against them. Parallel machines constructed from commodity

hardware components offer higher performance as well as performance at a lower price as compared

to sequential mainframes. Exploiting parallelism is therefore a natural solution for reducing the

response times of queries against large databases.

SQL, the standard language for database access, is a declarative language. It insulates users from

the complex procedural details of accessing and manipulating data. In particular, exploiting parallel

machines does not require users to learn a new language or existing SQL code to be rewritten.

Given a declarative query, the DBMS first devises a procedural plan and then executes the plan to

produce the query result (see Figure 1.1). The problem of devising the best procedural plan for a

SQL query is termed query optimization.

While the declarative nature of SQL allows users to benefit transparently from parallel machines,

the DBMS must solve a new optimization problem. This new problem, termed parallel query

optimization, is the subject of this thesis. It is defined as: Given an SQL query, find the parallel

plan that delivers the query result with the least response time.

1.1 Minimizing Response Time: Sources and Deterrents

In this thesis, we will exploit two complementary tactics for reducing the response time of a query

(i.e. speeding up a query). Response time may be reduced by decreasing the total work to compute

a query. It may also be reduced by partitioning work among multiple processors.

1

CHAPTER 1. INTRODUCTION 2

Declarative Procedural

PlanQuery

Query

Result
ExecutionOptimization

Figure 1.1: Query Processing Architecture

We will model two fundamental deterrents to achieving speedup through partitioning of work.

First, there may be intrinsic limits on how work may be partitioned. The available parallelism may

be such that it is impossible to partition work evenly among processors. Since response time is

the time at which all processors have completed work, skewed processor loads reduce speedup.

As an extreme case, the available parallelism may be insufficient even to use all processors. The

second deterrent is that partitioning may itself generate extra work. Thus, the overhead of exploiting

parallelism may reduce, or even offset, the benefit from parallel execution.

1.1.1 Sources of Speedup

We first discuss tactics for reducing total work followed by tactics for partitioning work among

multiple processors.

The total work to compute a query may be reduced by two tactics. First, algebraic laws may

be applied to transform a query into an equivalent query by rearranging, replacing, or eliminating

operators. If the equivalent query requires less work, we may compute it instead of the original

query. Second, each operator (or collection of operators) has several alternative implementations

each of which may be the best depending on the statistical and physical characteristics of the

operands. Work may be reduced by choosing an appropriate combination of methods for each

operator. While there has been substantial work on these tactics, parallel machines raise new

aspects such as communication costs that require a fresh look at the problem.

The work in computing a query may be partitioned using three forms of parallelism: independent,

pipelined and partitioned. Two operators neither of which uses data produced by the other may

run simultaneously on distinct processors. Such inter-operator parallelism is termed independent

parallelism. Since operators produce and consume sets of tuples, the tuples output by a producer can

sometimes be fed to a consumer as they get produced. Such inter-operator concurrency is termed

pipelining and, when the producer and consumer use distinct processors, is termed pipelined

parallelism. A third form of parallelism, termed partitioned parallelism, provides intra-operator

parallelism based on partitioning of data. We explain opportunities for partitioned parallelism for

unary and binary operators below.

CHAPTER 1. INTRODUCTION 3

If T = T0 [T1 [: : : [Tk (where T; Ti are tables), then unary operators such as selection,

projection, duplicate elimination, grouping and aggregation may be pushed through union using

algebraic identities that essentially have the following form:

Op(T) = Op(T0) [Op(T1) [: : :[Op(Tk)

The terms on the right hand side may be computed independently of each other, thus providing

opportunity for parallel execution. The exact transformation is more complex for operators such as

grouping and aggregation.

Binary operators such as equijoins, set intersection, and set subtraction may also exploit paral-

lelism based on data partitioning. Consider the equijoin of tablesT andS. Let T = T0[T1[: : :[Tk
and S = S0 [S1 [: : :[Sk such that matching tuples go to matching partitions. In other words,

if the value of the join column for tuple t 2 T matches the value of the join column for tuple

s 2 S and, t goes to partition Ti then s must go to partition Si. The following identity shows the

opportunity for partitioned parallelism.

T ./ S = (T1 ./ S1) [(T2 ./ S2) [: : :[(Tk ./ Sk) (1.1)

Similar identities apply to other binary operators. We also mention a related form of parallelism

based on exploiting a combination of data replication and partitioning. It may be used for joins

without requiring an equijoin predicate. The join operator may be parallelized by partitioning T

and joining each partition with a replica of S. This strategy is termed fragment and replicate or

partition and replicate. The transformation applies irrespective of the nature of the join predicate;

specifically it also applies to Cartesian products.

T ./ S = (T1 ./ S)[(T2 ./ S)[: : :[(Tk ./ S) (1.2)

1.1.2 Deterrents to Speedup

Speedup is limited by the intrinsic limits on available parallelismand by the overheads of exploiting

parallelism.

Available parallelism is limited by several factors. Inter-operator parallelism is limited by

timing constraints between operators. For example, a hash join works by first building a hash table

on one operand and then probing the hash table for matches using tuples of the second operand.

Since the hash table must be fully built before being probed, there is a precedence constraint in

the computation. As another example, an operator that scans a table may pipe its output to the

operator that builds a hash table. Such concurrency eliminates the need to buffer intermediate

CHAPTER 1. INTRODUCTION 4

results. However, it places a parallel constraint in the computation. In many machine architectures,

data on a specific disk may be accessed only by the processor that controls the disk. Thus data

placement constraints limit both inter and intra-operator parallelism by localizing scan operations

to specific processors. For example, if an Employee table is stored partitioned by department, a

selection query that retrieves employees from a single department has no available parallelism.

Using parallel execution requires starting and initializing processes. These processes may then

communicate substantial amounts of data. These startup and communication overheads increase

total work. The increase is significant enough that careless use of parallelism can result in slowing

down queries rather than speeding them up. The cost of communication is a function of the size

of data communicated. While an individual operator may examine a relatively small portion of

each tuple, all attributes that are used by any subsequent operator need to be communicated. Thus,

communication costs can be an arbitrarily high portion of total cost.

1.2 Model for Parallel Query Optimization

SQL

PARALLELIZATION

 Query
Parallel

E
xt

ra
ct

io
n

P
ar

al
le

lis
m

S
ch

ed
ul

er
Plan

TreeQuery (Schedule)

OPTIMIZATION

(JOQR)

Annotated

 Tree
OperatorJoin Ordering

&
Query Rewrite

JOQR

Figure 1.2: Phases and Sub-phases of Parallel Query Optimization

We will adopt a two-phase approach [Hon92b] to minimizing the response time of queries (Fig-

ure 1.2). The first phase applies the tactic of minimizing total work while the second applies the

tactic of partitioning work among processors. Dividing the problem into two phases reduces the

conceptual complexity of parallel query optimization.

The first phase, JOQR (for Join Ordering and Query Rewrite, the two steps in a conventional

optimizer [HFLP89]), produces an annotated query tree that fixes aspects such as the order of joins

CHAPTER 1. INTRODUCTION 5

and the strategy for computing each join. While conventional query optimization deals with similar

problems we will develop (in Chapter 3) models and algorithms that are cognizant of critical aspects

of parallel execution. Thus rather than finding the best plan for sequential execution, our algorithms

find the best plan while accounting for parallel execution.

The second phase, parallelization, converts the annotated query tree into a parallel plan. We

break the parallelization phase into two steps, parallelism extraction followed by scheduling.

Parallelism extraction produces an operator tree that identifies the atomic units of execution and

their interdependence. It explicates the timing constraints among operators. We shall briefly discuss

the extraction of parallelism in Section 1.2.2.

The scheduling step allocates machine resources to each operator. We shall develop models and

algorithms for several scheduling problems in Chapters 4 and 5.

1.2.1 Annotated Query Trees

A procedural plan for an SQL query is conventionally represented by an annotated query tree.

Such trees encode procedural choices such as the order in which operators are evaluated and the

method for computing each operator. Each tree node represents one (or several) relational operators.

Annotations on the node represent the details of how it is to be executed. For example a join node

may be annotated as being executed by a hash-join, and a base relation may be annotated as

being accessed by an index-scan. The EXPLAIN statement of most SQL systems (such as NonStop

SQL/MP [Tan94]) allows such trees to viewed by a user.

Example 1.1 The following SQL query retrieves the average of the salaries of all employees who

are skilled in “Molding” and earn more than their managers. Figure 1.3(A) shows an annotated

query tree for the query.

select avg(E.salary)

from Emp E, Emp M, EmpSkills S

where E.empNum = S.empNum and E.mgr = M.empNum and

E.Salary > M.Salary and S.skill = “Molding” 2

1.2.2 Operator Trees

An operator tree exposes opportunities for parallelism by identifying the atomic units of execution

and the timing constraints between them. Nodes of an operator tree are termed operators1 and
1The meaning of the term operator varies with the context. It is used to denote operators of the relational algebra,

nodes of annotated query trees as well as nodes of operator trees. A query trees operator may consist of several relational

CHAPTER 1. INTRODUCTION 6

EMPSKILLS S

EMP M

EMP E

simple-hash

sort-merge

scan

index-scan
clustered
indx-scan

AVG

Merge

Probe

IndexScan(S)

Build
ClusteredScan(E)

Scan(M)

Avg

FormRuns

MergeRuns

S.empNum = E.empNum

E.mgr = M.empNum

(A) (B)

Figure 1.3: (A) Annotated Query Tree (B) Corresponding Operator Tree

represent pieces of code that are deemed to be atomic. Edges represent the flow of data as well as

timing constraints between these operators.

An operator takes zero or more input sets of tuples and produces a single output set. Operators

are formed by appropriate factoring of the code that implements the relational operations specified

in an annotated query tree. A criteria in designing operators is to reduce inter-operator timing

constraints to simple forms, i.e. parallel and precedence constraints.

The process of parallelism extraction is used to create operator trees from annotated query trees.

This process may be viewed as applying a “macro-expansion” to each node of an annotated query

tree. Since annotated query trees are constructed out of a fixed set of operators, the macro-expansion

of each operator (of an annotated query tree) may be specified using mechanism such as rules. We

will illustrate a sample expansion in Example 1.2.

Given an edge from operator i to j, a parallel constraint requires i and j to start at the same

time and terminate at the same time. A precedence constraint requires j to start after i terminates.

We define an edge that represents a parallel constraint to be a pipelining edge and an edge that

represents a precedence constraint to be a blocking edge.

Parallel constraints capture pipelined execution. A pipeline between two operators is typically

implemented using a flow control mechanism (such as a table queue [PMC+90]) to ensure that a

fixed amount of memory suffices for the pipeline. Flow-control causes a fast producer to be slowed

down by a slow consumer (or vice-versa) by stretching over a longer time period. Thus, the producer

and consumer operators are constrained to run concurrently. Precedence constraints capture the

operators. An operator tree operator is a piece of code that may not correspond to any relational or query tree operator.

CHAPTER 1. INTRODUCTION 7

behavior of operators that produce their output set only when they terminate. A consumer operator

must wait for the producer to terminate before it may start execution.

Example 1.2 Figure 1.3(B) shows the operator tree for the annotated query tree of Figure 1.3(A).

Thin edges are pipelining edges, thick edges are blocking. A simple hash join is broken into Build

and Probe operators. Since a hash table must be fully built before it can be probed, the edge

from Build to Probe is blocking. A sort-merge join sorts both inputs and then merges the sorted

streams. The merging is implemented by the Merge operator. In this example, we assume the

right input of sort-merge to be presorted. The operator tree shows the sort required for the left input

broken into two operators FormRuns and MergeRuns. Since the merging of runs can start only

after run formation, the edge from FormRuns to MergeRuns is blocking. 2

The operator tree exposes available parallelism. Partitioned parallelism may be used for any

operator. Pipelined parallelism may be used for operators connected by pipelining edges. Two

subtrees with no (transitive) precedence constraints between them may run independently. For ex-

ample, the subtrees rooted at FormRuns andBuildmay run independently; operators FormRuns

and Scan(M) may use pipelined parallelism; any operator may use partitioned parallelism.

1.2.3 Parallel Machine Model

We consider a parallel machine to consist of several identical nodes that communicate over an

interconnect. The cost of a message consists of CPU cost incurred equally by both the sending and

the receiving CPU. This cost is a function of the message size but independent of the identities of the

sending and receiving CPUs (as long as they are distinct). In other words, we consider propagation

delays and network topology to be irrelevant.

Propagation delay is the time delay for a single packet to travel over the interconnect. Query

processing results in communicating large amounts of data over the interconnect. Such communi-

cation is typically achieved by sending a stream of packets – packets continue to be sent without

waiting for already sent packets to reach the receiver. Thus, the propagation delay is independent

of the number of packets and becomes insignificant when the number of packets is large.

Network topology is ignored for three reasons. First, it is unclear whether the behavior of

sophisticated interconnects can be captured by simple topological models. Besides topological

properties, interconnects also have embedded memory and specialized processors. Second, most

architectures expect applications to regard the interconnect as a blackbox that has internal algorithms

for managing messages. Third, there is tremendous variation in the topologies used for interconnects.

CHAPTER 1. INTRODUCTION 8

Topology-dependent algorithms and software will be not be portable. Further, topology changes

even in a specific machine as nodes fail and recover or are added or removed. Correctly and reliably

adapting to such changes is complex. Incorporating topological knowledge in query processing and

optimization will further complicate these tasks.

1.3 Organization of Thesis

In Chapter 2, we start with an experimental study that compares parallel and sequential execution

in NonStop SQL/MP, a commercial parallel database system from Tandem Computers. The ex-

periments establish communication to be a significant overhead in using parallel execution. They

also show that startup costs may be made insignificant by modifying the execution system to reuse

processes rather than creating them afresh.

In Chapter 3, we deal with models and algorithms for the JOQR phase. We pose minimizing

communication as a tree coloring problem that is related to classical Multiway Cut problems. We

then enhance the model to cover aspects such as the dependence of operator costs on physical

properties of operands, the availability of multiple methods for an operator, and re-ordering of

operators. The chapter also provide a clean abstraction of the basic ideas in the commercially

popular System R algorithm.

In Chapter 3, we focuses on the parallelization phase and consider the problem of managing

pipelined parallelism. We start by developing the notion of worthless parallelism and showing

how such parallelism may be eliminated. We then develop a variety of scheduling algorithms that

assign operators to processors. We evaluate the algorithms by measuring their performance ratio

which is the response time of the produced schedule divided by the response time of the optimal

schedule. We establish bounds on the worst-case performance ratio by analytical methods and

measure average-case performance ratios by experiments.

In Chapter 5, we consider the problem of scheduling a pipelined tree using both pipelined and

partitioned parallelism. This is the continuous version of the discrete problem considered in the

last chapter. We develop characterizations of optimal schedules and investigate two classes of

schedules: symmetric and balanced.

Finally, in Chapter 6, we summarize our contributions and discuss some open problems.

CHAPTER 1. INTRODUCTION 9

1.4 Related Work

In this section, we discuss relevant past work in databases. The individual chapters will discuss

related work from theory (Multiprocessor Scheduling [Gra69, Ull75], Multiway Cuts [DJP+92]

and Nonlinear optimization [GMW81, Lue89]) that we will find useful in developing optimization

algorithms.

1.4.1 Query Optimization for Centralized Databases

Early work in query optimization followed two tracks. One was minimization of expression

size [CM77, ASU79]. Expression size was measured by metrics, such as the number of joins in a

query, that are independent of the database state. Another track was the development of heuristics

based on models that considered the cost of an operator to depend on the size of its operands as

well the data structures in which the operands were stored. For example, the cost of a join was

estimated using the sizes of operands as well as whether an index to access an operand was available.

Examples of such heuristics are performing selections and projections as early as possible [Hal76]

and the Wong-Youseffi algorithm [WY76] for decomposing queries.

The System R project at IBM viewed the problem of selecting access paths and ordering join

operators as an optimization problem with the objective of minimizing the total machine resource

to compute a query [SAC+79]. The estimation of machine resources was based on a cost model

in which the cost of an operation depended on the statistical properties of operands (such as the

minimum and maximum values in each column), the availability of indexes and the order in which

tuples could be accessed. It also developed a combination of techniques to search for a good query

plan. One of these techniques, the use of dynamic programming to speed up search, has been

adopted by most commercial optimizers. Another technique, avoiding Cartesian products, is now

recognized to produce bad plans for “star” queries (common in decision-support applications) in

which a single large table is joined to several small tables.

System R also incorporated algebraic transformations that were applied as heuristics while

parsing queries. The Starburst project recognized the growing importance of such heuristic trans-

formations [Day87, Kin81, Kim82, GW87] by considering Query Rewrite to be a phase of opti-

mization [PHH92].

The growing importance of decision-support has led to a rejuvenation of interest in discovering

new transformations and algorithms to exploit the transformations [YL95, CS94, GHQ95, LMS94].

CHAPTER 1. INTRODUCTION 10

1.4.2 Query Optimization for Distributed Databases

While distributed and parallel databases are fundamentally similar, research in distributed query

optimization was done in the early 1980s, a time at which communication over a network was

prohibitively expensive and computer equipment was not cheap enough to be thrown at parallel

processing.

The assumption of communication as the primary bottleneck led to the development of query

execution techniques, notably semijoins [BC81], to reduce communication. Techniques for ex-

ploiting parallelism were largely ignored. For example, Apers et al. [AHY83] discuss independent

parallelism but do not discuss either pipelined or partitioned parallelism. Thus, for historical rea-

sons, the notion of distributed execution differs from parallel execution. Since the space of possible

executions for a query is different, the optimization problems are different.

While Apers et al. considered minimizing response time as an optimization objective, most

work, such as in SDD-1 [BGW+81] and R* [LMH+85, ML86], focused on minimizing resource

consumption. SDD-1 assumed communication as the sole cost while R* considered local processing

costs as well.

Techniques for distributing data using horizontal and vertical partitioning schemes [Ull89,

CNW83, OV91] were developed for distributed data that also find a use in exploiting parallelism.

1.4.3 Query Optimization for Parallel Databases

Several research projects such as Bubba [BCC+90], Gamma [DGS+90], DBS3 [ZZBS93], and

Volcano [Gra90] devised techniques for placement of base tables and explored a variety of parallel

execution techniques. This has yielded a well understood notion of parallel execution.

Considerable research has also been done on measuring the parallelism available in different

classes of shapes for join trees. Schneider [Sch90] identified right-deep trees (with hash-joins as the

join method) as providing considerable parallelism. Chen et al. [CLYY92] investigated segmented

right-deep trees and Ziane et al. [ZZBS93] investigated Zig-Zag trees. Such research focuses on

evaluating a class of shapes rather than optimizing a single query. It may be used to subset the space

of executions over which optimization should be performed.

Hong and Stonebraker [HS91] proposed the two-phase approach to parallel query optimization.

They used a conventional query optimizer as the first phase. For parallelization, they considered

exploiting partitioned and independent parallelism but not pipelined parallelism. While they ig-

nored communication costs, we note that Hong [Hon92b] conjectured the XPRS approach to be

CHAPTER 1. INTRODUCTION 11

inapplicable to architectures such as shared-nothing that have significant communication costs.

Hong [Hon92a] develops a parallelization algorithm to maximize machine utilization under

restrictive assumptions. The parallel machine is assumed to consist of a single disk (RAID) and

multiple processors and each operator is assumed to have CPU and IO requirements. Assuming that

two operators, one CPU-bound and the other IO-bound to always be available for simultaneous

execution, the algorithm computes the degree of partitioned parallelism for each operator so as to

fully utilize the disk and all CPUs.

Many other efforts in parallel query optimization [SE93, LST91, SYT93, CLYY92, HLY93,

ZZBS93] develop heuristics assuming parallel execution to have no extra cost.

Chapter 2

Price of Parallelism

This chapter is a case study of NonStop SQL/MP, a commercial parallel DBMS from Tandem

Computers1. We report experimental measurements of the overheads in parallel execution as

compared to sequential execution2. We also document the use of parallel execution techniques in a

commercial system.

Our experiments investigate two overheads of using parallel execution: startup and communi-

cation. Startup is the overhead of obtaining and initializing the set of processes used to execute

the query. Communication is the overhead of communicating data among these processes while

executing the query. The findings from the experiments may be summarized as:

� Startup costs are negligible if processes can be reused rather than created afresh.

� Communication cost consists of the CPU cost of sending and receiving messages.

� Communication costs can exceed the cost of operators such as scanning, joining or grouping

These findings lead to the important conclusion that

Query optimization should be concerned with communication costs but not with startup costs.

1We thank Tandem Computers for providing access to NonStop SQL/MP and a parallel machine. Parts of this chapter
have also been published as the paper S. Englert, R. Glasstone and W. Hasan: Parallelism and its Price: A Case Study
of NonStop SQL/MP, Sigmod Record, Dec 1995

2We used the following guidelines to prevent commercial misuse of our experimental results: (a) All execution times
are scaled by a fixed but unspecified factor. (b) All query executions were created by bypassing the NonStop SQL
optimizer and no inference should be drawn about its behavior.

12

CHAPTER 2. PRICE OF PARALLELISM 13

2.1 Introduction

Startup overhead is incurred as a prelude to real work. It consists of obtaining a set of processes

and passing to each a description of its role in executing the query. The description consists of the

portion of the query plan the process will execute and the identities of the other processes it will

communicate with.

Communication overhead is the cost of transferring data between processes. Our experiments

consider three categories of communication between processes. Local communication consists of a

producer process sending data to a consumer process on the same processor. Remote communication

is the case when the producer and consumer are on distinct processors. Repartitioned communication

consists of a set of producers sending data to a set of consumers. Each tuple is routed based on the

value of some attribute.

Communication requires data to be moved from one physical location to another. Local

communication is implemented as a memory to memory copy across address spaces. Remote

communication divides data into packets that are transmitted across the interconnect. The receiving

CPU has to process interrupts generated by packet arrival as well as to reassemble the data. In

repartitioned communication, a producer has to perform some additional computation to determine

the destination of each tuple.

Our experiments compare the cost of communication with the cost of operators such as scans,

joins and groupings. We observe that while the cost of communicating data is proportional to the

number of bytes transmitted, an operator may not even look at all its input data – it only needs

to look at attributes that are relevant to it and may ignore the attributes that are relevant only to

subsequent operators.

We first describe the architecture of Tandem systems in Section 2.2. In Section 2.3, we

describe how opportunities for parallelism are exploited by NonStop SQL/MP. We then describe

our experimental results on startup costs in Section 2.4. Section 2.5 describes our results on the cost

of communication. These costs are put in perspective by comparing them with costs of operators

such as scans, joins and groupings. Section 2.6 shows interesting examples of parallel and sequential

execution and Section 2.7 summarizes our conclusions.

CHAPTER 2. PRICE OF PARALLELISM 14

Processor
+ local

memory
Processor

+ local
memory

Channel

Inter-Processor Bus

(A) (B)

Controller

Figure 2.1: (a) Tandem Architecture (b) Abstraction as Shared-Nothing

2.2 Tandem Architecture: An Overview

2.2.1 Parallel and Fault-tolerant Hardware

Tandem systems are fault-tolerant, parallel machines. For the purpose of query processing, a Tandem

system may be viewed as a classical shared-nothing system (see Figure 2.1). Each processor has

local memory and exclusive control over some subset of the disks.

Processors communicate over an interconnection network. Up to 16 processors may be con-

nected to an interprocessor bus to form a node. A variety of technologies and topologies are used

to interconnect multiple nodes.

For fault-tolerance, each logical disk consists of a mirrored pair of physical disks. Disk

controllers ensure that a write request is executed on both disks. A read request is directed to the

disk that can service it faster; for example if both disks are idle, the request is directed to the one

with its read head closer to the data.

We will not discuss further fault-tolerance features of the Tandem architecture since they are

largely orthogonal to query processing. The interested reader is referred to [BBT88] for details.

2.2.2 Message Based Software

Messages implement interprocess communication as well as disk IO. Access to a disk is encapsulated

by an associated set of disk processes that run on the processor that controls the disk. They implement

the basic facilities for reading, writing and locking disk-resident data. An IO request is made by

sending a message to a disk process. Data read by a read request is also sent back to the requester

as a message. Use of a set of disk processes allows several requests to be processed concurrently.

Disk processes are system processes and, for the purpose of query processing, may be regarded as

being permanently in operation.

A single file may be partitioned across multiple disks by ranges of key values. This allows tables

CHAPTER 2. PRICE OF PARALLELISM 15

and indexes to be horizontally partitioned using range partitioning. The file system is cognizant of

partitioned files and can route messages based on the key value of a requested record.

2.2.3 Performance Characteristics

The interconnect used for communication between processors is engineered to provide high band-

width and performance. Experiments [Tan] have shown the message throughput between two

processors to be limited by CPU speed rather than the speed of the interprocessor bus.

The programming interface for messages provides location transparency. However, the im-

plementation mechanisms for inter and intraprocessor messages are different. An intraprocessor

message is transmitted by a memory-to-memory copy. An interprocessor message is broken into

packets and sent over the interconnect. Packet arrival generates interrupts at the receiving CPU. The

packets are then assembled and written into the memory of the receiving process. Measurements

show an intraprocessor message to be significantly cheaper than an interprocessor message.

A mirrored disk consists of two physical disks with identical data layout. As remarked earlier, a

write request is executed on both physical disks while a read is directed to the disk that can process

it faster. A mirrored pair processes read requests faster than a single physical disk while writes run

at about the same speed.

2.3 Parallelism in NonStop SQL/MP

NonStop SQL/MP uses intra-operator parallelism for scans, selection, projection, joins and grouping

and aggregation. Intra-operation parallelism uses replication as well as partitioning. Interoperator

parallelism is not used. The system does not, for example, use pipelined parallelism, in which

disjoint sets of processors are used for the producer and consumer. It does, however, use pipelined

execution whenever possible, in which producers and consumers run concurrently.

In Section 2.3.1, we discuss the use of intra-operator parallelism. Section 2.3.2 discusses how

operators are mapped to a processes and processes to processors.

2.3.1 Use of Intra-operator Parallelism

Intra-operator parallelism is based on data partitioning and replication. Recall that base tables and

indexes may be stored horizontally partitioned over several disks based on key ranges. Scans and

groupings are parallelized using the existing data partitioning.

CHAPTER 2. PRICE OF PARALLELISM 16

Joins may repartition or replicate data in addition to using the existing data partitioning. Such

repartitioning or replication occurs on the fly while processing a query and does not affect any stored

data. Data repartitioning is based on hashing and equally distributes data across all CPUs.

Stored data is scanned by disk processes that implement selection, projection and some kinds

of groupings and aggregation. Since each disk has its exclusive disk processes, the architecture

naturally supports parallel scans.

Grouping is implemented in two ways, one based on sorting and the other on hashing. Sort

grouping first sorts the data on the grouping columns and then computes the grouped aggregates by

traversing the tuples in order. Hash grouping forms groups by building a hash table based on the

grouping columns and then computes aggregates for each group.

The strategy for parallelizing a grouping is to use the existing data partitioning. A separate

grouping is done for each partition followed by a combination of the results. Data is not repartitioned

to change the degree of parallelism or the partitioning attribute.

A join of two tables (say T and S) may be parallelized in the following two ways corresponding

to Equations 1.2 and 1.1.

Partition Both: Both tables may be partitioned only when an equijoin predicate is available. If

both tables are similarly partitioned on the join column, the “matching” partitions may be joined.

Otherwise, one or both tables may be repartitioned.

Partition and Replicate: Another parallelization strategy is to partitionS and join each partition

of S with all of table T . This may be achieved in two ways. The first is to replicate T on all nodes

that contain a partition of S. The second is to repartition S (for example, to increase degree of

parallelism) and replicate T on all nodes with a (new) partition of S.

Three methods are used for joins: nested-loops, sort-merge and hybrid-hash. Table 2.1 summa-

rizes the join methods used for each parallelization strategy.

When both tables happen to be partitioned similarly by the join column, sort-merge join is the

most efficient join method. Since the partitioning columns are always identical to the sequencing

columns in NonStop SQL, the sorting step of sort-merge is skipped and the matching partitions are

simply merged.

In the strategy of repartitioning both tables, both are distributed across all CPUs using a hash

function on the joining columns. In this way, corresponding data from both tables or composites

is located such that it can be joined locally in each CPU using the hybrid hash-join method. The

strategy of repartitioning only one of the tables is not considered.

The partition-and-replicate strategy considers both nested-loops and hybrid-hash. The inner

CHAPTER 2. PRICE OF PARALLELISM 17

Partition Both Partition and Replicate
Use Existing Repartition Existing Partitioning for one Repartition one
Partitioning both replicate other replicate other

hybrid-hash � p p p
nested-loops � � p �
Sort-merge

p � � �
KEY:

p
indicates use of strategy for join method, � indicates not used.

Table 2.1: Parallelization Strategies and Join Methods

table is replicated and the outer table is partitioned. If the existing partitioning of the outer is

used, then both nested-loops and hybrid-hash are considered. If the outer is repartitioned, then only

hybrid-hash is considered.

Nested-loops join is implemented by sending a message to lookup the inner table for each tuple

of the outer (thus incurring random IO in accessing the inner). The inner is replicated in the sense

that if two tuples in different partitions of the outer have the same value of the join attribute, then

the matching tuples of the inner will get sent to both partitions. Thus, only the relevant portion of

the inner table is accessed and replication of tuples happens only if needed.

When used with partition-and-replicate parallelization, hybrid-hash join replicates the inner

table. Either the existing partitioning of the outer is used or the outer is repartitioned across all

CPUs. A hash table is built on the inner at each participating CPU and subsequently probed by tuples

from the inner. When used with partition-both parallelization, both tables are repartitioned across

all CPUs. The hybrid-hash join algorithm has adaptive aspects such as adjusting to the amount of

available memory. The interested reader is referred to Zeller and Gray [ZG90] for details.

Nested-loops accesses only the relevant tuples of the inner table. Since hybrid-hash accesses the

entire inner, it avoids the random IO incurred by nested-loops but also accesses tuples of the inner

that may not join. Nested-loops is the only applicable method when there is no equijoin predicate.

2.3.2 Process Structure

A single SQL query is executed by use of multiple processes. Three kinds of processes are used.

First, there is the SQL Executor process, which consists of system library routines bound into

the user application. Second, slave processes called ESPs (for Executor Server Process) may be

spawned by the Executor. Third, there are disk processes which are system processes that are

CHAPTER 2. PRICE OF PARALLELISM 18

permanently in operation.

Scans are implemented by disk processes and the remaining work is divided between ESPs and

the Executor. The query result is produced by the Executor. The mapping of operators to processes

and allocation of processes to processors may be understood with respect to query trees in which

interior nodes represent operations such as joins and groupings and leaves represent scans. The

basic idea in forming processes is to have an operator share processes with the prior (child) operator

as far as possible. New processes are created only when such combination is impossible due to a

data repartitioning or due to the fact that the prior operator is a scan. In the case of a join there

are two children. Since once of them is always a base table or index, the join is attempted to be

combined with the operator that produces the outer table.

Scans (the leaves of a query tree) are always executed by disk processes. Thus scans are

parallelized based on the partitioning of the data being read; there is one process for each disk that

contains a partition of the data. While ESPs are capable of repartitioning their output, disk processes

are not. Thus if the result of a scan is to be repartitioned, one ESP is created per existing partition

of the data for the sole purpose of repartitioning data.

A grouping is always parallelized based on the existing partitioning of the data. It can be

combined into the same process as the prior operator, unless the prior operator is a scan and the

grouping is such that a disk process cannot implement it. Disk processes can implement groupings

in which the grouping columns are a prefix of the key columns.

The process structure for joins is more complex since a join has two operands. One of the

operands, the inner, is always a base table. For nested-loops and merge-join, one ESP is used per

partition of the outer table. If possible, this ESP is the same ESP as for the operator that produces

the outer table. The inner is accessed by sending messages to disk processes. In the case of

nested-loops, one message is sent per tuple of the outer so as to retrieve only the relevant tuples.

We only describe the process structure of hybrid-hash for the case when both operands are

repartitioned. One ESP is used per existing partition of the inner to repartition data. If the outer is

a base table, one new ESP is used per partition of the outer to repartition data. On the other hand,

if the outer is not a base table, then the ESP that produces it also performs the repartitioning. One

ESP is used at each CPU to receive the repartitioned data and locally compute a hybrid-hash join.

CHAPTER 2. PRICE OF PARALLELISM 19

2.4 Startup Costs

Parallel execution requires starting up a set of processes and communicating data among them. This

section measures startup cost and the next section focuses on communication.

When a query is executed in parallel, the Executor process starts up all necessary ESP processes

and sends to each the portion of the plan it needs to execute and the identities of the other processes

it needs to communicate with. The ESP processes are created sequentially; each process is created

and given its plan before the next process is created. ESPs are not terminated for 5 minutes after the

query completes. In case another query is executed within five minutes, ESP processes are reused.

We measured the cost of starting up processes by running a query that required 44 ESP processes.

Figure 2.2 plots the time at which successive processes got started and had received their portion

of the plan. The dotted line plots process startup when new processes had to be created. The solid

line plots the case when processes were reused.

We conclude that communicating the relevant portion of the plan to each ESP has negligible

cost. Startup cost is negligible when processes can be reused. Startup incurs an overhead of 0.5 sec

per process that needs to be created. A possible enhancement would be to start the ESP processes

in parallel instead of sequentially.

10 20 30 40
Process#0

2.5

5

7.5

10

12.5

15

17.5

20

Elapsed Time (seconds)

Figure 2.2: Process Startup: With (solid) and without (dotted) process reuse.

2.5 Costs of Operators and Communication

In this section we measure the cost of communication and put these costs in perspective by a

comparison with operators such as scans, joins and grouping.

We describe measurements of the cost of local, remote and repartitioned communication. Local

CHAPTER 2. PRICE OF PARALLELISM 20

Local Remote Repartitioned

Figure 2.3: Local, Remote and Repartitioned Communication

communication consists of a producer process sending data to a consumer process on the same

processor. Remote communication is the case when the producer and consumer are on distinct

processors. In repartitioned communication, a set of producers send data to a set of producers. The

cost of repartitioning varies with the pattern of communication used. We decided to focus on the

case where a single producer partitions its output equally among a set of consumers. This simple

pattern captures the overhead of a producer sending data to multiple consumers i.e. the additional

overhead of determining the the destination of each tuple. The producer applies a hash function

to an attribute value to determine the CPU to which the tuple is to be sent. Figure 2.3 illustrates

the forms of communication covered by our experiments. These cases were chosen due to their

simplicity. The costs of other communication patterns may be extrapolated.

Table 2.2 summarizes the results of measurements that are described later in this section. It

turned out that the cpu time of all our queries was linear in the amount of data accessed. Even

operations that involved sorting behaved linearly in the range covered by our experiments. Thus

costs are stated in units of msec/Ktuple and msec/Mbyte. The two units are comparable, since 1K

tuples occupy 1 Mbyte for the table under consideration. Join costs were measured by joining two

tables, each with k tuples, to produce k output tuples. Join costs were linear in k and are therefore

reported in msec/Ktuple.

Our approach was to devise experiments such that the cost of an operation could be determined

as the difference of two executions. For instance the cost of local communication was determined

as the difference of executing the same query using two plans that only differed in whether one or

two processes were used.

Section 2.5.1 provides an overview of our experimental setup. Sections 2.5.3 and 2.5.4 describe

experiments that measure the cost of communication and Sections 2.5.2, 2.5.5 and 2.5.6 address the

CHAPTER 2. PRICE OF PARALLELISM 21

Transfer Operation Cost (msec/Mbyte) Computational Operation Cost (msec/Ktuple)

Scan 180 Aggregation 65
Local Comm. 390 Sort-Merge Join 370
Remote Comm. 745 Hash Join 40
Repartitioning (4 CPUs) 1230 Hash Grouping 110

Sort Grouping 765

Table 2.2: CPU Costs of Operations (1K tuples occupy 1 Mbyte)

costs of operators.

2.5.1 Experimental Setup

We ran all experiments reported in this Section on a 4 processor Himalaya K1000 System. Each

processor was a MIPS R3000 processor with 64MB of main memory and several 2 GB disks. The

size of the cache associated with each disk was reduced to 300 Kbytes to reduce the effects of

caching on our experiments.

The tables Single, Single2 and Quad used in our experiments had identical schema and

content. Quad was equally partitioned over four disks while Single and Single2 were stored

on single disks.

Each of these tables had four columns: unique, twenty, hundred and str. The first three

were integer columns and the fourth a 988 byte string. The unique column was the key and each

table was stored sorted by this column. The column twenty was randomly chosen from 1 : : :20,

hundred randomly chosen from 1 : : :100, and str was a 988 byte string with an identical value

in each row. Each tuple occupied 1000 bytes. Each table had 50,000 tuples resulting in a total size

of 50 Mbytes.

We forced query plans by the use of optimizer hooks that allowed us to specify plan elements

such as the sequence and method for each join; whether parallel execution should be used or not;

and whether a join should repartition data or not, whether predicates should be combined with a

disk process or not and so on. The EXPLAIN command in NonStop SQL allowed us to view plans

to confirm the details of the execution.

We collected performance data by using MEASURE, a low overhead tool. MEASURE collects

statistics about objects of interest such as processors, disks, processes and files while a program is in

execution. The collected statistics can later be perused using a query tool. MEASURE also measures

the cost of processing interrupts that are generated by message arrival and IO completions – these

CHAPTER 2. PRICE OF PARALLELISM 22

costs are not assigned to any process.

Each data point reported in this paper is an average over three executions. Typically, the three

executions differed by less than 1%. All plotted curves were obtained using a least squares fit using

the Fit function in Mathematica.

2.5.2 Costs of Scans, Predicates and Aggregation

We used the following query to scan Single.

Query1: select unique from Single

where twenty > 50000 and unique < k

The predicatetwenty >50000 is false for all tuples. Thus no tuples are returned and the overhead

of communicating the result of the scan is eliminated. Since the table was stored sorted by unique,

the predicate unique < k allowed us to vary the portion of the table scanned.

The query plan used a single disk process and combined predicate evaluation with the scan. The

cost of the plan consists of a scan and two predicate evaluations, one of which is a key predicate.

The dotted line in Figure 2.4 plots the cost as k was varied from 5000 to 50000 in increments of

5000. Denoting cpu cost by t and the number of Mbytes scanned by b, a least squares fit yields the

equation t = 0:31 + 0:185b. Thus a scan with two predicates costs 185 msec/Mbyte.

We determined the cost of predicate checking by additional measurements. To measure the cost

of the key predicate, we tried two queries: one with the predicate unique < 100,000 and the

other with no key predicate. Both queries scanned the entire table, since all key values were less

than 100,000, and ran in identical time.

To measure the cost of the nonkey predicate, we ran a query with two nonkey predicates. The

“where clause” of Query1 was changed to (twenty >50000 or hundred >50000) and

unique1 < k. The solid lines in Figure 2.4 plots the cost of a query. Curve fitting yields

t = 0:31 + 0:18b i.e. the cost increases by 5 msec/Mbyte due to the additional nonkey predicate.

Thus, we may expect a scan with no predicates to cost 180 msec/Mbyte.

The dashed line in Figure 2.4 shows the cost of applying an aggregation in the disk process

using the following query.

Query2: select max(str) from Single

where unique < k

CHAPTER 2. PRICE OF PARALLELISM 23

10 20 30 40 50
Mbytes0

2

4

6

8

10

12

14

CPU Time (seconds)

Figure 2.4: Scan with 1 predicate(dotted), 2 predicates(solid), aggregation(dashed)

A least square fit yielded the equation t = 0:31+0:245b. Subtracting scan cost, we infer aggregation

to cost (245-180) msec/Mbyte which is 65 msec/Mbyte. Recall that str is a 988 byte string with

an identical value in each row. Thus the aggregation uses 988 bytes of each 1000 byte tuple.

10 20 30 40 50
Mbytes0

2

4

6

8

10

12

14

CPU Time (seconds)

(a)

(b), (c)

10 20 30 40 50
Mbytes0

10

20

30

40

50

CPU Time (seconds)

(a)

(b)

(c)

(A) 98.8% of scanned data communicated (B) 4% of scanned data communicated

Figure 2.5: Scan and Aggregation(dashed) with Local(solid) and Remote(dotted) Comm.

2.5.3 Costs of Local and Remote Communication

We measured the cost of local and remote communication by use of optimizer hooks that permitted

the creation of plans in which the aggregation in Query2 was moved to a separate process (the

Executor) and the process could either be placed on the same CPU as the disk process or on a

different CPU. Figure 2.6 shows the process structure for the three executions.

CHAPTER 2. PRICE OF PARALLELISM 24

When aggregation is in a separate process from scan, 988 bytes of each 1000 byte tuple have to

be communicated across processes. Figure 2.5(a) plots the data points for scanning and aggregation

in the disk process and also with the remote and local communication. The curves are marked (a),

(b) and (c) to show the correspondence with three process organizations of Figure 2.6. Least squares

curve fitting shows slopes of 0.635 and 0.99 for the local and remote curves. Since scanning and

aggregation without communication has a slope of 0.245, we infer that local communication costs

390 msec/Mbyte and remote communication costs 745 msec/Mbyte.

We observe that the relative cost of communication is a function of the amount of data com-

municated. Figure 2.5(b) shows the case when Query2 is modified to aggregate on twenty. In

this case only 4 bytes of each 1000 byte tuple have to be communicated across processes and the

relative cost of communication is negligible.

2.5.4 Cost of Repartitioned Communication

DP DPscan
scan

SQL Executor

DP
scan

SQL Executor

+aggregation

aggregationaggregation

(a) (b) (c)

CPU 0 CPU 0 CPU 0 CPU 1

Single Single Single

Figure 2.6: Process structure: (a) No communication (b) Local (c) Remote

Repartitioning dynamically distributes data across all CPUs using a hash function. In general this

involves a combination of local and remote communication. Since tuples are routed based on a

hash function applied to some column, additional cost of deciding the destination must be incurred

for each tuple.

Given a system with 4 CPUs, we chose to focus on the case where a single producer equally

repartitions data among four consumers. Since one consumer was placed on the same CPU as

the producer, 1/4’th of the tuples may be expected to be transported using local messages and the

remaining 3/4’th by remote messages. The cost of repartitioning will vary depending on the number

of CPUs and the arrangement of producers and consumers.

CHAPTER 2. PRICE OF PARALLELISM 25

We devised the following query to create two executions that only differ in whether or not data is

repartitioned. Small is a single column table with twenty values 0..19 stored in twenty tuples. The

result of joining Single and Small is identical to Single and is grouped into twenty groups.

Query3: select max(str) from Single w, Small s

where w.twenty = s.unique and w.unique < k

group by w.twenty

We forced the two executions shown in Figure 2.7. Both use a simple hash join in which a hash

table is built on Small and probed by Single. The hash join is followed by a hash grouping.

The first execution executes the join and grouping in the Executor process on a single CPU. The

second execution build a hash table on Small and replicates it on four CPUs. Then Single is

repartitioned and the join and grouping computed separately for each partition. Finally, the Executor

process merges the results of the separate groupings.

While Figure 2.7(b) shows several extra communication arrows, only the repartitioning arrows

are significant. Between 5 and 50 Mbytes of data is repartitioned. In comparison, the hash table

on Small occupies about 0.00008 Mbytes, so replicating it has negligible cost. The result of each

grouping consists of 20 groups that occupy about 0.02 Mbytes, which is comparatively negligible.

DP2 DP2

SQL Executor
Repartition

+ Join
Grouping

+ Join
Grouping

+ Join
Grouping

+ Join
Grouping

+Join
Grouping

(A) (B)

DP2 DP2

Build

Single Single Small

CPU0 CPU1 CPU2 CPU3

CPU0

Small

SQL Executor

Figure 2.7: Local and Repartitioned Execution

Figure 2.8 plots the costs of the two executions as as k was varied from 5000 to 50000 in

increments of 5000. Least squares curve fitting shows the slopes of the lines to be 0.785 and

2.015. Since the difference between the two executions is the cost of repartitioning, we conclude

repartitioning to cost (2:015� 0:785) sec/Mbyte or 1230 msec/Mbyte. We remind the reader that

our measurements of repartitioning cost are for four CPUs.

CHAPTER 2. PRICE OF PARALLELISM 26

10 20 30 40 50
Mbytes0

20

40

60

80

100

CPU Time (seconds)

Figure 2.8: Local(dotted) and Repartitioned(solid) Comm.

2.5.5 Costs of Join Operators

We measured the cost of simple-hash, sort-merge and nested joins by joining Single with an

identical copy called Single2. We executed the following query using different join methods.

The query was modified for sort-merge join to require sorting on one operand by changing the join

predicate to w1.unique = w2.hundred. Figure 2.9 plots the execution costs as k was varied

from 5000 to 50000 in increments of 5000.

Query4: Select max(w1.str) from Single w1, Single2 w2

where w1.unique = w2.unique and

w1.unique < k and w2.unique < k

Surprisingly all plots in Figure 2.9 are linear in k even though we are joining two operands each

with k tuples, and producing a result consisting of k tuples.

The nested join accesses the inner table (Single2) for each tuple of the outer (Single). Thus

the cost is linear in the size of the outer table. Each access to the inner table is a random IO which

explains the high cost of the nested join.

Hash-join builds a hash table on the qualifying tuples of Single2 and probes it using tuples

from Single. The one possible source of nonlinearity is when k probes are performed on a hash

table that contains k entries. We conclude that cost of a probe is independent of hash table size.

For sort-merge join, only one operand (Single2) needed to be sorted since the other was

pre-sorted on the join column. It may be surprising that the cost of sorting does not introduce any

nonlinear component into the cost. The explanation is that the system chose to sort by inserting

tuples into a sequenced file. The cost of insertion is independent of file size and the cost of

CHAPTER 2. PRICE OF PARALLELISM 27

10 20 30 40 50
k0

20

40

60

80

100

CPU Time (seconds)

Figure 2.9: Query using Simple-hash (dashed), Sort-merge (solid) and Nested Join (dotted)

comparisons is not a significant cost in locating the correct page.

Least squares curve fitting shows cost of the query to be 1835, 855 and 1185 msec/Mbyte for

nested, hash and sort-merge join respectively. The “per Mbyte” should be interpreted as “per Mbyte

of each operand”.

We may separate the cost of joining from the cost of scans, communication, and aggregation by

using our prior measurements.

For hash-join, we incur a scan for each operand. However, local communication is significant

only for Single. After projection, Single2 is reduced to 4/1000’th of its original size while

almost all (992/1000’th) of Single is communicated. Thus the cost of the join may be calculated

by subtracting the cost of two scans, the cost of locally communicating Single, and the cost of

aggregation. This gives us 855� (2 � 180 + 390 + 65) = 105 msec/Mbyte.

Similarly, the cost of a sort-merge join may be calculated to be 370 msec/Mbyte. The cost of

a nested-loops join cannot be broken down in this manner since it incurs a random IO per tuple of

Single.

2.5.6 Costs of Grouping Operators

NonStop SQL uses two algorithms for grouping. Hash grouping forms groups by hashing tuples

into a hash table based on the value of the grouping column. Sort grouping forms groups by sorting

the table on the grouping column. The following query reads k records and forms twenty groups.

Query5: select max(str) from Single

where unique < k

CHAPTER 2. PRICE OF PARALLELISM 28

group by twenty;

10 20 30 40 50
Mbytes0

10

20

30

40

50

60

70

CPU Time (seconds)

Figure 2.10: Hash (solid) and Sort (dotted) Grouping Costs

Figure 2.10 plots the costs of hash and sort grouping as a function of k. Least squares curve

fitting shows the query to cost 1245 msec/Mbyte and 1400 msec/Mbyte respectively for hash and

sort grouping. Since the query incurs a scan, local communication, and aggregation, we conclude

that hash and sort grouping to cost 110 msec/Mbyte and 765 msec/Mbyte respectively.

2.6 Parallel Versus Sequential Execution

The distinction between parallel and sequential execution in Tandem systems is the use of multiple

versus single SQL Executor processes to execute a query. Note that sequential execution may use

multiple disk processes if it accesses data from multiple disks.

Parallel and sequential execution may be compared based on two metrics: work and response

time. The common intuition is that parallel execution reduces response time at the expense of

increased work. The basis for this intuition is that parallel execution will cost at least much as

sequential execution and will run at least as fast as sequential execution. While true in some

cases, this is not true in general. The relative costs of parallel and sequential execution depend on

communication costs.

We present two examples in this section. The first shows that parallel execution can reduce

both work and response time by saving communication costs. The second shows that parallel

execution can result in increased response time when the communication costs offset the benefit

from parallel execution. We are not aware of any instances of the remaining logical possibility

CHAPTER 2. PRICE OF PARALLELISM 29

of parallel execution offering reduced work but increased response time compared to sequential

execution.

To sum up, in addition to the intuitive case in which parallel execution runs faster but consumes

more resources, it is possible that (a) parallel execution consumes less resources as well as runs faster

and (b) parallel execution consumes more resources as well as runs slower. The main determinant

is the cost of communication.

2.6.1 Parallelism can Reduce Work

The following query performs a grouping on a table that is equally partitioned across 4 disks, each

attached to a distinct CPU.

Query6: select max(str)

from Quad

group by twenty;

DP2

SQL Executor

SQL Executor

ESPs

(A) (B)

DP2 DP2 DP2

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1 CPU 2 CPU 3

Quad

ESP ESP ESP
Grouping

ESP }

DP2 DP2 DP2 DP2

Quad QuadQuadQuadQuadQuad Quad

Figure 2.11: Process Structure: Sequential and Parallel Execution

Figure 2.11 shows the process structure for sequential and parallel execution. When sequential

execution is used, SQL runs as a single process (Executor). This process must incur remote

communication to read the three partitions that reside on remote disks. When parallel execution is

used, the grouping is partitioned. Each partition of Quad is grouped separately by an ESP process.

The result of each grouping is communicated to the Executor to produce the combined grouping.

The local grouping at each CPU substantially reduces the amount of data to be communicated

resulting in reduced work. Response time is reduced both because of work reduction as well as

better load balancing.

CHAPTER 2. PRICE OF PARALLELISM 30

When sequential execution was used the query used 49 sec CPU and had a response time of 78

sec. With parallel execution, the total CPU time fell to 36.5 sec and the response time fell to 26.5

sec.

2.6.2 Parallelism Can Increase Response Time

Consider the query used in Section 2.5.4 with the sequential and parallel executions shown in

Figure 2.7. The parallel execution incurs greater work due to communication costs. Its response

time is also increased since the parallelism available in the plan does not suffice to offset the

increased work.

Consider the data point for k = 50000. When sequential execution was used the query used 39

sec CPU and had a response time of 66.5 sec. With parallel execution, the total CPU time rose to

102 sec and the response time rose to 109.5 sec.

Surprisingly, the response time increases to 109.5 sec even though 102/4 is less than 39. The

explanation lies in the fact that there are sequential portions of the query, and the benefit from

parallelism is offset by communication costs for the parallel portions. Scanning and repartitioning

Single is inherently sequential. These operations can only be performed on CPU 0. Parallel

execution only benefits the join and grouping. That speedup is not sufficient to offset the increase

in work due to repartitioning. No parallelism is available in scanning Small and building and

replicating a hash table on it. However, these operations had negligible cost compared to the rest of

the query.

It should be noted that the inherent sequentiality illustrated in this example is not pathological.

Selection predicates can localize a scan to a single disk (or a subset of the disks) even when a table

is partitioned across several disks.

2.7 Summary of Findings

The important conclusion from our experiments is that a query optimizer should be concerned with

communication costs but not with startup costs. This is based on the following findings:

� Startup costs are negligible when processes can be reused rather than created afresh.

� Communication cost consists of the CPU cost of sending and receiving messages.

� Communication costs can exceed the cost of operations such as scans, joins or grouping.

CHAPTER 2. PRICE OF PARALLELISM 31

Our experiments show that the cost of parallel execution can differ substantially from that of

sequential execution. The cost may be more or even less depending on what data needs to be

communicated.

It is worth observing that the cost of communication relative to the cost of operators is a strong

function of the quality of the implementation. For example if operators are poorly implemented,

communication costs will be relatively low. Further, such a poor implementation may actually lead

to the system exhibiting good scalability! This underlines the fact that scalability must be tested

with respect to the best implementation on a uniprocessor.

An interesting question is how communication can be avoided or its cost reduced. Architec-

tural techniques such as DMA are likely to help to some extent. However, most of the cost of

communications tends to be incurred at software levels that are higher than DMA interfaces. Use

of shared-memory is of limited value since the cost of communication through a shared piece of

memory rises as the number of processors increases.

Chapter 3

JOQR Optimizations

In this chapter1 we develop models and algorithms for the JOQR phase that minimize the total

cost of computing a query. The models take a “macro” view of query execution. They focus on

exploiting physical properties such as the partitioning of data across nodes; determination of the best

combination of methods for computing operators; and fixing the order of joins. “Micro” decisions

about allocation of resources are the responsibility of the subsequent parallelization phase.

We start with a simple model that captures the communication incurred when data needs to be

repartitioned across processors. Minimizing communication is posed as a tree coloring problem

(related to classical Multiway Cut problems [DJP+92]) in which colors represent data partitioning.

We then enhance the model in two ways. Firstly, we generalize colors to represent any collection

of physical properties (such as sort-order, indexes) that can be exploited in computing an operator.

Secondly, we permit each operator to have several alternate methods by which it can be computed.

This allows us to captures effects such as the fact that a Grouping may be computed very efficiently

if the data is partitioned as well as sorted on the grouping attribute.

The final enhancement of the model is to allow joins to be reordered. At the end of the chapter,

we describe several ways in which the algorithms may be used.

It is appropriate to contrast the models and algorithms in this chapter with work in conventional

query optimization [SAC+79]. Besides incorporating communication costs, our contribution is to

show that choosing methods and physical properties can be separated from join ordering. While join

ordering requires exponential time, methods and physical properties can be chosen in polynomial

1Parts of this chapter have been published in the two papers
W. Hasan and R. Motwani: Coloring Away Communication in Parallel Query Optimization, VLDB95
S. Ganguly, W. Hasan and R. Krishnamurthy: Query Optimization for Parallel Execution, Sigmod92

32

CHAPTER 3. JOQR OPTIMIZATIONS 33

time. Further, join ordering only applies to joins. The algorithms for choosing physical properties

and methods are applicable to any query tree. This opens up new ways of combining the different

aspects of query optimization even for conventional systems.

3.1 A Model for Minimizing Communication

Partitioned parallelism which exploits horizontal partitioning of relations may require data to be

repartitioned among sites thus incurring substantial communication costs.

Example 3.1 Assume tablesEmp(enum,name, areaCode, number) andCust(name,areaCode,

number) are horizontally partitioned on two sites on the underlined attributes. The following query

(in SQL2 [X3H92] syntax) determines the number of employees who are also customers in each

area code. An employee and a customer are guessed to be the same person if they have the same

name and phone number:

Select areaCode, Count(*)

From Cust Intersect (Select name, areaCode, number From Emp)

Group by areaCode;

Figure 3.1 shows two query trees that differ only in how data is repartitioned. Since tuples with

the same areaCode need to come together, GroupBy is partitioned by areaCode. However,

Intersect may be partitioned on any attribute. If we choose to partition it by areaCode,

we will need to repartition the (projected) Emp table. If we partition by name, we will need to

repartition the Cust table as well as the output of Intersect. Thus one or the other query tree

may be better depending on the relative sizes of the intermediate tables. 2

Emp0 : hash(name) mod 2 = 0
Cust0 hash(areaCode) mod 2 = 0

Emp Cust

Intersect

GroupBy

(a) Schema (b) Alternate Query Trees

S
IT

E
 0

S
IT

E
 1

Emp Cust

Intersect

GroupBy

Emp1 : hash(name) mod 2 = 1
Cust1 hash(areaCode) mod 2 = 1

(name)
(areaCode)

(areaCode) (areaCode)

(areaCode)

(areaCode) (name)

(name)

Figure 3.1: Query Trees: Hatched edges show repartitioning

3.1.1 Partitioning

We begin with a formal definition of partitioning.

CHAPTER 3. JOQR OPTIMIZATIONS 34

Definition 3.1 A partitioning is a pair (a; h) where a is an attribute and h is a function that maps

values of a to non-negative integers.

Given a table T , a partitioning produces fragments T0; : : : ; Tk

For example, the partitioning of Emp in Example 3.1 is represented as (name, hash(name)

mod 2). The function hash(name) mod 2 is applied to each tuple of Emp and the tuple placed

in fragment Emp0 or Emp1 depending on whether the function returns 0 or 1.

Partitioning provides a source of parallelism since the semantics of most database operators

allows them to be applied in parallel to each fragment. Suppose S0; : : : ; Sk and T0; : : : ; Tk are

fragments of tables S and T produced by the same partitioning � = (a; h).

Definition 3.2 A unary operator f is partitionable with respect to � if and only if f(S) = f(S0)[
: : : [f(Sk). A binary operator f is partitionable with respect to � if and only if f(S; T) =

f(S0; T0) [: : :[f(Sk; Tk).

Definition 3.3 An attribute sensitive operator is partitionable only for partitionings that use a

distinguished attribute. An attribute insensitive operator is partitionable for all partitionings.

The equation S ./ T = [i(Si ./ Ti) holds only if both S and T are partitioned on the (equi-

)join attribute. Thus join is attribute sensitive. Similarly, grouping is attribute sensitive since it

requires partitioning by the grouping attribute. UNION, INTERSECT and EXCEPT (set difference),

aggregation, selection and projection are attribute insensitive. External functions and predicates

may be either sensitive or insensitive.

3.1.2 Repartitioning Cost

Communicating tuples between operators that use different partitionings requires redistributing

tuples among sites. Some percentage of tuples remain at the same site under both partitionings and

therefore do not need to be communicated across sites. We believe that the crucial determinant of

the extent of communication cost, given a “good” scheduler, is the attribute used for partitioning.

We argue the following all or nothing assumption to be reasonable.

Good Scheduler Assumption: If two communicating operators use the same partitioningattribute,

no inter-site communication is incurred. If they use distinct partitioning attributes then all tuples

need to be communicated across sites.

Consider the case of two operators with different partitioning attributes. The greatest savings in

communication occur if the two operators use the same set of processors. If a table with m tuples

CHAPTER 3. JOQR OPTIMIZATIONS 35

equally partitioned across k sites is repartitioned on a different attribute, then assuming independent

distribution of attributes, (1� 1
k
)m tuples may be expected to change sites. Thus it is reasonable to

assume all m tuples to be communicated across sites.

Now consider the case of two operators with the same partitioning attribute. We believe that

any good scheduler will choose to use the same partitioning function for both operators since it not

only saves communication cost but also permits both operators to be placed in a single process at

each site. For example, our assumption is exactly true for symmetric schedulers (such as those used

in Gamma [DGS+90]) that partition each operator equally over the same set of sites.

3.1.3 Optimization Problem

We associate colors with nodes as corresponding to the partitioning attribute.

Definition 3.4 The color of a node in a query tree is the attribute used for partitioning the node.

An edge between nodes i and j is multi-colored if and only if i and j are assigned distinct colors.

In a query tree, the nodes for attribute sensitive operators or base tables are pre-colored while

we have the freedom to assign colors to the remaining uncolored nodes.

We will associate a weight ce with each edge e to represent the cost of repartitioning. Since

this cost is incurred only if the edge is multi-colored, the total repartitioning cost is the sum of the

weights of all multicolored edges. Thus the optimization problem is:

Query Tree Coloring Problem: Given a query tree T = (V;E), weight ce for edge e 2 E, and

colors for some subset of the nodes in V , color the remaining nodes so as to minimize the total

weight of multicolored edges.

Conventional cost models [SAC+79] provide estimates for the sizes of intermediate results. The

weight ce may be estimated as a function of these sizes. Our work is applicable regardless of the

model used for estimation of intermediate result sizes or the function for estimation of repartitioning

cost. We assume some method of estimating ce to be available.

Query tree coloring is related to the classical problem of multiway cuts with the difference

that multiway cut restricts pre-colored nodes to have distinct colors. Multiway cut is NP-hard for

graphs but solvable in polynomial time for trees [DJP+92]. Chopra and Rao [CR91] developed

an O(n2) algorithm (where n is the number of tree nodes) for multiway cut for trees using linear

programming techniques. The DLC algorithm in the next section is substantially simpler and has

a running time of O(n). Erdos and Szekely [ES94] provide an O(njCj2) algorithm (where jCj is

CHAPTER 3. JOQR OPTIMIZATIONS 36

number of colors) for the case of repeated colors. The ColorSplit algorithm in the next section is

an O(njCj) algorithm based on a better implementation of their ideas.

5

2 4

(ii) (iii)

COUNT

EXCEPT

UNION

CarParts BoatParts

AirParts
A

B C

6

8

5

2 4

A

B

6

8

5

2 4

A

B C

6

8

(i)

C

C

C

C

A

A

A

Figure 3.2: (i) Query Tree; (ii) Coloring of cost 7; (iii) Minimal Coloring of cost 6

Example 3.2 Figure 3.2(i) shows the query tree for a query to count parts used in manufacture of

aircraft but not of cars or boats. The three base tables are assumed to be partitioned on distinct

attributes (colors) A, B, and C. Figures 3.2(ii) and 3.2(iii) show two colorings. The cost of a coloring

is the sum of the cut edges which are shown hatched. The coloring in Figure 3.2(ii) is obtained

by the simple heuristic of coloring an operator so as to avoid repartitioning the most expensive

operand. The minimal coloring is shown in Figure 3.2(iii); here, UNION is not partitioned on the

partitioning attributes of any of its operands. 2

3.2 Algorithms for Query Tree Coloring

Coloring nodes may equivalently be viewed as cutting/collapsing edges. An edge between nodes

of distinct colors is cut while an edge between nodes of identical colors is collapsed. This view

constrains colors of adjacent nodes to be identical or distinct without fixing actual colors.

We first present some simplifications of the problem in Section 3.2.1. In Section 3.2.2, we

consider the restricted problem in which all pre-colored nodes have distinct colors. We show this

problem to be solvable by a simple greedy algorithm that runs in linear time. Section 3.2.3 shows the

greedy algorithm to fail when colors are repeated and develops a O(njCj) dynamic programming

algorithm (n is the number of tree nodes and jCj the number of colors). Section 3.2.4 discusses

extensions to deal with optimization opportunities provided by choices in access methods (due to

indexes, replication of tables) and choices in join and grouping attributes.

CHAPTER 3. JOQR OPTIMIZATIONS 37

3.2.1 Problem Simplification

The problem of coloring a tree can be reduced to coloring a set of trees which have the special

property that all interior nodes are uncolored and all leaves are pre-colored. This follows from the

following observations which imply that colored interior nodes may be split into colored leaves,

and uncolored leaves may be deleted.

(Split) A colored interior node of degree d may be split into d nodes of the same color and each

incident edge connected to a distinct copy. This decomposes the problem into d sub-problems

which can be solved independently.

(Collapse) An uncolored leaf node may be collapsed into its parent. This gives it the same color

as its parent which is minimal since it incurs zero cost.

A B

1 2

4 3

1

(iii)

C

C

A B

1 2

4 3

(ii)

C
C

A B

C

1 2

4 3

1 1

(i)

C C
1

Figure 3.3: (i) Split colored interior node (ii) Collapse uncolored leaves

The following procedure achieves the simplified form in time linear in the number of nodes in

the original tree. Figure 3.3 illustrates the simplification process.

Algorithm 3.1 Procedure Simplify

1. while 9 uncolored leaf l with parent m do

2. collapse l with m;

3. while 9 colored interior node m with degree d do

4. split m into d copies with each copy connected to distinct a edge.

3.2.2 A Greedy Algorithm for Distinct Pre-Colorings

We now focus on the restricted case when all pre-colored nodes have distinct colors. By the

discussion in the previous section, we only need to consider trees in which a node is pre-colored if

and only if it is a leaf node.

CHAPTER 3. JOQR OPTIMIZATIONS 38

Definition 3.5 A node is a mother node if and only if all adjacent nodes with at most one exception

are leaves. The leaf nodes are termed the children of the mother node.

The algorithm repeatedly picks mother nodes and processes them by either cutting or collapsing

edges. Each such step creates smaller trees while preserving the invariant that all and only leaf

nodes are colored. We are finally left with a set of trivial trees that may be easily colored. The

following two lemmas make such processing possible.

Suppose m is a mother node with edges e1; : : : ; ed to leaf children v1; : : : ; vd. Assume we have

numbered the children in order of non-decreasing edge weight, i.e., ce1 � ce2 � � � � � ced .

Lemma 3.1 There exists a minimal coloring that cuts e1; : : : ; ed�1.

Proof: The proof uses the fact that all leaves have distinct colors. In any coloring at least d� 1

leaves have a color different from m. If the optimal colors m differently from all leaves, the lemma

is clearly true. If not, then suppose m has the same color as leaf vi and let this color be A. Let the

color of vd be B. Change all A-colored nodes (other than vi) to be B-colored nodes. Such a change

is possible since no pre-colored node other than vi may have color A. Since cei � ced , the new

coloring has no higher cost. 2

Notice that after we cut edges using the above lemma, we are left with a mother node with one

child. Consider the case in which the mother node has a parent. Then the mother node is of degree

2 and the following lemma shows how we can deal with this case. Let the incident edges be e1 and

e2 such that ce1 � ce2 . Since m is not pre-colored, a minimal coloring will always be able to save

the cost of the heavier edge.

Lemma 3.2 There is a minimal coloring that collapses e2.

The last case is when the mother node has only one child and no parent. In other words, the tree

has only two nodes. Such trees are termed trivial and can be optimally colored by giving the child

the color of its mother.

Notice that the invariant that exactly leaf nodes are colored remains true after any of the lemmas

is used to cut/collapse edges. Thus, for any non-trivial tree, one of the two lemmas is always

applicable. Since the application of a lemma reduces the number of edges, repeated application

leads to a set of trivial trees. These observations lead to the algorithm given below for find a minimal

coloring.

Algorithm 3.2 Algorithm DLC

CHAPTER 3. JOQR OPTIMIZATIONS 39

1. while 9 mother node m of degree at least 2 do

2. Let m have edges e1, : : :, ed to d children; Let ce1 � : : :� ced ;

3. if d > 1 then cut e1, : : :, ed�1

4. else Let ep be the edge from m to its parent;

5. if cep < ce1 then collapse e1 else collapse ep.

6. end while;

7. color trivial trees.

Since each iteration reduces the number of edges, the running time of the algorithm is linear in

the number of edges.

3.2.3 Algorithm for Repeated Colors

3 4

3 3

4 3

(i)

3 4

3 3

4 3 3 4

3 3

4 3

(ii) (iii)

A B C A
A

B C
A

A B C A

B C AA

B A

Emp1

INTERSECT1 INTERSECT2

Emp2Cust Supp

UNION

Figure 3.4: (i) Query Tree (ii) Suboptimal DLC coloring (cost=9) (iii) Optimal coloring (cost=8)

The following example shows that DLC may not find the optimal coloring when colors are repeated.

Example 3.3 Figure 3.4(i) shows a query tree for a query that finds employees who are customers

as well as suppliers. Taking the tablesSupp, Cust, and Emp to be partitioned on distinct attributes,

we pre-color them by colors A, B, and C respectively. We now have repeated colors and two “widely

separated” leaves are both pre-colored A. The DLC algorithm finds the sub-optimal coloring shown

in Figure 3.4(b) since it makes a local choice of cutting away the A leaves. The optimal coloring

shown in Figure 3.4(c) exploits the like colored leaves to achieve a lower cost. 2

Thus, repeated colors make it difficult to make greedy choices of colors. Brute force enumeration

is undesirable since the number of colorings for c colors and n nodes is cn.

Recall from Section 3.2.1 that a colored interior node may be split to decompose the problem into

smaller subproblems that are independently solvable. Since interior nodes are all initiallyuncolored,

this observation can only be exploited after coloring an interior node. A further observation that

we will make is that the subproblems can be posed in a manner that makes them independent of

CHAPTER 3. JOQR OPTIMIZATIONS 40

the color chosen for the interior node. We now develop an efficient algorithm based on dynamic

programming that exploits problem decomposition while trying out different colors for each node.

Definition 3.6 Optc(i; A) is defined to be the minimal cost of coloring the subtree rooted at i such

that i is colored A. If node i is pre-colored with a color different from A, then Optc(i; A) = 1.

Definition 3.7 Opt(i) is defined as minaOptc(i; a), i.e., the minimal cost of coloring the subtree

rooted at i irrespective of the color of i.

...
T1 T2 Tk

...
T1 T2 Tk

i
i i i

Decomposeα1 α2 αk α1 α2 αk

c1 c2 ck

c1 c2 ck...

Figure 3.5: Problem Decomposition after Coloring Node i

Consider a tree (Figure 3.5) in which root node i has children �1; �2; : : : ; �k. Let the edge from

i to �j have weight cj , and let Tj be the subtree rooted at �j . If we fix a color for node i, we can

decompose the tree into k “new” trees by splitting node i into k copies. Since the only connection

between new trees was through i, they may now be colored independently of each other. Thus

Optc(i; A) is the sum of the minimal colorings for the k new trees.

Consider the jth new tree. The minimal coloring either pays for the edge (i; �j) or it does not.

If it pays for the edge, then it can do no better than using the minimal coloring for Tj , thus incurring

a cost of cj +Opt(�j). If it does not pay for the edge, it can do no better than the minimal coloring

that gives color A to node �j thus incurring a cost of Optc(�j ; A). The next lemma follows by

taking the cost of coloring the jth new tree to be the best of these cases. It provides a way of finding

the cost of a minimal coloring.

Lemma 3.3 The minimal cost Optc(i; A) of coloring the subtree rooted at i such that i gets color

A is

Optc(i; A) =

8>>><
>>>:
1 i pre-colored with color other than A

0 i a leaf, uncolored or pre-colored AP
1�j�k min[Optc(�j; A); cj + Opt(�j)] otherwise

Example 3.4 Figure 3.6 showsOptc andOpt for the tree of Figure 3.4. Lemma 3.3 may be applied

to fill up columns of these tables in a left to right manner. The first column is for the Emp1 node

CHAPTER 3. JOQR OPTIMIZATIONS 41

that is pre-colored by color A. By the first two cases of the formula of Lemma 3.3, the row for color

A in this column is 0 and the other two entries are 1. The entry in the Opt table is the minimum

of the column values.

Emp1 Cust Intersect1 Supp Emp2 Intersect2 Union

A

B

C

0

0

4 0 4 8

3 7 9

7 0 3 9

∞

∞

∞

∞

∞ ∞

∞

∞

0 0 3 0 0 3 8

O
P

T
C

O
P

T

C
O

LO
R

S
NODES (POSTFIX ORDER)

Figure 3.6: Opt and Optc tables for tree of Figure 3.4

Consider the last column of the table that represents entries for the Union node. This col-

umn is computed using the values in the columns for the children of the Union node, i.e.,

columns for Intersect1 and Intersect2. For example, Optc(Union; A) is the sum:

min[Optc(Intersect1; A); 3+Opt(Intersect1)]+

min[Optc(Intersect2; A); 3+Opt(Intersect2)]. 2

If the query tree has root i, then Opt(i) is the cost of the any optimal coloring. If A is a color

such that Optc(i; A) = Opt(i), then there must be an optimal coloring the gives color A to i.

Once we know an optimal color for i, we can pick optimal colors for the children of i by applying

Lemma 3.3 in “reverse” as follows:

Lemma 3.4 If i gets color A in some minimal coloring, there exists a minimal coloring such that

child �j of i has color A if Optc(�j ; A) � cj +Opt(�j) and any color a for which Optc(�j ; a) =

Opt(�j) otherwise.

Lemmas 3.3 and 3.4 lead to the following ColorSplit algorithm. Letting C be the set of colors

used for pre-colored nodes, the algorithm has a running time of O(njCj).
Algorithm 3.3 Algorithm ColorSplit

1. for each node i in postfix order do step 2

2. for each color a 2 C do steps 3 and 4

3. compute Optc(i; a) using Lemma 3.3;

4. Opt(i) = minaOptc(i; a)

CHAPTER 3. JOQR OPTIMIZATIONS 42

5. Let a 2 C be such that Optc(r; a) = Opt(r) where r is the root

6. color(r) = a;

7. for each non-root node �j in prefix order do steps 8 to 11

8. Let i be the parent of �j ; Let cj be the weight of edge between i and �j ;

9. if Optc(�j; color(i))� cj +Opt(�j)

10. then color(�j) = color(i)

11. else color(�j) = a 2 C such that Optc(�j ; a) = Opt(�j)

We further observe that ColorSplit does not require the input tree be such that all and only the

leaf nodes are pre-colored. It finds the optimal coloring for any tree. In other words, the tree need

not be pre-processed by the Simplify algorithm of Section 3.2.1. Having pre-colored interior nodes

actually reduces the running time of ColorSplit since the first two cases of Lemma 3.3, which are

simpler than the third case, may be used.

ColorSplit is a fast algorithm. While pre-processing with Simplify offers the possibility of

reducing the running time of ColorSplit (by reducing the number of colors in each new tree),

additional gains may not be worth the implementation effort.

3.2.4 Extensions: Using Sets of Colors

We show that the mechanism of using a set of colors rather than a single color to pre-color a node

makes several extensions possible. Handling sets of colors does not increase the complexity of

ColorSplit. The intuitive reason is that any pre-coloring constrains the search space and thus can

only reduce the running time of the algorithm.

Pre-coloring with a set of nodes serves to restrict the choices of colors that the ColorSplit

algorithm may make for a node. This restriction is implemented by the formula given in Lemma 3.3

which may be modified as shown below.

Lemma 3.5 (Modified Lemma 3.3) The minimal cost Optc(i; A) of coloring the subtree rooted at

i such that i gets color A is given by

Optc(i; A) =

8>>><
>>>:
1 A is not in set of pre-colors for i

0 i a leaf, uncolored or has A as pre-colorP
1�j�k min[Optc(�j; A); cj + Opt(�j)] otherwise

This is the only modification needed for ColorSplit to work with a set of pre-colors. The

modified algorithm finds the optimal in O(njCj) running time. Notice that using a set of pre-colors

CHAPTER 3. JOQR OPTIMIZATIONS 43

does not change the worst case running time of the algorithm since any pre-coloring (set or single

color) reduces the running time of the algorithm by simplifying the computation of Optc.

Access Methods: Typically, the columns needed from a table may be accessed in several alternate

ways. For example if a table is replicated then any copy may be accessed. Further, an index provides

a copy of the indexing columns as well as permits access to the remaining columns. Each access

method may potentially provide a different partitioning. We may model this situation by associating

a set of colors with each base table node, one color per partitioning. We observe that each access

method may have a different cost in addition to delivering a different partitioning. Such interactions

between the cost of computation and communication are handled in Section 3.3.

Compound Attributes: Thus far we have considered attribute sensitive operators such as joins

and groupings to have a single color. When such operators are based on compound attributes,

additional opportunities for optimization arise that may be expressed by sets of pre-colors.

Example 3.5 Given the tables Emp(emp#, dep#, city) and Dep(dep#, city), the fol-

lowing query finds employees who live in the same city as the the location of their department.

Select e From Emp e, Dep d

Where e.dep# = d.dep# and e.city = d.city

Since a join operator has to be partitioned on the join column, the required partitioning depends on

the predicate chosen to be the join predicate. In Figure 3.7, the first query tree uses the join predicate

ondep# and requires the Emp table to be repartitioned. The second uses the join predicate oncity

and requires Dep to be repartitioned. The optimization opportunities provided by join predicates

DepEmp
(city) (dep#)

(dep#)

DepEmp
(city) (dep#)

(city)e.dep# = d.dep# e.city = d.city

Figure 3.7: Interaction of Repartitioning with Join Predicates

may be modeled by pre-coloring the join node by a set of two colors fdep#;cityg. We observe

that choice of the join predicate may impact the cost of the join-method. Such interactions between

the cost of computation and communication are postponed to Section 3.3. 2

CHAPTER 3. JOQR OPTIMIZATIONS 44

Similar observations apply to other attribute sensitive operators. Given a grouping of employees

by department andcity, we pre-color the GROUPBY operator by fdep#; cityg. A partitioning

guarantees that tuples that agree on the partitioning attribute(s) are assigned to the same site. Given

some set of attributes X , a partitioning on any non-empty subset of X is also a partitioning on X .

The most general way of modeling this situation is by pre-coloring an attribute sensitive operator

that has compound attribute X by a set colors, one color for each non-empty subset of X .

Partitioning Functions: Suppose two base tables are partitioned on the same attribute A using

different partitioning functions (We consider two attributes to be the “same” attribute w.r.t. a query

if they are equated by an equality predicate.) For example, one table may be hash partitioned on A

and the other range partitioned. We will fix this situation by giving distinct colors (say B1 and B2)

to the two tables. Any attribute sensitive operator that needs a partitioning on A could use either of

the two partitions and will therefore be given the set of colors fB1; B2g.

3.3 Model for Methods and Physical Properties

We have so far been concerned with communication costs incurred by repartitioning and have

blithely considered the cost of an operator to be independent of the partitioning attribute.

Several alternate strategies, each with a different cost, may be available for an operator. The

following example shows that the cost of an operator depends on the chosen strategy as well

as several physical properties of data. The partitioning attribute is simply one of these physical

properties.

Example 3.6 Given the schemaEmp(emp#, salary, dep#, city) andDep(dep#, city),

the following query finds the average salaries of employees grouped by city for those employees

who live in the same city as the the location of their department.

Select e.city, avg(e.salary)

From Emp e, Dep d

Where e.dep# = d.dep# and e.city = d.city

Group by e.city;

Suppose Emp is partitioned by city and each partition is stored in sorted order by city.

Suppose Dep is partitioned by dep# and each partition has an index on dep#. Figure 3.8 shows

two query trees. The computation of Avg is assumed to be combined with GroupBy. The first

query tree uses the join predicate on dep# and repartitions the Emp table. Due to the availability

CHAPTER 3. JOQR OPTIMIZATIONS 45

DepEmp

e.city = d.cityjoin_pred :
join_method : sort-merge

GroupBy
grp_method: sortgroup
grp_attr: city

DepEmp

e.dep# = d.dep#join_pred :
join_method : nested-loops

GroupBy
grp_method: hash
grp_attr: city

<p:dep#, s:none, i:dep#><p:city, s:city, i:none> <p:city, s:city, i:none> <p:dep#, s:none, i:dep#>

<p:dep#, s:city, i:none> <p:city, s:city, i:none>

Figure 3.8: Annotated Query Trees

of an index on Dep, a nested-loops strategy may be the cheapest for joining each partition of Emp

(outer) with its corresponding partition of Dep (inner). The grouping operator is implemented by a

hash-grouping strategy.

The second query tree uses the join predicate oncity and repartitions theDep table. Since each

partition of Emp is pre-sorted, it may be cheapest to use a sort-merge join for joining corresponding

partitions. Since the output of merge join is pre-sorted in addition to being pre-partitioned on the

city, the grouping operator uses a sort-grouping strategy. 2

The example illustrates several points. Firstly, while partitioning impacts communication costs,

other physical properties (sort-order and indexes) impact operator cost. We will generalize the

notion of a color to capture all physical properties. Secondly, a strategy expects its inputs to have

certain physical properties and guarantees its output to have some other properties. We will specify

such input-output constraints using color patterns. Thirdly, the overall cost is reduced when an input

to a strategy happens to have the expected physical property. We will therefore break the cost of

computing an operator into the intrinsic cost of the strategy itself and the cost of getting the inputs

into the right form. The latter will be modeled as a re-coloring cost that may or may not be incurred.

3.3.1 Annotated Query Trees and their Cost

We now allow a query tree to have annotations. Each interior node of a query tree is annotated by

a strategy, an output color, and a color for each input. The leaf nodes have an output color but no

strategy.

We have so far used a color to represent the attribute on which data is partitioned. We now

generalize a color to be a triple hp : a1; s : a2; i : a3i where a1 is the partitioning attribute, a2 the

sort attribute and a3 the indexing attribute (this is easily generalizable to quadruples etc. if more

physical properties are to be modeled).

A strategy specifies a particular algorithm for computing an operator. It requires the inputs to

CHAPTER 3. JOQR OPTIMIZATIONS 46

satisfy some constraints and guarantees some properties for its output. We will use color patterns to

specify such input-output constraints. A constraint has the form Input1; : : : ; Inputk ! Output,

where Inputj and Output are color patterns. A color pattern is similar in syntax to a color but

allows the use of variables and wild-cards. Table 3.1 shows examples of input-output constraints

for several strategies.

If some input is not colored as required, a re-coloring is needed. Re-coloring requires reparti-

tioning, sorting, or building an index.

Example 3.7 The Emp table of Example 3.6 (Figure 3.8) has the output color hp : city; s :

city; i : nonei while Dep has hp : dep#; s : none; i : dep#i. In the first query tree of

Figure 3.8, the join uses the nested-loops strategy and its output has the color hp : dep#; s :

city; i : nonei. From the first row of Table 3.1, this implies that the color of input1 (Emp) should

be hp : dep#; s : city; i : �i and that of input2 (Dep) should be hp : dep#; s : �; i : dep#i. The

color of Dep matches the requirements but that of Emp does not. 2

Strategy Output Input1 Input2 Additional requirements

Nested-Loops Join hp : X; s : Y; i : nonei hp : X; s : Y; i : �i hp : X; s : �; i : Xi Join predicate on X

Sort-Merge Join hp : X; s : X; i : nonei hp : X; s : X; i : �i hp : X; s : X; i : �i Join predicate on X

Hybrid-Hash Join hp : X; s : Y; i : nonei hp : X; s : Y; i : �i hp : X; s : �; i : �i Join predicate on X

Hash Grouping hp : X; s : none; i : nonei hp : X; s : �; i : �i X is a grouping attribute
Sort Grouping hp : X; s : X; i : nonei hp : X; s : X; i : �i X is a grouping attribute
Hash Intersect hp : X; s : none; i : nonei hp : X; s : �; i : �i hp : X; s : �; i : �i

Table 3.1: Examples of Input-Output Constraints

Our goal is to devise an abstract cost model that is compatible with classical cost models. Such

classical models typically consists of two parts: (a) estimation of statistics (such as size, number

of unique values in columns) for intermediate results; and, (b) estimation of cost of an operator

given statistics and physical properties of operands. Our goal is not to provide new formulas but to

provide abstractions that make it possible to reason with formulas provided by existing models in a

more general manner.

Definition 3.8 Rs is the set of statistics for table R. Rs depends only on the contents of table R,

not on how it is physically stored.

Definition 3.9 recolor(Rs; cold; cnew) is the cost of re-coloring table R from cold to cnew.

Definition 3.10 inpCol(s; A; j) is the color pattern needed by strategy s for input j for the output

to be of color pattern A.

CHAPTER 3. JOQR OPTIMIZATIONS 47

Example 3.8 The color required for the first input of the nested-loops join in the first query tree

of Figure 3.8 is cnew = hp : dep#; s : city; i : �i. Since the output color (call it cold) of Emp

differs in partitioning attribute, recolor(R; cold; cnew) is the cost of repartitioningEmp on the city

attribute. 2

The cost of an annotated query tree is the sum of the costs of all operators. The cost of an

operator consists of re-coloring the inputs to have colors needed by the chosen strategy plus the

cost of the strategy itself. Suppose the root of tree T uses strategy s and has output color a. Let

c0j = inpCol(s; a; j), the color required by strategy s for the j’th input. Let T have k immediate

subtrees T1; : : : ; Tk such that Tj produces table Rj with color cj .

Cost(T) = StrategyCost(s; Rs
1; : : : ; R

s
k) +

kX
j=1

recolor(Rs
j; cj; c

0
j) +

kX
j=1

Cost(Tj)

If T is a leaf, we take its cost as zero since we count the cost of accessing operands as part of

the cost of a strategy. Since the output of a query is always shipped to an application, the root of

any query tree will be a unary operator that achieves the shipping. By convention, we will omit

showing this operator2.

Observe that no restriction is placed on the form of the StrategyCost() or recolor() functions.

This allows, for example, non-linear terms such as logarithms, product and division that do occur

in the classical System R [SAC+79] cost model.

3.4 Extension of ColorSplit for Methods and Physical Properties

We will now develop an extension of ColorSplit that given a tree with colors for the leaf nodes finds

a minimal-cost strategy as well as input and output colors for each interior node.

Definition 3.11 Optc(i; A) is defined to be the minimal cost of the subtree rooted at node i such that

i has output color A. OptcStrategy(i; A) is defined to be the strategy that achieves this minimal

value (pick any one strategy if several are minimal).

For a leaf node i, Optc(i; A) = 0 if i is pre-colored with a color compatible with A and 1
otherwise. We will treat OptcStrategy(i; A) as undefined for leaf nodes.

2Consider a query that simply scans a table. It will have a query tree consisting of a Ship with Scan as the only
child. Observe that the cost of scanning data is counted as part of Ship.

CHAPTER 3. JOQR OPTIMIZATIONS 48

Definition 3.12 Strategies(i; A) is the set of strategies applicable to the operator represented by

node i and whose input-output constraint permits A as an output color.

The following is a generalization of Lemma 3.3. Let node i have children �1; : : : ; �k. Suppose

the subtree rooted at �j computes table Rj as its output. The minimum cost of the tree rooted at i

such that i has output color A is obtained by trying out all strategies capable of producing output

color A. The lemma shows that for any such strategy s, the lowest cost is achieved by individually

minimizing the cost of each input.

Lemma 3.6 For a leaf node i, Optc(i; A) is 0 if i has a color compatible with A and1 otherwise.

For non-leaf node i, Optc(i; A) obeys the following recurrence.

Optc(i; A) = mins2S [StrategyCost(s; Rs
1; : : : ; R

s
k)+Pk

j=1 minc2C [Optc(�j; c) + recolor(Rs
j; c; inpCol(s;A; j))]]

where S = Strategies(i; A)

OptcStrategy(i; A) is some strategy for which the minima is achieved.

Using the lemma, the following algorithm computes Optc and OptcStrategy by a bottom-up

followed by a subsequent top-down pass that extracts optimal colors and strategies.

Algorithm 3.4 Algorithm ExtendedColorSplit

1. for each node i in postfix order do step 2

2. Use Lemma 3.6 to computeOptc(i; a) and OptcStrategy(i; a) for each color a 2 C

3. Let r be the root and a a color s.t. Optc(r; a) � Optc(r; c) for all colors c 2 C

4. Optimal color for r is a and optimal strategy is OptcStrategy(r; a)

5. for each non-root node in prefix order do step 6

6. compute optimal colors and strategies by top-down pass applying Lemma 3.6 in reverse.

The algorithm has a worst-case running time of nSjCj2 where S is the number of strategies,

jCj the number of allowable colors and n the number of nodes in the tree.

Since n and S are typically small, the running time of the algorithm is dependent on jCj. jCj
can become large when we permit the extensions discussed in section 3.2.4. The magnitude of jCj
may be kept small by observing (1) no strategy yields an output relation with an index. Thus only

2 components of the triple for colors are relevant for interior nodes (2) only colors that might be

useful to subsequent operator need to be considered.

CHAPTER 3. JOQR OPTIMIZATIONS 49

3.5 Model With Join Ordering

We now show an example of how repartitioning costs interact with the order of joins.

EmpSkillsEmp

Skills

(emp#)

(skill#)

(emp#)

(emp#)

(skill#)

EmpSkills

Emp

Skills

(emp#)

(skill#) (emp#)

(emp#)

(skill#)

Figure 3.9: Interaction of Repartitioning with Order of Joins

Example 3.9 Suppose the tables Emp(emp#, city), EmpSkills(emp#, skill#), and

Skills(skill#, skilltype) are partitioned by the underlined attributes. The following

query finds employees who live in Palo Alto and have analytical skills.

Select e from Emp e, EmpSkills es, Skills s

Where e.emp# = es.emp# and es.skill# = s.skill# and

s.skilltype = Analytical and e.city = Palo Alto

Figure 3.9(i) and (ii) shows two alternate query trees. The trees use different join orders and

incur different repartitioning costs. If “s.skilltype = analytical” is a highly selective

predicate, the second tree may achieve a low cost due to the small size of the intermediate table

(Skills ./ EmpSkills). However, the first tree avoids the cost of repartitioning the possibly

very large EmpSkills table. Thus repartitioning cost impacts the ordering of joins. Figure 3.9(iii)

illustrates the details of the strategy annotations for join operations. 2

Commercially adopted solutions to join ordering are typically variations of the System R

algorithm [SAC+79]. Our goal is to combine the basic ideas from this algorithm with the ColorSplit

algorithm. We will start by developing an abstraction of some aspects of the System R style dynamic

programming. This will us to understand and analyze the basic ideas while ignoring many details

of the actual algorithm.

3.5.1 Join Ordering Without Physical Properties

Definition 3.13 A join tree is an annotated query tree in which all interior nodes represent 2-way

join operations and leaves represent tables.

CHAPTER 3. JOQR OPTIMIZATIONS 50

Since join operations are associative and commutative, they may be performed in any order.

Given a SPJ query on tables T1; : : : ; Tn, the join ordering problem is to find a minimal cost join tree

for computing the query. A join tree fixes the order of joins in addition to the strategy for each join.

We will use a nested list notation to represent join trees. For example, the tree of figure 3.9(iii) may

be represented as [s2; [s1; Skills; EmpSkills]; Emp]

For simplicity, we first consider the case when re-coloring has zero cost. In other words, physical

properties do not make a difference to cost and we have:

Cost(T) =

8<
: 0 if T is a leaf

StrategyCost(s; Rs
l ; R

s
r) + Cost(Tl) + Cost(tr) if T = [s; Tl; Tr]

The following lemma follows from the structure of the cost formula and implies that any subtree

of an optimal query tree must be an optimal query tree for the corresponding sub-query.

Lemma 3.7 If OptP lan(Q) = [s; Tl; Tr] and Q = Ql [Qr where Tl computes the sub-query over

Ql and Tr over Qr, then OptP lan(Ql) = Tl and OptP lan(Qr) = Tr

This lemma leads to the following dynamic programming algorithm:

Algorithm 3.5 Algorithm JO (Join Ordering)

Input: SPJ query on tables T = fT1; : : : ; Tng
Output: Optimal join tree.

1. for i = 1 to n do OptP lan(fTig) = Ti

2. for i= 2 to n do step 3

3. for each Q � T s.t. jQj = i do steps 4 and 5

4. bestCost = 1
5. for each Ql 6= ;, Qr 6= ; s.t. Q = Ql [Qr do steps 6 and 7

6 Let Rs
l ; R

s
r be statistics for tables computed by queries Ql; Qr

7. for each join strategy s do steps 8 to 11

8. if StrategyCost(s; Rs
l ; R

s
r) < bestCost then

9. bestCost = StrategyCost(s; Rs
l ; R

s
r)

10. OptP lan(Q) = [s; OptP lan(Ql); OptP lan(Qr)]

11. end if

The algorithm has a running time of O(3n). Since plans for all subsets of Q are cached, and

a plan for i tables has storage cost proportional to i, the space requirements of the algorithm are

CHAPTER 3. JOQR OPTIMIZATIONS 51

O(n2n). A brute force enumeration of all trees would run inO(2n!=n!) time but require onlyO(n)

space (for 1 plan).

Often systems choose a restricted class of shapes of join trees. A popular restriction is left-deep

trees that require the left child of any interior node to be a leaf. This cuts the number of trees to n!

and the algorithm runs in O(n2n) time.

3.5.2 Join Ordering With Physical Properties

Suppose strategy s requires input colors c
0

l and c
0

r. Suppose sub-plan (subtree) Tl produces table Rl

with color cl (Rr and cr for sub-plan Tr).

Cost(T) =

8>>><
>>>:

0 if T is a leaf

recolor(Rs
l ; cl; c

0

l) + recolor(Rs
r; cr; c

0

r)+

StrategyCost(s; Rs
l ; R

s
r) + Cost(Tl) + Cost(Tr) if T = [s; Tl; Tr]

Let Optc(Q;A) be the cost of an optimal join tree for the set of tables Q such that the output

has physical property A.

Lemma 3.8 Optc(Q; a) obeys the following recurrence:

Optc(Q; a) = minQl;Qr
[mins2S [StrategyCost(s; Ql; Qr)

+mina2C [Optc(Ql; a) + recolor(Qs
l ; a; inpCol(s; a; 1))]

+mina2C [Optc(Qr; a) + recolor(Qs
r; a; inpCol(s; a; 2))]]]

where Ql and Qr are all sets such that Q = Ql [Qr, Ql 6= ;, Qr 6= ; and S is the set of strategies

that produce property a.

Algorithm 3.6 Algorithm JOP (Join Ordering With Physical Properties)

Input: An SPJ query on tables T = fT1; : : : ; Tng
Output: An optimal join tree.

1. for i = 1 to n do step 2

2. Optc(Ti; a) =

8<
: 0 Ti has access method with physical property a

1 otherwise

3. for i = 2 to n do step 4

4. for each Q � T s.t. jQj = i do steps 5 and 6

CHAPTER 3. JOQR OPTIMIZATIONS 52

External function

SPJ

SPJ

EXCEPT

INTERSECTUNION

T1
T2 T3 T4

Figure 3.10: Decomposition of a complex query

5. Optc(Q; a) = 1 for each physical property a 2 C

6. for each Ql 6= ;, Qr 6= ; s.t. Q = Ql [Qr do steps 7 and 8

7. Let Rs
l ; R

s
r be statistics for tables computed by queries Ql; Qr

8. for each physical property a 2 C do step 9

9. for each strategy s that can produce property a do steps 10 and 11

10. Let scost = StrategyCost(s; Rs
l ; R

s
r), a

0

l = inpCol(s; a; 1) and a
0

r = inpCol(s; a; 2)

11. for each physical property al 2 C, ar 2 C do steps 12 to 16

12. Let newcost = scost +Optc(Ql; al) + recolor(Rs
l ; al; a

0

l)

+Optc(Qr; ar) + recolor(Rs
r; ar; a

0

r)

13. if newcost < Optc(Q; a) then

14. Optc(Q; a) = newcost

15. OptP lan(Q; a) = [s; OptP lan(Ql; al); OptP lan(Qr; ar)]

16. end if

17. return Mina2COptP lan(T ; a)
A complex query may be decomposed into SPJ queries connected by other operators(Figure 3.10).

We remark that it is possible to integrate the JOP and ExtendedColorSplit algorithms in a straight-

forward manner to produce an optimal annotated query tree. The tree is optimal with respect to all

allowed orderings within SPJ boxes and all possible annotations of nodes.

3.6 Usage of Algorithms

There are several ways in which the algorithms developed in this chapter may be used. One

possibility is to use ExtendedColorSplit as a post-pass to a conventional optimizer. This has two

CHAPTER 3. JOQR OPTIMIZATIONS 53

advantages. First, no modifications is required to existing optimizers. Secondly, ExtendedColorSplit

runs in polynomial time. The disadvantage is that the query trees will have optimal annotations

given the join orders produced by the conventional optimizer. The second possibility is to produce

optimal join order as well as annotation by using the integration of the JOP and ExtendedColorSplit

as a replacement for a conventional optimizer.

Chapter 4

Scheduling Pipelined Parallelism

In this chapter1, we focus on the problem of scheduling a pipelined operator tree, which is an

operator tree in which all edges are pipelining edges. Pipelined parallelism permits all operators in

such a tree to run concurrently. Scheduling such trees poses a parallelism-communication trade-off.

A producer and a consumer operator must either communicate data across processors to benefit

from and run on distinct processors, or they must share a processor but save communication.

We will measure the quality of scheduling algorithms by their performance ratio [GJ79] which

is the ratio of the response time of the generated schedule to that of the optimal. Our goal is to

devise algorithms that are near-optimal in the sense that the average performance ratio should be

close to 1 and the worst performance ratio should be a small constant.

We start by defining the problem more precisely. We then develop and analyze several algorithms

followed by an experimental comparison.

4.1 Problem Definition

Definition 4.1 Given p processors and an operator tree T = (V;E), a schedule is a partition of V ,

the set of nodes, into p sets F1; : : : ; Fp with set Fk allocated to processor k.

The cost of executing Fk is the cost of executing all nodes in Fk plus the cost for communicating

with nodes on other processors. It is thus the sum of the weights of all nodes in Fk and the weights

1Parts of this chapter have been published in the two papers
W. Hasan and R. Motwani: Optimization Algorithms for Exploiting the Parallelism-Communication Tradeoff in Pipelined
Parallelism, VLDB94
C. Chekuri, W. Hasan and R. Motwani: Scheduling Problems in Parallel Query Optimization, PODS95

54

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 55

PROBE(h1)

PROBE(h2)

MERGE

SCAN(E) SCAN(D)

7

1

5

1

1
4

23

3

8

10
8

time

Idle fraction [0.2]

Idle fraction [0.2]

P
ro

ce
ss

or
1

P
ro

ce
ss

or
2

P
ro

ce
ss

or
3

0 10

(A) Schedule (B) Gantt Chart

F1 F2

F3 PROBE(h1) [0.8]

PROBE(h2) [0.7]

SCAN(D) [0.3]

MERGE [0.5]

SCAN(E) [0.3]

Figure 4.1: A pipelined schedule and its execution

of all edges that connect a node within Fk to a node outside. For convenience, we define cij = 0 if

there is no edge from i to j.

Definition 4.2 The load Lk on processor k is
P

i2Fk [ti +
P

j =2Fk cij].

The response time, L, of a schedule may be derived by observing that pipelining constraints

force all operators in a pipeline to start simultaneously (time 0) and terminate simultaneously at time

L. Fast operators are forced to “stretch” over a longer time period by the slow operators. Suppose

operator i is allocated to processor k and uses fraction fi of the processor. The pipelining constraint

is then:

fi =
1
L
[ti +

X
j =2Fk

cij] for all operators i 2 V (4.1)

The utilization of a processor is the sum of utilizations of the operators executing on it. Since

at least one processor must be saturated (otherwise the pipeline would speed up):

max
1�k�p

[
X
i2Fk

fi] = 1

) L = max
1�k�p

[
X
i2Fk

[ti +
X
j =2Fk

cij]] = max
1�k�p

Lk using equation (4.1)

Example 4.1 Figure 4.1(a) shows a schedule by encircling the sets Fk. The cost of each set is

underlined. For example fPROBE(h1)g costs 8 by adding up its node weight (7) and the weight of

the edge (1) connecting it to its child. Observe that we show edges as undirected since the parallel

constraint represented by pipelining edges is symmetric. Figure 4.1(b) shows a Gantt chart of the

execution specified by the schedule. The fraction of the processor used by each operator in shown

in parenthesis. 2

The pipelined operator tree scheduling (POT) problem may now be stated as follows:

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 56

Input: Operator Tree T = (V;E)with positive real weights ti for each node i 2 V and cij for

each edge (i; j) 2 E; number of processors p

Output: A schedule with minimal response time i.e., a partition of V into F1; : : : ; Fp that

minimizes max1�l�p
P

i2Fl
[ti +

P
j =2Fl

cij].

Definition 4.3 If F is a set of operators, cost(F) is the load on a processor that computes F .

cost(F) =
P

i2F [ti +
P

j =2F cij].

Since the special case in which all edge weights are zero is multiprocessor scheduling [GJ79,

GLLK79], POT is NP-hard. Since the number of ways of partitioning n elements into k disjoint

non-empty sets is
�n
k

	
(which denotes Stirling numbers of the second kind) [Knu73], the number

of distinct schedules for a tree with n nodes on p processors is
P

1�k�p
�n
k

	
. This number is about

1:2� 105 for n = p = 10 and 5:0� 1013 for n = p = 20, thus ruling out enumerative approaches

to the problem.

A natural question is whether multiprocessor scheduling algorithms such as LPT may be adapted

for POT. Multiprocessor scheduling is the problem of scheduling independent jobs with known

running times on a set of processors. LPT assigns the job with the largest running time to the least

loaded processor, repeating this step until all jobs are assigned. For p processors, LPT has a worst

case performance ratio of 4
3 � 1

3p [Gra69].

LPT may be applied to POT by simply using the cost of each node (i.e. the node weight plus

weights of all incident edges) as its running time. This Naive LPT algorithm performs poorly since

it is unaware of the tradeoff between parallelism and communication. Consider two operators each

of weight t connected by an edge of weight c. To obtain a schedule for 2 processors, Naive LPT

will consider the cost of each operator to be t + c and place them on separate processors resulting

in a schedule with a response time of t + c. LPT never saves communication cost by placing both

operators on a single processor which would achieve a response time of 2t. Since cheap operators

and expensive communication can make the ratio t+c
2t arbitrarily large, the worst case performance

ratio of Naive LPT is unbounded.

Our algorithms will use the operations of cutting and collapsing edges that correspond to

decisions to place adjacent nodes on the same or different processors.

Definition 4.4 Collapse(i; j) modifies a tree by replacing nodes i and j by a single new node i0

with weight ti0 = ti + tj . Edges that were connected to either i or j are instead connected to i0.

Definition 4.5 Cut(i; j) modifies a tree by deleting edge (i; j) and adding its weight to that of the

nodes i and j, i.e. tnewi = toldi + cij and tnewj = toldj + cij .

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 57

If a schedule places both i and j on processor k, the load on all processors is invariant when

i and j are collapsed, and the new node is placed on processor k. If a schedule places i and j on

distinct processors, the load is invariant when (i; j) is cut.

Our analysis with often consider the following two special cases.

Definition 4.6 A star is a tree with one non-leaf node. A path is a tree with two leaves.

4.2 Identifying Worthless Parallelism

In this section we investigate the tradeoff between parallelism and communication cost and de-

velop the GreedyChase algorithm that “chases” down and removes parallelism that is “worthless”

irrespective of the number of processors.

We start by characterizing worthless edges whose communication overhead is relatively high

enough to exceed any benefits from parallelism. We the identify a class of trees that we call

monotone. Such trees have no worthless parallelism in the sense that maximal use of parallelism

is in fact optimal. We show that repeatedly collapsing worthless edges results in a monotone tree.

Finally, we provide lower bounds on schedules for monotone trees.

4.2.1 Worthless Edges and Monotone Trees

In Figure 4.1, the cost incurred by MERGE in communicating with SCAN(E) is 4 seconds which

exceeds the cost of SCAN(E) itself. It is thus always better for the processor executing MERGE to

execute SCAN(E) locally rather than communicate with it. We now generalize this observation.

Definition 4.7 An edge eij is worthless if and only if (cij � ti +
P

k 6=j cik) or (cij � tj +P
k 6=i cjk).

The following theorem shows that our definition of worthless indeed captures edges whose high

communication cost offsets the advantage of parallel execution.

Theorem 4.1 Given p processors and an operator tree T with worthless edge (i; j), there exists an

optimal schedule of T for p processors in which nodes i and j are assigned to the same processor.

Proof: We prove the theorem by showing that given a worthless edge (i; j) and an optimal

schedule S, we can generate another schedule S 0 (for the same number of processors) with no higher

response time in which (i; j) is collapsed.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 58

Let Fp and Fq be the sets of nodes assigned to processors p and q in S such that i 2 Fp and

j 2 Fq. Since (i; j) is worthless, without loss of generality we may assume

cij � tj +
X
k 6=i

cjk (4.2)

We show S 0 to consist of S modified by moving j from q to p. This move changes the loads only

on p and q and we show that neither load can increase.

Moving j onto processor p increases the load on p by at most [tj +
P

k2(V�Fp) cjk] � cij ,

since p saves the cost of the edge between i and j, but incurs the additional cost of j as well as

j communicating with nodes other than those assigned to p. Observing that
P

k2(V�Fp) cjk �P
k 6=i cjk, Equation 4.2 shows this increase cannot be positive.

Removing j from processor q increases the load on q by �cij � tj +
P

k2Fq cjk, since q saves

the cost of j, and j communicating with i, but must now incur the cost of the remaining nodes of Fq

communicating with j. Observing that
P

k2Fq cjk �
P

k 6=i cjk , Equation 4.2 shows this increase

cannot be positive. 2

Definition 4.8 An operator tree is monotone if and only if any connected set of nodes, X , has a

lower cost than any connected superset, Y , i.e., if X � Y then cost(X) < cost(Y).

We now establish an important connection between worthless edges and monotone trees. The

following theorem allows us to transform any tree into a monotone tree by collapsing all worthless

edges. More importantly, we can schedule the monotone tree rather than the original tree. This

follows since collapsing worthless edges does not sacrifice optimality (Theorem 4.1) and the

schedule for the original tree can be recovered from the schedule for the transformed tree.

Theorem 4.2 A tree is monotone if and only if it has no worthless edges.

Proof: [WORTHLESS EDGE IMPLIES NON-MONOTONICITY]

Assume edge (i; j) is a worthless edge. Without loss of generality, we assume

cij � tj +
X
k 6=i

cjk (4.3)

We show cost(fig) � cost(fi; jg) and hence the tree is not monotone.

cost(fig) = ti +
X
k

cik

= ti + cij +
X
k 6=j

cik

� ti + (tj +
X
k 6=i

cij) +
X
k 6=j

cik by Equation 4.3

= cost(fi; jg)

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 59

[NON-MONOTONICITY IMPLIES WORTHLESS EDGE]

If a tree is not monotone, there must be connected sets X and Y such that X � Y with cost(X) �
cost(Y). Since X and Y are both connected sets, it must be possible to arrange the nodes in Y �X

in a sequence v1; : : : ; vm such that Y can be created from X by adding these nodes one by one

and guaranteeing a connected set at all steps. That is, we progress through sets F0; F1; : : : ; Fm

with Fi = F0 [fv1; : : : ; vig being a connected set and with F0 = X and Fm = Y . Since

cost(F0) � cost(Fm), there must be some vertex v�, such that cost(F��1) � cost(F�). Since

both F��1 and F� are connected but acyclic sets, v� is connected to exactly one node inF��1. Call

that node �.

cost(F�) = cost(F��1) + t� � c�� +
X
j 6=�

c�j

Using cost(F��1) � cost(F�), we can conclude t� +
P

j 6=� c�j � c�� which proves (�; �) to be

a worthless edge. 2

4.2.2 The GreedyChase Algorithm

Algorithm 4.1 The GreedyChase Algorithm

Input: An operator tree

Output: A monotone operator tree

1. while there exists some worthless edge (i; j)

2. Collapse(i,j)

3. end while

Since each collapse reduces the number of nodes, GreedyChase must terminate. The check for

the existence of a worthless edge is the crucial determinant of the running time. When a worthless

edge is collapsed, adjacent edges may turn worthless and thus need to be rechecked. The algorithm

may be implemented to run in time O(nd), where n is the number of nodes and d is the maximum

degree of any node. Experimentally, the running time of our implementation of GreedyChase was

virtually linear in n.

We remark that even though the order in which new edges turn worthless may depend on the

order of edge collapses, the monotone tree for an operator tree is unique.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 60

4.2.3 Lower Bounds

We will use GreedyChase as a pre-processing step in all our algorithms. The following lower

bounds will be useful in analyzing the performance ratios of our algorithms.

Lemma 4.1 Let Ri = [ti +
P

j2V cij] be the net weight of node i. The response time of any

schedule (independent of number of processors) for a monotone operator tree has a lower bound of

R = maxi2V Ri.

Proof: It suffices to show ti +
P

j2V cij to be a lower bound for any node i. Suppose Y

is the set of all nodes that are assigned the same processor as i. Y may be decomposed into

maximal connected sets Y1; : : : ; Yq. Suppose i 2 Y�. Since cost(Y) =
P

j cost(Yj), we have

cost(Y) � cost(Y�). By definition of monotone trees, cost(Y�) � cost(fig). Thus, the load on

the processor executing i is at least cost(fig) which is ti +
P

j2V cij . 2

Lemma 4.2 The response time of a p processor schedule for any operator tree (monotone or not)

has a lower bound of W = W=p where W =
P

i ti is the total node weight.

Proof: The total load is at least the sum of the node weights and some processor must have at

least the average load. 2

4.3 The Modified LPT Algorithm

The modified LPT algorithm consists of running GreedyChase followed by LPT.

Example 4.2 Figure 4.2(A) shows traces the collapse of worthless edges by GreedyChase. Note

that edges may turn worthless as a result of other collapses. For two processors, modified LPT

produces schedule (B) with response time 11. Naive LPT on the other hand may produce schedule

(C) with response time 25. 2

Modified LPT performs well when the LPT stage receives a monotone tree that is star-shaped.

Edges in a star have low communication costs since the weight of an edge cannot exceed the weight

of the incident leaf without making the edge worthless.

Theorem 4.3 For trees that result in monotone stars, the worst-case performance ratio of the

modified LPT algorithm is less than 2 + 1
p
. Examples exist that achieve a ratio of 2.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 61

1

7

7

3

2

2 1

1

4

4

3

1

7

7

3

3

4

4
1

10

10

1

7

7

3

2

2 1

1

4

4

3

(B)(A)

1

7

7

3

2

2 1

1

4

4

3

(C)

11

11
25

25

Figure 4.2: (A) Trace of GreedyChase (worthless edges hatched) (B) modified LPT schedule (C)
naive LPT schedule

Proof: Consider a star in which the center node, labeled 0, is connected to n� 1 nodes labeled

1; : : : ; n� 1. Let ci be the weight of the edge from node 0 to node i. If all edges are cut, we get

n jobs. The job created from the center has weight �0 = t0 +
P

1�i<n ci and the remaining n� 1

jobs have weights �i = ti + ci for i = 1; : : : ; n� 1.

Suppose LPT schedules these jobs to give a response time of L. Let j be the node that when

scheduled caused the load on some processor to reach L. Since LPT assigns a job to the least loaded

processor, the load on all processors must have been at least L� �j when j was assigned. Thus the

total load on all processors has to be at least (L� �j)p+ �j .

(L� �j)p+ �j �
X

0�i<n

�i

L � (1� 1
p
)�j +

1
p

X
0�i<n

�i

= (1� 1
p
)�j +

1
p
[
X

0�i<n

ti + 2
X

0�i<n

ci]

The above steps are analogous to a standard analysis of the LPT algorithm. We can now exploit a

property particular to stars. Since all edges are incident with node 0,
P

1�i<n ci < �0.

L < (1� 1
p
)�j + (

X
0�i<n

ti)=p+
2
p
�0

Since the star is monotone, by Lemmas 4.1 and 4.2, both �j and (
P
ti)=p are lower bounds on

the optimal response time Lopt. Thus we conclude L=Lopt < 2 + 1
p

.

A ratio of 2 is achieved by a star consisting of (p+1) nodes. The center with weight 1 is

connected by edges with weight 0 to (p-1) nodes with weight 2, and by an edge of weight 1� � to

a node of weight 1. The optimal schedule achieves a response time of 2 by placing the two nodes

of weight 1 on the same processor and the remaining p� 1 nodes on distinct processors. The LPT

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 62

1+ε 1+εε ε ε ε1 1 1 1 1. . .

Figure 4.3: Example with Performance ratio = n=p for Modified LPT

stage of Modified LPT gets (p � 1) nodes of weight 2 and 2 nodes of weight 2 � �. It therefore

produces a schedule with response time 4� 2�. 2

The algorithm is still oblivious to the tradeoff between parallelism and communication. Edges

in a monotone path can have high weights. The algorithm does not attempt to save heavy edges by

assigning the incident nodes to the same processor.

Lemma 4.3 The worst-case performance ratio of modified LPT is unbounded for paths.

Proof: Figure 4.3 shows a monotone path for which the LPT phase receives n jobs each of

weight 2 + �. It can produce a schedule with a response time of (2 + �)n=p � 2n=p. The optimal

is obtained by cutting the path into p pieces of equal length thus obtaining a response time of

2 + dn=pe� � 2 and a performance ratio of n=p. 2

4.4 Connected Schedules

A connected schedule requires the nodes assigned to any processor to be a connected set. This

restriction is equivalent to only considering schedules that incur communication cost on p�1 edges

(the minimal possible number) when using p processors.

A practical reason for investigating connected schedules is execution efficiency. Code genera-

tion schemes such as that employed in the LDL system [CGK90] generate a single thread of control

for a connected sets of operators. The context switching between operators is efficiently built

into the generated code rather than being managed by more expensive mechanisms such as thread

packages. Unconnected sets require as many threads as the number of connected components in the

set. Thus connected schedules permit a faster implementation of intra-processor context switching.

While POT is NP-hard, we show that the optimal connected schedule can be constructed by

a polynomial algorithm. Subsequent sections show the optimal connected schedule to also be a

near-optimal general schedule for path-shaped trees. It therefore finds a use in the construction of

the Hybrid algorithm in Section 4.6.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 63

3

2

3

6

8
9

9

1

1

18

12 11

2

3

10

8 10

1

18

11
12

12 11

18

18

11
12

12

Cut
inter-fragment
edges

Collapse
intra-fragment
edges

Expand
 Collapsed Edges

Reconnect
Cut Edges

Figure 4.4: Connected Schedule as Cutting and Collapsing Edges

A connected schedule for p processors divides the operator tree into k � p fragments (i.e. con-

nected components) obtained by cutting k � 1 edges and collapsing the remaining edges (Fig-

ure 4.4). Thus, one way of finding a connected schedule is to examine all O(2n) combinations of

cutting/collapsing edges. The next section shows how we can do better.

4.4.1 Connected Schedules when Communication is Free

We now develop an algorithm for finding the optimal connected schedule for trees in which all edge

weights are zero. The algorithm is generalized to handle edge weights in the next section.

We will develop the algorithm in two steps. First, given a boundB and number of processors p,

we develop an efficient way of finding a connected schedule with a response time of at most B, if

such a schedule exists. Second, we show that starting with B set to a lower bound on the response

time, we can use a small number of upward revisions to get to the optimal connected schedule.

Definition 4.9 A schedule is (B; p)-bounded if and only if it is a connected schedule that uses at

most p processors and has a response time of at most B.

Definition 4.10 A node is a mother node if and only if all adjacent nodes with at most one exception

are leaves. The leaf nodes are termed the children of the mother node.

We first consider the simple case of a mother node m with a single child r to see how the

decision to cut or collapse an edge can be made. Suppose tr + tm > B. Clearly, the edge (m; r)

should be cut since otherwise we shall exceed the bound. Now suppose instead tr + tm � B. We

claim that the edge (m; r) can be collapsed. Since r is connected only to m, if the connecting edge

were cut, r would get a processor, say pr, to itself. Putting m on pr reduces the total work for other

processors without causing the bound to be exceeded on pr, and thus can never hurt. This basic

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 64

idea will be generalized to derive an efficient algorithm. Some of the ideas are similar to those of

Hadlock [Had74] for a related but different problem.

The following lemmas narrow the set of schedules we need to examine. We assumem is a mother

node with children r1; : : : ; rd in the order of non-decreasing weight, i.e. tr1 � tr2 � : : : � trd .

Lemma 4.4 If a (B; p)-bounded schedule S places m and rj in the same fragment and ri in a

different fragment where i < j (i.e. tri � trj), then the schedule S 0 in which rj and ri exchange

places is also (B; p)-bounded.

Proof: Let Fm and Fl respectively be the fragments containing m and ri. Swapping ri and

rj cannot increase the cost of Fm since tri � trj . It suffices to show that the cost of Fl does not

increase beyond B. Since S is a connected schedule and leaf ri is not in the same fragment as its

mother node, ri must be the only node in Fl. Since the original schedule was (B; p)-bounded, no

individual node weight exceeds B. Thus swapping cannot increase the cost of Fl beyond B. 2

Repeated application of Lemma 4.4 results in:

Lemma 4.5 If there exists a (B; p)-bounded schedule, then there exists a (B; p)-bounded schedule

such that (1) if (m; rj) is collapsed then so is (m; rj�1) (2) if (m; rj) is cut then so is (m; rj+1)

Let l be the largest number of children that can be collapsed with m without exceeding bound

B, that is, the maximum l such that tm +
P

1�i�l tri � B

Theorem 4.4 If there exists a (B; p)-bounded schedule, then there exists a (B; p)-bounded schedule

such that (1) (m; rj) is collapsed for 1 � j � l (2) (m; rj) is cut for l < j � d.

Proof: By Lemma 4.5 there exists a (B; p) schedule such that all collapsed children precede

all cut children. Assume tr1; : : : trl0 are collapsed and tr
l0+1

; : : : ; td are cut. Let F be the fragment

containing m; tr1; : : : trl0 .

Clearly l0 � l since otherwise the boundB will be exceeded. Since cost(F) � B, we can replace

the fragments F; ftr
l0+1

g; : : : ; ftrlg by two fragments F � fm; tr1; : : : ; trl0g and fm; tr1; : : : trlg
each of which is bounded. 2

Theorem 4.4 gives us a way of finding a (B; p)-bounded schedule or showing that no such

schedule exists. We pick a mother node and traverse the children in the order of non-increasing

weights. We collapse children into the mother node as long the weight of the mother stays below B

and then cut off the rest. We repeat the process until no more mother nodes are left or we have cut

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 65

p� 1 edges. If the weight of the last fragment is no more than B, we have found a (B; p)-bounded

schedule, otherwise no such schedule is possible.

Algorithm 4.2 The BpSchedule Algorithm

Input: Operator tree T with zero edge wts, bound B

Output: Partition of T into fragments F1; : : : ; Fp s.t. cost(Fi) � B for i = 1; : : : ; p� 1

1. while there exists a mother node m

2. Let m have children r1; : : : ; rd s.t. tr1 � : : : � trd

3. Let l � d be the max l s.t. tm +
P

1�i�l tri � B

4. for j = 1 to l do

5. collapse(m; rj)

6. for j = l+ 1 to d do

7. cut(m; rj)

8. if total number of cuts is p� 1 goto 10

9. end while

10. return resulting fragments F1; : : : ; Fp

We will find the optimal connected schedule by setting B to a lower bound on the response

time and repeatedly revising B by as large an increment as possible while ensuring that we do not

overshoot the optimal value. For each such value of B we run BpSchedule and check whether

cost(Fp) is at most B.

We can use an unsuccessful run of BpSchedule to derive an improved lower bound. For each

fragment Fi produced by BpSchedule, let Bi be the cost of the fragment plus the weight of the

next node that was not included in the fragment (i.e. the value tl+1 when a cut is made in line 7

of BpSchedule). For a re-run to be successful, some fragment must become larger. Thus B must

increase to at least B�, the smallest of the Bi.

Lemma 4.6 B� = miniBi is a lower bound on the optimal response time.

Using the lower bounds given by Lemmas 4.1 and 4.2 and the revision procedure given by

Lemma 4.6, we devise the algorithm shown below.

Algorithm 4.3 The BalancedCuts Algorithm

Input: Operator tree T with zero edge weights, number of processors p

Output: Optimal connected schedule

1. B = max
�dPi2V ti=pe ;maxi2V ti

�

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 66

2. repeat forever

3. F1; : : : ; Fp = BpSchedule(T, B)

4. if cost(Fp) � B return F1; : : : ; Fp

5. Let Bi = cost(Fi) + wt of next node not in Fi

6. B = miniBi

7. end repeat

The following theorem shows BalancedCuts to terminate in at most O(np) iterations and thus

have a running time ofO(n2p). The remarks below show how the implementation may be improved

to O(np).

Lemma 4.7 BalancedCuts terminates in at most 1 + (p� 1)(n� p) iterations.

Proof: Suppose we label the edges by integers starting at 1 in the order they were considered

by BpSchedule. Any schedule can now be described by a vector c = c1; : : : ; cp�1 of the indices of

the p � 1 cut edges. Notice that c1 < c2 < : : : < cp�1. Given two sequences c and c0, we say c

is dominated by c0 if every entry of c is no larger than the corresponding entry of c0. The method

for revising B guarantees that the increment is large enough for at least one fragment to increase in

size. Thus at least one cut must move to a strictly higher label and no cut moves to an edge with a

lower label. The sequence of schedules constructed by BalancedCuts gives a sequence of vectors

where each vector strictly dominates all the preceding vectors. The length of any sequence of such

vectors can be at most 1+(p� 1)(n� p) since the i’th element of the vector may only change from

a minimum value to i to a maximum value of n� p+ i. 2

A more careful analysis (and implementation) of this idea gives us a bound ofO(nk). Whenever

the B value is updated, the total work done in finding a new candidate solution can be charged

to the nodes which migrate from a component to a previous one. It is easy to verify that the

implementation cost works out to be O(1) for each such node migration. Since any one node can

migrate at most p times, the total work can be bounded by O(np).

4.4.2 BalancedCuts with Communication Costs

Generalizing BalancedCuts to take care of communication requires two changes. Firstly, the input

tree must be pre-processed by running GreedyChase. Secondly, BpSchedule must consider the

children of a mother node in the order of non-decreasing ti � cim. Both changes are required to

make BpSchedule work correctly.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 67

w2

F1 F2

.

Fp

wp+1
wp

e2l e3l
epr

eple2r
e(p+1)l e(p+1)r

w1

Figure 4.5: Fragments formed by BpSchedule before the last stage of BalancedCuts

BpSchedule assumes that adding more nodes to a fragment, while retaining connectivity, can

only increase its cost. The monotone trees produced by GreedyChase guarantee exactly this property.

Since the schedule for the original tree can be recovered from the schedule for the “pre-processed”

tree, it suffices to schedule the monotone tree.

BpSchedule greedily “grows” fragments by collapsing children with their mother node as long

as the fragment cost remains bounded. The children were ordered by non-decreasing weights, and

the weight of each child was a measure of how much the weight of the fragment would increase by

collapsing the child into the mother node. With non-zero edge weights, the mother node must pay

the cost of communicating with the child when it is a different fragment. Thus collapsing the child

i with the mother m increases the cost of the fragment by ti � cim. Ordering the children of the

mother node in the order of non-decreasing ti � cim suffices to generalize Lemmas 4.4 and 4.5 and

Theorem 4.4.

4.5 Connected Schedules as an Approximation

The optimal connected schedule is a good approximation for paths but not for stars.

Theorem 4.5 For path-shaped operator trees, the worst-case performance ratio in using the opti-

mal connected schedule is at most 2� 1=p. Examples exist that achieve a ratio of 2� 1
d p+1

2 e
.

Proof: We shall prove the theorem by considering the situation preceding the last iteration of

the BalancedCuts algorithm (Algorithm 4.3).

Suppose the BpSchedule procedure chooses mother nodes in a left-to-right manner, thereby

cutting the path into maximal fragments F1; : : : ; Fp (see Figure 4.5). Let the first node of fragment

Fi have weight wi, and let the weights of the edges to the left and right of wi be eil and eir ,

respectively (take e1l = 0, and if wp+1 is the last node, take e(p+1)r = 0). Let Ai = cost(Fi) and

Bi = cost(Fi [fwi+1g).
The procedure for revising bounds chooses the minimum of the Bi’s. Therefore before the

last round we must have, for i = 1; : : : ; p, that Bi � LC where LC is the response time of

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 68

the connected schedule. Adding these p inequalities, and using Bi = cost(Fi [fwi+1g) =

Ai + wi+1 + e(i+1)r � e(i+1)l we get the following inequality.X
1�i�p

(Ai + wi+1 + e(i+1)r � e(i+1)l) � pLC

This may be rearranged as follows (recall that e1l = 0).

1
p

2
4wp+1 + e(p+1)r +

X
1�i�p

(Ai � eil � e(i+1)l)

3
5+

1
p

2
4 X

1<i�p

(wi + eil + eir)

3
5 � LC

Note that (Ai � eil � e(i+1)l) is the sum of the all node weights in the i’th fragment. Further,

since there are no worthless edges, e(p+1)r is less than the sum of the weights of all nodes to the

right of wp+1. Therefore, [wp+1 + e(p+1)r +
P

1�i�p(Ai � eil � e(i+1)l)] is at most the sum of all

node weights. Further, (wi + eil + eir) is the weight of a node plus the weight of incident edges.

LettingW (sum of nodes weights divided by p) and R (maximum node weight plus incident edges)

represent the lower bounds given by Lemmas 4.1 and 4.2, the last equation may be rewritten as

W +
p�1
p
R � LC .

Letting Lopt be the response time of the optimal unconnected schedule, Lopt +
p�1
p Lopt � LC ,

or equivalently LC
Lopt

� 2� 1
p

.

We now demonstrate examples that achieve a ratio of 2�1=dp+1
2 e i.e., 2p=(p+1) for odd values

of p and (2p + 2)=(p+ 2) for even values. We will construct examples for which LC=W equals

the claimed ratio. We then show that when n is large enough, Lopt equals W (see Figure 4.6). We

will consider the cases of odd and even p separately.

Case 1 (p odd): For a path with (p + 1) nodes assign weights of (p � 1)=2 and (p + 1)=2

to alternate nodes. The total node weight is p(p + 1)=2 giving W = (p + 1)=2. A connected

schedule needs to combine two adjacent nodes and will therefore have a response time of p giving

LC=W = 2p=(p+ 1).

We now show paths with p + d nodes for which LC=Lopt = LC=W = 2p=(p + 1) when

d � (p + 1)=2. Such paths are constructed by replacing an end-node (with weight (p� 1)=2) by

d nodes with the same total weight. Thus LC and W remain constant but it becomes possible for

an unconnected schedule to obtain a response time of W by appropriately matching the new nodes

with the lighter nodes. The weight (p� 1)=2 may be distributed among the d new nodes as follows:

give weight 1 to the first (p� 3)=2 nodes and equally distribute the remaining weight of 1 among

the remaining nodes. Now, an unconnected schedule may pair each of the nodes of weight 1 with

a node with weight (p� 1)=2 and put all nodes with weight less than 1 with the remaining node of

weight (p� 1)=2.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 69

p n EXAMPLE

2 3 LC/Lopt= 3/2
LC/W = 3/2

4 LC/Lopt= 3/2
LC/W = 3/2

3 4 LC/Lopt= 3/2
LC/W = 3/2

5 LC/Lopt= 3/2
LC/W = 3/2

4 5 LC/Lopt= 5/4
LC/W = 5/3

6 LC/Lopt= 5/3
LC/W = 5/3

5 6 LC/Lopt= 5/4
LC/W = 5/3

7 LC/Lopt= 5/3
LC/W = 5/3

1 2 1 2

121/21/2

1 2 1

1/2 2 1 21/2

3 2 3 22

3 2 3 211

3 2 3 21 3

3 2 3 22 3

1

Figure 4.6: Examples with LC
Lopt

= 2� 1
d p+1

2 e

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 70

Case 2 (p even): For a path with (p + 1) nodes assign weights p=2 and 1 + p=2 to alternate

nodes. We obtain W = (p + 2)=2 and LC = p+ 1 thus giving LC=W = (2p+ 2)=(p+ 2). The

remaining argument is similar to Case 1. 2

There is a small gap between proved worst-case performance ratio of 2� 1=p and the examples

that achieve 2 � 1=dp+1
2 e. The following theorem tightens the proof to meet the examples for the

case of zero communication costs.

Theorem 4.6 For path-shaped operator trees with zero communication costs the worst-case per-

formance ratio in using the optimal connected schedule is 2� 1
d p+1

2 e
.

Proof: From the proof of last lemma, the condition Bi � LC may be written as follows for the

case of zero communication costs:

Ai + wi+1 � LC for i = 1; : : : ; p (4.4)

Separating the odd and even values of p, it suffices to show

LC

Lopt
�

2p
p+1 for p odd

2p+2
p+2 for p even

(4.5)

Case 1 (p odd): Adding up the p+1
2 equations for the odd values of i in (4.4), we have

X
1�j� p+1

2

A2j�1 + w2j �
p+ 1

2
LC (4.6)

Observing A2j � w2j ,

wp+1 +
X

1�i�p

Ai � p+ 1
2

LC (4.7)

The lhs is at most W , the sum of all node weights. Since W=p is a lower bound, pLopt � W . Thus

we have

pLopt � p+1
2 LC

� LC
Lopt

� 2p
p+1

Case 2 (p even): Adding up the p
2 equations for the odd values of i and the equation for i = p

in (4.4), we have

Ap + wp+1 +
X

1�j� p

2

A2j�1 + w2j �
p+ 2

2
LC

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 71

1

1

1

11
1

1

1
1

1

6

1

1

1

1

1

1

1

11
1

1

1
1

1 2

22

2 2

Figure 4.7: Performance ratio=3 for star of 10 nodes scheduled on 5 processors

Using A2j � w2j and rearranging,

wp+1 + (wp +
X

1�i�p

Ai) � p+ 2
2

LC

Note that wp+
P

1�i�pAi is at mostW and pLopt � W . Further Lopt � wp+1 since the weight of

any node is a lower bound (Lemma 4.2). Therefore,

Lopt + pLopt � p+2
2 LC

� LC
Lopt

� 2p+2
p+2

2

Connected schedules are not a good approximation for stars since all fragments except the one

containing the center are forced to consist of a single node.

Lemma 4.8 The worst-case performance ratio in using the optimal connected schedule is un-

bounded for stars.

Proof: Consider a star in which all nodes have weight 1 and all edges have weight zero. A

connected schedule is forced to place a single leaf on all processors except one, and the remaining

star on the remaining processor. Thus a connected schedule has a response time of n � p + 1.

An unconnected schedule achieves a response time of dn=pe. Thus, the performance ratio is

(n � p + 1)=dn=pe which may have an arbitrarily high value. Figure 4.7 shows an example for

n = 10 and p = 5 that achieves a performance ratio of 3. 2

4.6 Heuristics for POT Scheduling

We now describe two heuristics for the POT problem. We show the heuristics to have worst-case

performance ratios of about 2 for several restricted cases. We failed to generate counter-examples

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 72

even by use of simulations over millions of examples and therefore conjecture these heuristics to

have a worst-case performance ratio of about 2 in general.

We have the interesting situation in which the modified LPT algorithm works well for stars but

not for paths, while connected schedules are a good approximation for paths but not for stars. This

naturally motivates the combination of the two algorithms into a Hybrid algorithm (Section 4.6.1). In

Section 4.6.2, we discuss the GreedyPairing algorithm which has the advantage of being extremely

simple.

4.6.1 A Hybrid Algorithm

BalancedCuts performs poorly on stars since the constraint of connected schedules is at odds

with load balancing. While the algorithm is cognizant of communication costs, it is poor at

achieving balanced loads. On the other hand, LPT is very good at balancing loads but unaware of

communication costs.

One way of combining the two algorithms is to use BalancedCuts to cut the tree into many

fragments and then schedule the fragments using LPT. LPT can be expected to “cleanup” cases such

as stars on which connected schedules are a bad approximation.

Algorithm 4.4 The Hybrid Algorithm

Input: Operator tree T , number of processors p

Output: A schedule

1. T’ = GreedyChase(T)

2. for i = p to n do

3. F1; F2; : : : ; Fi = BalancedCuts(T 0; i)

4. schedule = LPT (fF1; F2; : : : ; Fig; p)
5. end for

6. return best of schedules found in steps 2 to 5
Note that Hybrid has a performance ratio no worse than that obtained by using BpSchedule or

by modified LPT. This is because the case i = p will provide an optimal connected schedule, while

the case i = n will behave as the modified LPT algorithm. Thus the performance ratio is no worse

than 2� 1=p for paths and no worse than 2 + 1=p for stars.

4.6.2 The Greedy Pairing Algorithm

We now describe an algorithm which is based on greedily collapsing that pair of nodes which leads

to the least increase in response time.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 73

GreedyPairing starts by first pre-processing the operator tree into a monotone tree by running

GreedyChase. Then it chooses the pair of nodes, i and j , such that cost(fi; jg) is the minimum

possible and collapses them. Ties are broken by favoring the pair which offers the greatest reduction

in communication. This process is continued until the number of nodes is reduced to p, and then

each node is assigned a distinct processor. Note that collapsing two (non-adjacent) nodes in a tree

will not necessarily maintain the property of being a tree.

We can prove the algorithm to have a worst-case performance ratio close to 2 for the case of

zero edge weights.

Theorem 4.7 The GreedyPairing algorithm has a tight worst-case performance ratio of 2 �
2=(p+ 1) when all edge weights are zero.

Proof: Consider the penultimate stage of this algorithm, i.e. when there remain p + 1 nodes.

Label the nodes as 0, 1, : : :, p. Without loss of generality, assume that the last collapse is of the pair

S = f0; 1g.

We first claim that if the response time L of the final schedule is not given by cost(S) = t0 + t1

then GreedyPairing produces an optimal schedule. Suppose that the response time is larger than

cost(S), then there exists an i > 1 such that ti > t0+t1. But then imust be one of the original nodes,

since GreedyPairing would always prefer to collapse the nodes 0 and 1 before ever performing the

collapse which would result in a node of cost ti. Since ti is a lower bound (Lemma 4.1) on the

optimal response time, we obtain that the response time L = ti is optimal.

Consider now the remaining case where L = cost(S) = t0 + t1. By the definition of Greedy-

Pairing, we have that for all i, j 2 f0; 1; : : : ; pg, L = t0 + t1 � ti + tj . Summing over all i and j,

we obtain that

p(p+ 1)
2

L �
X

0�i<j�p

(ti + tj)

= p

pX
i=0

ti

� p2Lopt

where the last inequality follows from Lemmas 4.2 and 4.1. We conclude that L � 2p
p+1Lopt which

gives the desired bound on the performance ratio.

That this bound is tight can be seen from the following example. Suppose there are p nodes of

weight 1 and p nodes of weight p. The optimal solution pairs off one node of each type achieving a

response time of p+ 1. On the other hand, GreedyPairing merges the nodes of weight 1 to obtain,

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 74

at the penultimate stage, p + 1 nodes of weight p. At this point it is forced to pair two nodes of

weight p each, giving a response time of 2p. 2

4.7 Approximation Algorithms

We first discuss a two-stage approach to developing approximation algorithms and then develop the

LocalCuts and BoundedCuts algorithms.

4.7.1 A Two-stage Approach

We divide the POT scheduling problem into two stages, fragmentation followed by scheduling.

Fragmentation produces a connected schedule assuming unlimited processors. Scheduling assigns

the fragments produced by the first stage to the real processors.

The two stage approach offers conceptual simplicity and does not restrict the space of schedules.

Any schedule defines a natural fragmentation corresponding to cutting exactly the inter-processor

edges. For any given schedule, some scheduling algorithm will produce it from its natural fragmen-

tation. Notice that the scheduling stage may assign two fragments that were connected by a cut edge

to the same processor thus “undoing” the cutting. Thus, several fragmentations may produce the

same schedule. In our analysis, we will ignore the decrease in communication cost caused by this

implicit undoing of an edge cutting operation. This can only over-estimate the cost of our solution.

The two-stage approach allows us to use standard multiprocessor scheduling algorithms for the

second stage. We choose to use the LPT [Gra69] algorithm. Given the use of LPT for scheduling,

we may develop the conditions for a good fragmentation. There is an inherent tradeoff between

total load and the weight of the heaviest connected fragment. If an edge is cut, communication cost

is incurred thus increasing total load. If an edge is collapsed, a new node with a larger net weight is

created, potentially increasing the weight of the largest connected fragment. Lemma 4.11 captures

this trade-off and provides conditions on fragmentation for a bounded performance ratio.

Recall our choice of notation from Section 4.2.3. Ri = ti +
P

j cij is the net weight of node i

and R = maxiRi. W =
P

i ti is the sum of the weights of all nodes and W = W=p is the average

node weight per processor.

Assuming fragmentation to produces q fragments with weights M1; : : : ;Mq, we make the

following definitions.

Definition 4.11 M = maxiMi is the weight of heaviest fragment. C is the the total communication

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 75

cost incurred, which is twice the sum of the weights of the cut edges. L = (W+C)=p is the average

load per processor.

We use the subscript OPT to denote the same quantities for the natural fragmentation corre-

sponding to an optimal schedule, for example, Mopt for the weight of the heaviest fragment. We

have:

Lemma 4.9 W � L � L. In particular,W � Lopt � Lopt.

Lemma 4.10 R �M � L. In particular,R �Mopt � Lopt.

In the following lemma, k1 captures the effect of size of the largest fragment and k2 the load

increase due to communication.

Lemma 4.11 Given a fragmentation with M � k1Lopt and L � k2Lopt, scheduling using LPT

yields a schedule with L=Lopt � maxfk1; 2k2g.

Proof: Let pk be a heaviest loaded processor in an LPT schedule with response timeL. Let Mj

be the last fragment assigned to pk. We will divide the analysis into two cases based on whether

Mj is the only fragment on pk or not.

If Mj is the only fragment on pk, L = Mj and by our assumption,

L = Mj �M � k1Lopt

Now consider the case when the number of fragments on pk is at least 2. Since LPT assigns a job

to the least loaded processor, the load on any processor must be at least L �Mj when Mj was

assigned to pk. The total load
P

k Lk may be bounded asX
k

Lk � (L�Mj)p+Mj

) L � 1
p

X
k

Lk +

�
1� 1

p

�
Mj

) L � L+Mj :

Since LPT chooses the least loaded processor, the first p jobs are scheduled on distinct processors.

Since there was at least one other fragment on pk before Mj , there are at least p+ 1 fragments, each

of them no lighter than Mj . Thus,X
k

Lk � (p+ 1)Mj

) Mj � 1
p+ 1

X
k

Lk < L:

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 76

Combining the two inequalities shown above and using the assumption L � k2Lopt, we obtain

L � L+Mj

� 2L

� 2k2Lopt:

Combining the two cases, we conclude L=Lopt � maxfk1; 2k2g. 2

Using the above lemma, the best we can do is to find a fragmentation with k1 = k2 = 1

which would guaranteed a performance ratio of 2. However, finding the best fragmentation is

NP-complete.

Theorem 4.8 Given a star T = (V;E), bounds B and C, the problem of determining whether

there is a partition of V such that no fragment is heavier than B and the total communication is no

more than C is NP-complete.

Proof:(Sketch) We reduce the classical knapsack problem [GJ79] to the above problem. Let an

instance of the knapsack problem be specified by a bag size S and n pairs (wi; pi) where each pair

corresponds to an object of weight wi with profit pi. We can assume without loss of generality that

pi � wi for all i since all pi can be scaled. Consider a star T with n + 1 nodes obtained from the

knapsack instance. We label the nodes of T from 0 to n with the center as 0. We set ci0 = pi=2

and ti = wi + ci and B = S +
P

i ci. We claim that the minimum communication cost for the star

instance is C if and only if the maximum profit for the knapsack instance is
P

i pi � C. 2

We remark that the problem is polynomially solvable when the tree is restricted to be a path.

The next two subsections focus on algorithms to find a fragmentation that guarantees low values

for k1 and k2.

4.7.2 The LocalCuts Algorithm

We now develop a linear time algorithm for fragmentation called LOCALCUTS. We show bounds

on the weight of the heaviest fragment as well as on the load increase due to communication.

Application of Lemma 4.11 shows the algorithm to have a performance ratio of 3:56.

LOCALCUTS repeatedly picks a leaf and determines whether to cut or collapse the edge to its

parent. It makes the decision based on local information, the ratio of the leaf weight to the weight

of the edge to its parent. The basic intuition is that if the ratio is low, then collapsing the edge will

not substantially increase the net weight of the parent. If the ratio is high, the communication cost

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 77

incurred by cutting will be relatively low and can be amortized to the weight of the node cut off. One

complication is that cutting or collapsing an edge changes node weights. Our analysis amortizes

the cost of cutting an edge over the total weight of all nodes that were collapsed to produce the leaf.

In the following discussion we assume that the tree T has been rooted at some arbitrary vertex.

We will refer to the fragment containing the root as the residual tree. A mother node in a rooted

tree is a node all of whose children are leaves. The algorithm uses a parameter � > 1. We will later

show (Theorem 4.9) how this parameter may be chosen to minimize the performance ratio.

Algorithm 4.5 The LocalCuts Algorithm

Input: Monotone operator tree T , parameter � > 1.

Output: Partition of T into fragments F1; : : : ; Fk.

1. while there is a mother node m with a child j do

2. if tj > �cjm then cut ejm

3. else collapse ejm

4. end while

The running time of the LOCALCUTS algorithm is O(n). The following lemma shows a bound

on the weight of the resulting fragments.

Lemma 4.12 Any fragment produced by LOCALCUTS has weight less than �R, which implies

M < �R.

Proof: Consider an arbitrary fragment produced in the course of the algorithm. Let m be the

highest level node in the fragment, with children 1; : : : ; d. The node m is picked as a mother node

at some stage of the algorithm. Now, Rm = cmp + tm + cm1 + : : :+ cmd where cmp is the weight

of the edge from m to it’s parent. Collapsing child j into m, corresponds to replacing cmj by tj .

Since the condition for collapsing is tj < �cmj , collapsing children can increase Rm to at most

�Rm which is no greater than �R. 2

We now use an amortization argument to show that the communication cost incurred by the

LOCALCUTS algorithm is bounded by a constant factor of the total node weight, W .

Lemma 4.13 The total communication cost of the partition produced by the LOCALCUTS algorithm

is bounded by 2
��1W , that is C � 2

��1W .

Proof: We associate a credit pi with each node i and credit pjk with each edge ejk . Initially,

edges have zero credit and the credit of a node equals it’s weight; thus, the total initial credit is

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 78

W . The total credit will be conserved as the algorithm proceeds. When a node is cut or collapsed,

it’s credit is taken away and either transferred to another node or to an edge that is cut. The proof

is based on showing that when the algorithm terminates, every edge that is cut has a credit equal

to (� � 1) times it’s weight. This allows us to conclude that the total weight of the cut edges is

bounded by W=(� � 1). This would then imply that C � 2
��1W . We abuse notation by using ti

for the current weight of a node in the residual tree. We now prove the following invariants using

an inductive argument.

1. Each node has a credit greater than or equal to it’s current weight in the residual tree, i.e.,

pi � ti.

2. Each cut edge eim has a credit equal to (�� 1) times it’s weight, i.e., pim = (�� 1)cim.

As the base case, these invariants are trivially true at the beginning of the algorithm. As the

inductive step, suppose these invariants are true up to k iterations and we consider leaf node j with

motherm in the (k+ 1)st iteration. If j is collapsed, tnewm = tm+ tj . We use the superscript new to

indicate the values at the next iteration. By transferring the credit of j tom, we get pnewm = pj+pm.

Since pj � tj and pm � tm, by the inductive hypothesis we have pnewm � tnewm and both invariants

are preserved.

If j is cut, tnewm = tm + cjm. We need to transfer a credit of cjm to m to maintain the first

invariant. The remaining credit pj � cjm may be transferred to the edge ejm. By the induction

hypothesis, we have pj � cjm � tj � cjm and since edge ejm was cut, pj � cjm > (� � 1)cjm.

Thus sufficient credit is available for the second invariant as well. 2

The previous two lemmas combined with Lemma 4.11, allow us to bound the performance ratio

guaranteed by LOCALCUTS. The following theorem states the precise result and provides a value

for the parameter �.

Theorem 4.9 Using LPT to schedule the fragments produced by LOCALCUTS with� = (3+
p

17)=2

gives a performance ratio of (3 +
p

17)=2 � 3:56.

Proof: From Lemma 4.13 and Lemma 4.9,

L =
W + C

p
� � + 1

� � 1
W � �+ 1

�� 1
Lopt:

Combining this with Lemma 4.12 and using Lemma 4.11 we conclude

L

Lopt
� max

�
�;

2(�+ 1)
�� 1

�

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 79

Observing that the max is minimized when � = 2(�+ 1)=(� � 1), we obtain � = (3 +
p

17)=2

and L=Lopt � (3 +
p

17)=2. 2

The performance ratio of LOCALCUTS is tight. Consider a star in which the center node with

weight � is connected by edges of weight 1 to n� 1 leaves, each of weight � = 3:56. Suppose the

star is scheduled on p = n processors. LOCALCUTS will collapse all leaves and produce a single

fragment of weight (n�1)�+�. The optimal schedule consists of cutting all edges to producen�1

fragments of weight 1 + � and one fragment of weight n � 1 + �. When n > 5, the performance

ratio is ((n� 1)�+ �)=(n� 1 + �) which approaches � as � goes to zero.

4.7.3 The BoundedCuts Algorithm

The LOCALCUTS algorithm determines whether to collapse a leaf into its mother based on the ratio

of the leaf weight to the weight of the edge to its mother. The decision is independent of the current

weight of the mother node. From the analysis of LOCALCUTS, we see that the weight of the largest

fragment is bounded by �Rm, where m is the highest level node in the fragment (Lemma 4.12).

If Rm is small compared to Mopt, we may cut expensive edges needlessly. Using a bound that is

independent of Rm should reduce communication costs.

The analysis of LOCALCUTS showed the trade-off between total communication (C � 2
��1W)

and the bound on fragment size (M < �R). Reduced communication should allow us to afford a

lower value of �, thus reducing the largest fragment size and the performance ratio.

We now discuss a modified algorithm called BOUNDEDCUTS that uses a uniform bound B at

each mother node. It also cuts off light edges in a manner similar to LOCALCUTS. Our analysis will

show that the modified algorithm improves the performance ratio to 2:87. We will show the ratio

to be tight. Our analysis of communication costs uses lower bounds on Copt, the communication

incurred in some fixed optimal schedule.

The algorithm below is stated in terms of three parameters �; � andB that are assumed to satisfy

� � � > 1, and Mopt � B � Lopt. Our analysis uses these conditions and we shall later show

how the values of these parameters may be fixed.

Algorithm 4.6 The BoundedCuts Algorithm

Input: Monotone operator tree T , real parameters �; �, and B where � � � > 1 and B � R.

Output: Partition of T into connected fragments T1; : : : ; Tk.

1. while there exists a mother node m

2. partition children of m into sets N1; N2 such that

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 80

child j 2 N1 if and only if tj=cmj � �;

3. cut emj for j 2 N1; (� rule)

4. if Rm +
P

j2N2
(tj � cmj) � �B then

5. collapse emj for all j 2 N2

6. else cut emj for all j 2 N2; (� rule)

7. end while

8. return resulting fragments T1; : : : ; Tk.

Lemma 4.14 Any fragment produced by BOUNDEDCUTS has weight at most�B. As a consequence,

M � �Lopt.

Proof: Since the weight of a fragment increases only when some edge is collapsed, the explicit

check in line 4 ensures the lemma. 2

Let C denote the set of edges cut by BOUNDEDCUTS. We cut edges using two rules, the � rule

in Step 3 and the � rule in Step 6. Let C� and C� denote the edges cut using the respective rules. C�
and C� are disjoint and C� [C� = C. Let C� and C� denote the communication cost incurred due

to edges in C� and C� respectively. We bound C� and C� in Lemmas 4.15 and 4.17.

Lemma 4.15 C� �
� � 1
� � 1

Copt.

The proof of the lemma requires several definitions and lemmas.

Definition 4.12 Let Ti = (Vi; Ei) denote a subtree of T = (V;E) rooted at i, defined as follows:

Vi includes i, children of i that are not cut off by the � rule, and all nodes that eventually collapse

into a child of i; Ei consists of all edges ekj 2 E such that k; j 2 Vi. The weight of an edge in Ei

is the same as the corresponding edge in E. The weight of node j 2 Vi is the weight of j in T plus

the weights of all incident edges that are not in Ei, i.e., t(Ti)j = t
(T)
j +

P
`2V�Vi cj`.

Figure 4.8 illustrates the definition of Ti. With respect to the figure, the weight of m in Tm

equals the original weight plus the weight of the two edges that connect m to nodes not in Tm.

Definition 4.13 Wi is the total weight of all nodes in Ti.

Definition 4.14 Copt is defined to be the set of edges in tree T that are cut in a fixed optimal

solution.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 81

β
α

αβ
β

m

m’

m’’

Figure 4.8: Subtrees Tm, Tm0 ; Tm00 for nodes m;m0; m00

✓

✓

m

Figure 4.9: Cmopt

Definition 4.15 Ciopt is set of edges formed by starting with the edges Copt \ Ei and deleting all

edges ekj for which there exists em` 2 Copt \ Ei with m being an ancestor of k.

Ciopt is a subset of the edges of Ti that are cut in the optimal. Figure 4.9 shows the edges in

Tm that are cut by a fixed optimal schedule as thick edges. The subset of edges that forms Cmopt are

checked off.

Definition 4.16 Ci� is defined to be the set of edges in tree Ti that are cut by the � rule. Ci
� is the

total weight of the edges in Ci�.

Lemma 4.16 Ifm andm0 are distinct mother nodes where we cut using the� rule, thenCmopt\Cm
0

opt =

� and Cm� \ Cm0

� = �.

Proof: The lemma follows since, by their definition, trees Tm and Tm0 do not share any edges

(see Figure 4.8). 2

PROOF OF LEMMA 4.15

Proof: By Lemma 4.16, it suffices to establish

Cm
� � � � 1

� � 1
Cm
opt

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 82

for each mother node m where we use the � rule to cut edges. Let the set Cmopt consist of s edges

em1z1 ; : : : ; emszs . These edges partition Tm into s + 1 fragments. From the definition of Cmopt it

follows that one fragment, Fm, contains nodes m and m1; : : : ; ms (some of these may be the same

as m). Let the remaining fragments be F1; : : : ; Fs, with Fj containing node zj . We have

Cm
opt =

X
1�j�s

cmjzj

Since no fragment in the optimal is larger thanMopt, the total node weight in fragment Fm is at most

Mopt �
P

1�j�s cmjzj . Thus, letting Qj be the total node weight in fragment Fj for j = 1; : : : ; s,

we have

Mopt �
X

1�j�s

cmjzj +
X

1�j�s

Qj � Wm:

We applied the� rule atm. Since children cut by the� rule are inTm, Wm > �B. SinceB �Mopt,

we have Wm > �Mopt which reduces the above equation to:

X
1�j�s

(Qj � cmjzj) > (�� 1)Mopt

Since no edge in Tm was cut by the � rule, we must have Qj < �cmjzj which results in

X
1�j�s

(� � 1)cmjzj > (�� 1)Mopt

) Mopt <
� � 1
� � 1

X
1�j�s

cmjzj =
� � 1
�� 1

Cm
opt:

Since Cm
� < Rm �Mopt, we have the desired result:

Cm
� � � � 1

� � 1
Cm
opt

2

Using techniques similar to those in the proof of Lemma 4.13, we show the following bound on

C�.

Lemma 4.17 C� �
2

� � 1
W � �� 1

� � 1
C�.

Proof: We use a credit based argument similar to that of Lemma 4.13. For each edge in C� we

associate a credit of (� � 1) times it’s weight and for each C� edge we maintain a credit of (�� 1)

times it’s weight. The proof for C� edges is similar to that in Lemma 4.13. For C� edges, we cannot

use a similar argument since the weight of the leaf being cut off, is not necessarily � times the

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 83

weight of the edge to it’s parent. But consider all the edges cut off at a mother node. From the

algorithm we have Rm +
P

j2N2
(tj � cmj) > �B. From this we see that even though each leaf is

not heavy enough, the combined weight of all the leaves being cut off at a mother node is sufficient

for a credit of (�� 1) times the weight of the edges cut. Since we start with an initial credit of W ,

the result follows. 2

Combining Lemmas 4.15 and 4.17, we obtain the following.

Lemma 4.18 C = C� + C� �
2

� � 1
W +

� � �

�� 1
Copt.

We need the following technical lemma before we prove the main theorem.

Lemma 4.19 For � � � > 1, the function

m(�; �) = max
�
�;

2(� + 1)
� � 1

;
2(� � �)

� � 1

�

is minimized when

� =
2(� + 1)
� � 1

=
2(� � �)

� � 1

The minimum value is 2:87 when � � 2:87 and � � 5:57.

Proof: We observe that f(�; �) = � is strictly increasing in �, h(�; �) = 2(� � �)=(� � 1)

is strictly decreasing in �, g(�; �) = 2(� + 1)=(� � 1) is strictly decreasing in �, and h is strictly

increasing in �. From this it is easy to verify that at the optimum point, both f and g must be equal

to the optimum value. If either them is not the max-value of the max, then appropriately change

�=� to make this happen, and note that this can only reduce the value of h. From this it follows

that all three terms are equal at the optimum. Eliminating � from the above two equations gives us

�3 � �2 � 4�� 4 = 0

which on solving yields the claimed values for �; � and the minimum. 2

Theorem 4.10 Using LPT to schedule the fragments produced by BOUNDEDCUTS with � = 2:87,

and � = 5:57 gives a performance ratio of 2:87.

Proof: Using Lemma 4.18, we have

L =
W + C

p
� W +

2
� � 1

W +
� � �

�� 1
Copt

� max
�
� + 1
� � 1

;
� � �

�� 1

�
� Lopt:

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 84

Using the bound on L from the above equation and from the bound on M from Lemma 4.14, we

can apply Lemma 4.11 to obtain

L

Lopt
� max

�
�; 2

�
max

�
� + 1
� � 1

;
� � �

�� 1

���

� max
�
�;

2(� + 1)
� � 1

;
2(� � �)

�� 1

�
:

From Lemma 4.19, the right hand side of the above inequality is minimized at the values stated in

the theorem, and this shows that L=Lopt � 2:87. 2

The performance ratio of BOUNDEDCUTS is tight. The example is similar to that for LOCALCUTS

i.e. a star in which the center node with weight � is connected by edges of weight 1 to n� 1 leaves

each of weight � = 2:87. Suppose the star is scheduled on p = n processors. The optimal schedule

consists of cutting all edges to produce n�1 fragments of weight 1+� and one fragment of weight

n � 1 + �. Taking n > 4, Mopt = Lopt = n � 1 + �. BOUNDEDCUTS will collapse all leaves and

produce a single fragment of weight (n� 1)�+ � (since B = Lopt, this does not exceed �B). The

performance performance ratio is therefore ((n� 1)�+ �)=(n� 1 + �) which approaches � as �

goes to zero.

The results in this section rely on the fact that the bound B used in BOUNDEDCUTS satisfies

Mopt � B � Lopt. Since we do not know the optimal partition, we do not know Mopt or Lopt.

However, we can ensure that we try a value of B that is as close as we want to Lopt. The following

theorem makes the idea more precise.

Theorem 4.11 For any � > 0, we can ensure that we run BOUNDEDCUTS with a boundB satisfying

Lopt � B � (1 + �)Lopt. This yields a performance ratio of (1 + �)2:87 with a running time of

O(��1np logn).

Proof: From Lemmas 4.9 and 4.10, maxfW;Rg is a lower bound on Lopt. W is an upper

bound since we can always schedule the entire tree on a single processor. Thus, W � Lopt � pW .

We can try the value B = �kW for each integer k satisfying 1=� � k � p=�. For each such value,

we run BOUNDEDCUTS followed by LPT and take the best schedule. This guarantees that we will

use a bound Lopt � B � (1+ �)Lopt. From the previous analysis, if we use such a bound, we get a

performance ratio of (1 + �)2:87. There are (p� 1)=� values for k, LPT requires O(n logn) time,

and BOUNDEDCUTS requires O(n). Thus the total time for all values of B is O(��1np logn). 2

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 85

4.8 Experimental Comparison

In this section, we experimentally compare the average-case performance of the algorithms devel-

oped in previous sections. We first discuss the experimental setup and then describe the results.

The overall result is that Hybrid has the best average case behavior.

4.8.1 Experimental Setup

All experiments were done by random sampling from spaces of monotone trees. The space was

specified by four parameters: shape, size, edgeRange and nodeRange. We restricted ourselves to

monotone trees since all algorithms pre-process the input tree into a monotone tree.

The shape of trees was controlled by specifying the maximum number of children that a node

could have. Given this maximum, the actual number of children of a non-leaf node was randomly

chosen from between 1 and the maximum. Two interesting classes of shapes are narrow and wide

trees. Narrow trees restrict a node to have at most two children while wide trees allowed a node to

have any number of children. Narrow trees represent the shapes that are commonly encountered in

practice since most database operators have 1 or 2 arguments.

EdgeRange and nodeRange specified the integer ranges from which edge and node weights

could be chosen. The size specified the number of nodes in the trees to be generated.

Given fixed values for shape, size, edgeRange and nodeRange, we randomly generated trees

of at least the given size and filtered those whose corresponding monotone trees was of the exact

size needed. For each specification of the space that we experimented with, we generated 2500

monotone trees and stored them in a file.

Each reported data point is an average over 2500 monotone trees. This number of samples was

always sufficient to guarantee an error of less than 5% with a confidence of 95%.

4.8.2 Experimental Comparison

All experiments reported in this section are on trees with 30 nodes with both edgeRange and

nodeRange set to 1 : : :100. The shapes of the trees are either narrow or wide. We again note that

narrow trees represent the shapes that are commonly encountered in practice.

Experiments with spaces in which the tree size or shape was different did not yield any new

lessons. Changes to edgeRange and nodeRange do change the difference between curves but did

not, in our observation, change the relative ordering of algorithms.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 86

5 10 15 20 25 30
processors0

0.5

1

1.5

2

Avg. Performance Ratio

Figure 4.10: Performance of Hybrid(solid), BalancedFragments(dotted) and Modified LPT(dashed)
on Wide Trees

Since computing the optimal schedule has prohibitive cost, all performance ratios are with

respect to a lower bound on the optimal. The lower bound was taken to be the largest of two lower

bounds. The lower bounds given by Lemma 4.2 can be improved using the following lemma. The

second lower bound was from Lemma 4.1.

Lemma 4.20 If CE is the sum of the weights of the cheapest p � 1 edges and W the sum of all

node weights in a monotone tree with at least p nodes, then (CE +W)=p is a lower bound on the

optimal response time.

Proof: The optimal schedule for a monotone tree with at least p nodes must cut at least p � 1

edges. 2

4.8.3 Performance of Hybrid

Figures 4.8.3 and fig:nhyb plot performance ratios for the Hybrid algorithm as well as the two

algorithms out of which Hybrid was constructed.

We observe that Modified LPT outperforms BalancedFragments for wide trees but the situation

reverses for narrow trees. The explanation lies in the fact that narrow trees are close to paths while

wide trees are close to stars. Connected schedules produced by BalancedFragments are a good

approximation for paths (Theorem 4.5) but not for stars (Lemma 4.8). Schedules produced by

Modified LPT are a good approximation for stars (Theorem 4.3) but not for paths (Lemma 4.3).

Hybridization of the two algorithms helps since for an specific tree either one or the other

algorithm performs well.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 87

5 10 15 20 25 30
processors0

0.5

1

1.5

2

Avg. Performance Ratio

Figure 4.11: Performance of Hybrid(solid), BalancedFragments(dotted) and Modified LPT(dashed)
on Narrow Trees

5 10 15 20 25 30
processors0

0.5

1

1.5

2

Avg. Performance Ratio

Figure 4.12: Comparison of Hybrid(solid), LocalCuts(dashed) and BoundedCuts(dotted) on Narrow
Trees

4.8.4 Comparison of Hybrid, LocalCuts and BoundedCuts

Figures 4.8.4 and 4.8.4 compare Hybrid, LocalCuts and BoundedCuts.

We first observe that even though BoundedCuts has a better worst-case performance ratio than

LocalCuts, LocalCuts performs better on the average. The explanation lies in the fact that while the

weight of the largest fragment is lower in BoundedCuts (as compared to LocalCuts) the lowering

comes at the expense of cutting more expensive edges. This increases the average performance

ratio.

The second observation is that Hybrid outperforms the other two algorithms. We also note that

while we could prove worst-case bounds on the performance ratio of Hybrid only for stars and

paths, we do not know of any examples on which Hybrid has a performance ratio of more than 2.

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 88

5 10 15 20 25 30
processors0

0.5

1

1.5

2

Avg. Performance Ratio

Figure 4.13: Comparison of Hybrid(solid), LocalCuts(dashed) and BoundedCuts(dotted) on Wide
Trees

4.8.5 Behavior of Lower Bound

Computing the optimal schedule even for a single tree is prohibitively expensive when the trees get

large. In our implementation, it took a few days to compute the optimal schedule for a tree with 15

nodes. All reported performance ratio are therefore with respect to a lower bound on the optimal.

Figure 4.8.5 plot the performance ratio of the optimal (i.e. optimal response time divided by

lower bound) for trees with 10 nodes and compares it with the performance ratio of Hybrid.

We observe that a reason for the humped nature of all curves is that the lower bound itself

follows this pattern. When the number of nodes far exceeds the number of processors, the average

node weight tends to be a good lower bound. When the number of node is almost the same as the

number of processors, the maximum net weight is a good lower bound. The lower bounds are not

as good in the intermediate region.

4.9 Discussion

We developed several algorithms for managing pipelined parallelism and evaluated their average as

well as worst-case performance ratios. Of these, we consider Hybrid to be the algorithm of choice

since it has the best average performance ratio and a worst-case performance ratio of about 2 for

many cases. We conjecture Hybrid to have a performance ratio of about 2 in general.

Some of the other algorithms developed in this chapter have properties that are worth discussing.

GreedyPairing has the advantage of being extremely simple. It is also easily usable when some

of the operators are pre-allocated to processors. This is important in architectures where a disk may

CHAPTER 4. SCHEDULING PIPELINED PARALLELISM 89

2 4 6 8 10
processors0

0.2

0.4

0.6

0.8

1

1.2

Avg. Performance Ratio

Figure 4.14: Performance of Optimal(dotted) and Hybrid(solid)

be scanned only by the processor that “owns” it.

Connected schedules have the practical advantage that certain code generation schemes (such

as in LDL [CGK90]) can generate code with a single thread of control for a connected sets of

operators. The context switching between operators is efficiently built into the generated code

rather than being managed by more expensive mechanisms such as thread packages. Unconnected

sets require as many threads as the number of connected components in the set. Thus connected

schedules permit a faster implementation of intra-processor context switching.

LocalCuts and BoundedCuts have the advantage providing a guarantee on the worst-case per-

formance ratio. We experimented with variations of LocalCuts such as the use of multiple values

of � and trying out multiple choices of the root. Such variations improve average performance

bringing is closer to the performance of Hybrid.

Chapter 5

Scheduling Mixed Parallelism

In this chapter, we address the problem of scheduling a pipelined tree using both pipelined and

partitioned parallelism. This problem is the continuous version of the discrete optimization problem

addressed in the last chapter. When using only pipelined parallelism, each operator is allocated to

a unique processor (a 0/1 assignment). Partitioned parallelism permits an operator to be allocated

to a set of processors. Each processor executes some fraction of the operator.

Allowing partitioned parallelism enlarges the space of schedules. Interestingly, the problem

gets simplified for the case when communication has zero cost. However, when communication is

considered, the problem becomes NP-hard and is a continuous optimization problem that does not

fall into classes such as convex or quadratic programming.

After defining the model, we investigate two interesting classes of schedules. Balanced sched-

ules put equal load on all processors and symmetric schedules that divide each operator equally

over all processors. We develop characterizations of the optimal schedule. We also show a simple

rule for optimally scheduling trees with two nodes.

5.1 Problem Definition

Definition 5.1 A schedule is a n� p matrix A with entries aik � 0 such that
P

1�k�p aik = 1. The

number aik is the fraction of operator i executed by processor k.

To understand communication costs, suppose operator i produces a data stream that is consumed

by operator j. Assuming uniform production, fraction aik of the data stream will be produced on

processor k. Assuming uniform redistribution of tuples, fraction ajk is consumed by the local clone

of operator j and fraction 1 � ajk by non-local clones (In the terminology of Chapter 3, we are

90

CHAPTER 5. SCHEDULING MIXED PARALLELISM 91

Processor1 Processor2

12

16

8

6

12

3

6

4

1

3

1

scan

build build [7/22]

build [9/22]

scan [5/22]

scan [15/22]

IDLE [8/22]

build build

scan scan

Operator Tree Communication Pattern Gantt Chart

P
ro

ce
ss

or
1

P
ro

ce
ss

or
2

Figure 5.1: Execution with Mixed Parallelism

focusing on the case where each node is of a different color). Thus, on processor k, operator i incurs

a communication cost of cijaik(1 � ajk) with operator j. Generalizing, the total communication

cost (with all other operators) incurred by i on processor k is
P

1�j�n aik(1� ajk)cij.

Definition 5.2 The load Lk on processor k is

Lk =
X

1�i�n

aikti +
X

1�i�n
1�j�n

aik(1� ajk)cij

We will use Lk(A) to denote the load on processor k in schedule A.

The response time, L, of a schedule is derived by reasoning similar to that in the last chapter.

The pipelining constraints force all operators in a pipeline to start simultaneously (time 0) and

terminate simultaneously at time L. Letting fik be the fraction of operator i executed by processor

k, the pipelining constraint is:

fik =
1
L
[ti +

X
j

aik(1� ajk)cij] (5.1)

Since at least one processor must be fully utilized, we have:

max
1�k�p

[
X

1�i�n

fik] = 1

) L = max
1�k�p

[
X

1�i�n

[ti +
X
j

aik(1� ajk)cij]] = max
1�k�p

Lk using equation (5.1)

Example 5.1 Figure 5.1 shows an operator tree with 2 nodes scheduled on two processors. Taking

the SCAN operator to be operator 1 and BUILD to be operator 2, the schedule being illustrated has

a11 = 3=4, a12 = 1=4, and a21 = a22 = 1=2. Processor 1 is saturated and the schedule has response

time 22. 2

We now state the POTP (Pipelined Operator Tree with Partitioning) scheduling problem as the

following continuous optimization problem:

CHAPTER 5. SCHEDULING MIXED PARALLELISM 92

Input: Operator Tree T = (V;E)with positive real weights ti for each node i 2 V and cij for

each edge (i; j) 2 E; number of processors p

Output: n� p matrix A that minimizesL = max1�k�p Lk subject to

aik � 0 for 1 � i � n; 1 � k � pP
1�k�p aik = 1 for 1 � i � n

We first observe that Lemma 4.2 applies to POTP and W = W=p where W =
P

i ti is a lower

bound on the response time of any schedule. Since operators are now divisible, the lower bound

given by Lemma 4.1 does not apply (as a counter-example, consider a tree consisting of a single

node scheduled on two processors).

Lemma 5.1 POTP is NP-complete.

Proof: (Sketch) The problem is in NP since the response time of a schedule is easily computed.

To see the problem to NP-hard, consider a path with 2n nodes in which alternate edges have

weights 1 and 0. Since edges with 1 weight must be collapsed, the problem reduces classical

Multiprocessor scheduling of the resulting n nodes and is thus NP-hard. In Section 5.2, we will

show this proof idea to apply with finite edge weights. 2

Our formulation of POTP has an objective function that is not smooth due to the presence of

max. Continuity of first and second derivatives is desirable in continuous analysis. The following

equivalent formulation achieves smoothness:

Minimize z subject to

z � Lk � 0 for 1 � k � p

aik � 0 for 1 � i � n; 1 � k � pX
1�k�p

aik = 1 for 1 � i � n

Since Lk is a quadratic function in terms of aik, the constraint z � Lk � 0 is non-linear. Thus

POTP does not fall into the class of linear programming (objective function and all constraints linear)

or quadratic programming (quadratic objective function, linear constraints). It also does not fall into

the class of convex programming problems which have the useful property that a local minimum

is also a global minimum. For a problem to be convex, the objective function must be convex,

equality constraints must be linear and inequality constraints must be convex. Unfortunately, the

constraint z � Lk � 0 is neither convex nor concave due to its quadratic nature. This can be seen

CHAPTER 5. SCHEDULING MIXED PARALLELISM 93

more formally by observing that for n = p = 2, the Hessian for z � Lk � 0 is indefinite with

eigenvalues -2, -2, 0, 2, 2.

We will find it useful to distinguish between two schedules with equal response time by preferring

the one that lowers load on some processors while keeping it constant on the remaining processors.

The following definition states this precisely.

Definition 5.3 A < A0 if and only if one of the following conditions is true:

� L(A) < L(A0)

� L(A) = L(A0) and Lk(A) � Lk(A
0) for all processors k and there exists some processors k0

such that Lk0(A) < Lk0(A0).

Two schedules are equal if neither is less than the other.

We will find it useful to reason with the partial derivatives of load functions.

@Lk

@aik1

=

8<
: ti +

P
1�j�n(1� 2ajk)cij if k1 = k

0 otherwise
(5.2)

@2Lk

@aik1@ajk2

=

8<
: �2cij if k = k1 = k2

0 otherwise
(5.3)

Definition 5.4 We will use Aik as a convenient notation for @Lk
@aik

.

5.2 Balanced Schedules

Definition 5.5 A balanced schedule has equal load on all processors.

In this section, we investigate properties of balanced schedules. This allows us to develop

necessary conditions for minimal schedules. In particular, we will show that if a minimal schedule

is not balanced then any processor k that has more load than some other processor must have

aik = 0 or 1 for all operators i. Further, if S is the set of operators for which aik = 1, then

(8i 2 S)ti +
P

j =2S cij �
P

j2S cij .

Though scheduling in parallel systems is often termed “load balancing”, the following example

shows that there may be more than one balanced schedule and none of the balanced schedules may

be optimal.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 94

Example 5.2 Consider an operator tree with 2 nodes each of weight 1 and an edge of weight 4. If

scheduled on two processors, the loads are:

L1 = a11 + a21 + 4(a11a22 + a21a12)

L2 = a12 + a22 + 4(a12a21 + a22a11)

The condition for a balanced schedule isL1 = L2 and may be simplified to yielda11+a21 = 1. Thus,

there are infinitely many balanced schedules. For example, the schedule with a11 = a21 = 1=2

is balanced and symmetrically divides each operator over all processors giving a response time

of 3. Another balanced schedule is a pipelined schedule in which each operator is assigned to a

different processor (a11 = 1 and a21 = 0) and has a response time of 5. The optimal schedule

places both operators on the same processor to yield a response time of 2. (The optimality follows

by Theorem 5.1 which is proved later in this chapter.) 2

Lemma 5.2 Given an arbitrary schedule A and operator i, Aik � 0 for at most one processor k.

Proof: We will assumeAik � 0 for two processors k1 and k2 and derive a contradiction. Using

Definition 5.4, Aik � 0 may be written as 1
2(ti +

P
1�j�n cij) �

P
1�j�n ajkcij

Aik1 +Aik2 � 0

� ti +
X

1�j�n

cij �
X

1�j�n

(ajk1 + ajk2)cij

which is a contradiction since ajk1 + ajk2 � 1 and ti > 0. 2

Lemma 5.3 For any local minima A, if Aik � 0 then aik = 1.

Proof: Assuming aik < 1 in a locally minimal schedule A, we derive a’ contradiction by

showing the existence of neighboring schedule A0 < A. If aik < 1, then there exists some

processor k1 such that aik1 > 0. We construct A0 by increasing aik and decreasing aik1 . Since

Aik � 0, by Lemma 5.2 Aik1 > 0. Thus A0 < A since load is reduced on k1 and does not increase

on k. 2

Lemma 5.4 Suppose locally minimal schedule A is not balanced and kmax is a processor with

maximal load. Then for any operator i, either aikmax
= 1 and Aikmax

� 0 or aikmax
= 0 and

Aikmax
> 0.

8i[(aikmax
= 1 ^Aikmax

� 0)_ (aikmax
= 0 ^Aikmax

> 0)]

CHAPTER 5. SCHEDULING MIXED PARALLELISM 95

Proof: For arbitrary operator i, we consider the cases Aikmax
� 0 and Aikmax

> 0.

If Aikmax
� 0 then by Lemma 5.2 we must have Aik > 0 for all k 6= kmax. If aikmax

< 1, then

there must be some k1 such that aik1 > 0 and Aik1 > 0. We may reduce load on both kmax and

k1 by increasing aikmax
and decreasing aik1 . This contradicts the assumption of A being a local

minima.

Now consider the case Aikmax
> 0. Since A is not balanced there must a processor kmin with

strictly less load than kmax. If aikmax
> 0, we may reduce the load on kmax by reducing aikmax

and increasing aikmin
(possibly increasing the load on kmin). The resulting schedule is less than A

thus contradicting the assumption of A being a local minima. 2

Lemma 5.5 If S is the set of operators on the bottleneck processor in an unbalanced local minima

then each operator i 2 S satisfies

ti +
X
j =2S

cij �
X
j2S

cij

Proof: Letting kmax be the bottleneck processor, i 2 S if and only if aikmax
= 1.

Aikmax
= ti +

X
j

(1� 2ajk)cij

= ti +
X
j

cij � 2
X
j2S

cij

= ti +
X
j =2S

cij �
X
j2S

cij

Thus the condition Aikmax
� 0 may be written as ti +

P
j =2S cij �

P
j2S cij 2

Lemmas 5.4 and 5.5 yield conditions that must be satisfied by the bottleneck processor in any

unbalanced local minima. It is interesting to ask whether these lemmas can be applied recursively

to the remaining processors.

Let P be some subset of the processors. Given schedule A for tree T , we may view the portion

of the tree scheduled on subset P as a new tree TP with schedule AP . Tree TP differs from T only

in the values of the node and edge weights. Let �iP be the total fraction of operator i on subset P .

Definition 5.6 The projected tree TP has node and edge weights given by

tPi = ti�iP +
X
j

�iP�jP cij

cPij = �iP�jP cij

where �iP =
X
k2P

aik

CHAPTER 5. SCHEDULING MIXED PARALLELISM 96

The projected schedule AP has aPik = aik=�iP .

Given A to be a legal schedule, AP is a legal schedule since aPik � 0 and
P

k2P a
P
ik = 1. The

following two Lemma establish that loads and strong minimality are invariant under projection.

Lemma 5.6 The load on processor k 2 P under schedule AP for tree TP is identical to the load

under schedule A for tree T .

Proof: It suffices to show the load on processor k due to operator i to be identical under the

two schedules.

aPikt
P
i +

X
j

aPik(1� aPjk)c
P
ij

=
aik

�iP
[ti�iP +

X
j

�iP�jP cij] +
X
j

aik

�iP
(1� ajk

�jP
)�iP�jP cij

= aikti +
X
j

aik�jP cij +
X
j

aik�jP cij �
X
j

aikajkcij

= aikti +
X
j

aik(1� ajk)cij since �jP + �jP = 1

2

Local minimality comes in two forms: weak and strong. Strong minimality requires existence

of a neighborhood in which all other schedules are strictly less than the minima. Weak minimality

permits the neighboring schedules to have the same response time.

Strong minimality is retained by projection. Weak minimality may not be retained. For example,

consider a neighbor A0 of a weak minima A that keeps load constant on the bottleneck processor,

increases load on the processor with second highest load and decreases it on some other processor.

While A0 = A, we have A0P < AP .

Lemma 5.7 If A is a strong local minima for tree T , then AP is a strong local minima for tree TP

where P is any subset of the processors.

Thus, Lemma 5.4 and 5.5 may be applied recursively to unbalanced schedules that are strong

local minima. This yields the structure illustrated in Figure 5.2. If S is the set of operators on any

of the unbalanced processors, then each operator i 2 S satisfies ti +
P

j =2S cij �
P

j2S cij .

A proof of Lemma 5.1, is given below (using Lemma 5.3):

Lemma 5.1 POTP is NP-complete.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 97

Processors

Lo
ad

aik= 0 or 1

aik= 0 or 1

Balanced

Figure 5.2: Structure of (Strongly) Minimal Schedule

Proof: Given a path with alternate edges of weights c and 0, we show that the optimal must

collapse all edges of weight c for large enough values of c. Let i and j be neighboring nodes

connected by an edge of weight c.

We first consider the case aik; ajk � � for all k. The total communication incurred between i

and j is

Cij =
X
k

aik(1� ajk)c

� c(1� �)
X
k

aik = c(1� �)

Any schedule that incurs communication larger than p
P

i ti cannot be optimal since we can form a

better schedule by putting all operators on a single processor. Thus, a schedule with aik; ajk � �

cannot be optimal if c(1� �) > p
P

i ti which may be written as � < 1� p
P

i ti=c.

Now consider the other case: aik > � for some i; k. Thus Ajk = tj + (1� 2aik)c and Ajk < 0

provided aik > 1=2 + tj=2c. By Lemma 5.3, if Ajk < 0, then ajk = 1. Thus ajk � aik > � and

aik = 1 as well. Thus aik > � > 1=2 + tj=2c assures that nodes i and j will be collapsed in the

optimal.

Combining the two cases, 1� p
P

i ti=c > � > 1=2 + tj=2c assures that all edges of weight c

will be collapsed in the optimal. Such a value of � can be found provided c > 2p(
P

i ti) +maxiti.

2

CHAPTER 5. SCHEDULING MIXED PARALLELISM 98

5.3 Symmetric Schedules

The symmetric schedule partitions each operator equally over all processors. In this section, we

shall establish some properties of such schedules. We will show that symmetric schedules are

optimal when communication is free. They are locally minimal for trees of size 2 but may not

be locally minimal for larger trees. However, under extremely likely conditions, the symmetric

schedule has the same response time as any interior local minima. Finally, symmetric schedules

may be arbitrarily more expensive than the global minimum.

Definition 5.7 The symmetric schedule has aik = 1
p for all operators i, processors k.

The symmetric schedule has Lk =

P
i
ti

p
when cij = 0. Thus L =

P
i
ti

p
which is optimal since

the lower bound of Lemma 4.2 is achieved.

Lemma 5.8 The symmetric schedule is optimal when communication is free.

However, when communication is not free, symmetric schedules may be arbitrarily sub-optimal.

Consider a path with nodes of weight 1 and edges of weight c. For two processors, the symmetric

schedule has a response time of L = n=p + 2(p� 1)(n � 1)c=p2. If the path is long enough, the

optimal schedule will chop the path into p pieces thus obtaining a response time of Lopt = n=p+2c.

When n=p is large L=Lopt goes to 1 + 2c.

Lemma 5.9 The symmetric schedule has an unbounded performance ratio when communication is

not free.

We will understand symmetric schedules further by investigating the Kuhn-Tucker conditions

for local minima (see standard textbooks such as [GMW81, Lue89] for a review). Since symmetric

schedules lie in the interior of the feasible space, it is useful to investigate the class of interior

schedules.

Definition 5.8 A schedule A is an interior schedule iff every processor is allocated a non-zero

fraction of every operator i.e. 0 < aik < 1 for all operators i and processors k.

The following is a consequence of Lemmas 5.3 and 5.4.

Lemma 5.10 If interior schedule A is a local minima, then A is a balanced schedule and Aik > 0

for all operators i, processors k.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 99

The POTP problem is restated below. We will use �k � 0, �ik � 0 and �i respectively as the

Lagrange multipliers for the three kinds of constraints. In our use of matrices, we will treat the the

variables in the order z; a11; : : : ; a1p; a21; : : : ; a22; : : :an1; : : : ; anp.

Minimize z

subject to

z � Lk � 0 for 1 � k � p

aik � 0 for 1 � i � n; 1 � k � pX
1�k�p

aik = 1 for 1 � i � n

At an interior schedule, the constraint aik � 0 is not active and may be ignored. The Lagrangian

function is therefore

L = z �
X
k

�k(z � Lk)�
X
i

�i(
X
k

aik � 1)

By the Kuhn-Tucker conditions, a minima can occur only at stationary points. A feasible point

is said to be stationary if rL = 0. The conditions for the z and aik’th components ofrLto be zero

are:

X
k

�k = 1 (5.4)

��kAik + �i = 0 1 � i � n and 1 � k � p (5.5)

Lemma 5.11 The symmetric schedule is a stationary point.

Proof: We need to show that the symmetric schedule is feasible andrL = 0. Since aik = 1
p

, the

constraintsaik � 0 and
P

1�k�p aik = 1 are satisfied. For any processork,Lk =
P

i
1
p
ti+

P
ij

1
p
(1�

1
p)cij = 1

p [
P

i ti +
p�1
p

P
ij cij]. Thus z � Lk � 0 is satisfied with z = 1

p [
P

i ti +
p�1
p

P
ij cij].

This establishes the feasibility of the symmetric schedule.

Observe thatAik = ti+
P

j(1�2ajk)cij = ti+
p�2
p

P
j cij is independent of k. By Equation 5.5,

this implies that �k is independent of kand Equation 5.4 gives �k = 1
p . It follows that �i = pti+(p�

2)
P

j cij . Thus the symmetric schedule satisfiesrL = 0 with�k = 1
p

and�i = pti+(p�2)
P

j cij .

2

Lemma 5.12 If interior scheduleA is a stationary point then�1; : : : ; �n and�1; : : : ; �p are strictly

positive.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 100

Proof: By Equation 5.5, Aik = �i
�k

. Since Aik > 0 by Lemma 5.10 and �k � 0, we must have

�i > 0 and �k > 0. 2

We will now establish that for n = 2 and arbitrary p, the symmetric schedule is the only interior

stationary point that could be a local minima (Lemma 5.13) and that it is indeed a local minima

(Lemma 5.14)

Lemma 5.13 For n=2 and arbitrary number of processors, the symmetric schedule is the only

interior stationary point that may be a local minima.

Proof: A local minima must satisfy Equation 5.4 and, by Lemma 5.10, must be balanced. We

show that this permits exactly one solution, the symmetric schedule, for n = 2.

By Equation 5.5, Aik = �i
�k

at a stationary point. Using Definition 5.4, this may be rewritten as

X
j

ajkcij =
1
2
[ti +

X
j

cij �
�i

�k
]

Since n = 2,
P

j ajkcij = a2kc12 for i = 1 and a1kc12 for i = 2. Thus, for any fixed k,

a1k =
1

2c12
[t2 + c12 �

�2

�k
] and a2k =

1
2c12

[t1 + c12 �
�1

�k
] (5.6)

The load on processor k is derived as follows. Equation 5.7 is obtained by substituting (5.6)

and simplifying.

Lk =
X
i

aikti +
X
i;j

aik(1� ajk)cij

= a1kt1 + a2kt2 + (a1k + a2k)c12 � 2a1ka2kc12

=
t1t2

2c12
+
t1 + t2 + c12

2
� �1�2

2c12�k2 (5.7)

By Lemma 5.10, an interior local minima is balanced and thus Lk is independent of k. Given

(5.7), this requires �2
k to be independent of k. By Lemma 5.12, �k > 0 and thus �k is independent

of k.

From Equations (5.6) it follows that the values of a1k and a2k must be independent of k. Thus

the symmetric schedule is the only possible solution. 2

Lemma 5.14 For n=2 and arbitrary number of processors, the symmetric schedule is a local

minima.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 101

Proof: Lemma 5.11 established the symmetric schedule to be a stationary point and Lemma 5.12

showed the Lagrange multipliers to be positive at any stationary point. Thus it suffices to show the

projected Hessian of the Lagrangian function to be positive definite.

We will establish ZTWZ be positive definite where W = (G �P
t ftGt) is the Hessian of

the Lagrangian function (Gt is the Hessian and ft the Lagrange multiplier for the t’th constraint,

G is the Hessian for the objective function) and Z is a matrix whose columns form a basis for the

null space of A, the Jacobian matrix of the constraints. We first give the proof for p = 2 and then

generalize.

[PROOF FOR n = p = 2]

Our optimization problem for n = p = 2 is:

Minimize z

subject to

z � L1 � 0

z � L2 � 0

a11 + a12 = 1

a21 + a22 = 1

Since Aik = �i
�k

by Equation 5.5, the Jacobian of the constraints may be written as (our

convention is to list variables in the order z; a11; a12; a21; a22):

A =

2
666664

1 ��1
�1

0 ��2
�1

0

1 0 ��1
�2

0 ��2
�2

0 1 1 0 0

0 0 0 1 1

3
777775

The matrixZwhose columns form a basis for the null space ofA isZ = [0 �2 ��2 ��1 �1]
T .

Since the objective function and the last two constraints are linear, G = G�1 = G�2 = 0. From

Equation 5.3, @2Lk
@aik@ajk

= �2cij is independent of k and thus G�1 and G�2 are equal. Since

�1 +�2 = 1 by (5.4), we have �1G�1 +�2G�2 = G�1 which yields W = �G�1 . Since cii = 0, we

have:

W = �G�1 =

2
666666664

0 0 0 0 0

0 0 0 �2c12 0

0 0 0 0 �2c12

0 �2c12 0 0 0

0 0 �2c12 0 0

3
777777775

CHAPTER 5. SCHEDULING MIXED PARALLELISM 102

Multiplying outZTWZ yields the 1�1 matrix 8�1�2c12. Thus the only eigenvalue is 8�1�2c12

which is positive since �1; �2 > 0 by Lemma 5.12.

[PROOF FOR n = 2, p ARBITRARY]

We now sketch how the proof generalizes for arbitrary p. (Figure 5.3 illustrates the values of

some of the matrices for p = 3).

The matrix A has a simpler form if we multiply the row for z � Lk by �k. The matrix A is the

following (p+ 2)� (2p+ 1) matrix in which I is a p� p identity matrix.

A =

2
6666666666664

�1

�2
...

�p

��1I ��2I

0 1 : : :1 0 : : :0

0 0 : : :0 1 : : :1

3
7777777777775

The null space of A is the following (2p + 1) � (p � 1) matrix Z. The sub-matrix R is a

p� (p� 1) matrix in which all elements of the first row are 1. The bottom-left to top-right diagonal

of the remaining (p� 1)� (p� 1) matrix consists of �1’s and the remaining elements are zero.

Z =

2
666664

0 : : :0

�2R

��1R

3
777775

The matrix W has the value �G�1 by reasoning similar to the case p = 2 and is the following

(2p+ 1)� (2p+ 1) matrix where I is the p� p identity matrix and 0 is the p� p matrix of zeros.

W =

2
666666666666666666664

0 0 : : :0 0 : : :0

0
...

0

0 �2c12I

0
...

0

�2c12I 0

3
777777777777777777775

CHAPTER 5. SCHEDULING MIXED PARALLELISM 103

A =

2
6666664

�1

�2

�3

��1 0 0
0 ��1 0
0 0 ��1

��2 0 0
0 ��2 0
0 0 ��2

0
0

1 1 1
0 0 0

0 0 0
1 1 1

3
7777775

Z =

2
666666666666664

0 0

�2 �2

0 ��2

��2 0

��1 ��1

0 �1

�1 0

3
777777777777775

W =

2
666666666666664

0 0 0 0 0 0 0

0
0
0

0 0 0
0 0 0
0 0 0

�2c12 0 0
0 �2c12 0
0 0 �2c12

0
0
0

�2c12 0 0
0 �2c12 0
0 0 �2c12

0 0 0
0 0 0
0 0 0

3
777777777777775

X =

"
2 1
1 2

#

Figure 5.3: Matrices for p = 3

CHAPTER 5. SCHEDULING MIXED PARALLELISM 104

Multiplying out ZTWZ yields 4c12�1�2X where X is a (p� 1)� (p� 1) matrix in which the

diagonal entries are 2 and the remaining entries are 1. The determinant of X � �I may be shown

to be (� � p)(� � 1)p�2. Thus X has only positive eigenvalues and is positive definite.

2

Lemma 5.15 If a tree contains a mother node m with distinct leaf children s and d s.t. ts
cms

6= td
cmd

then, for any number of processors, any interior minima has the same response time as the symmetric

schedule.

Proof: A local minima must satisfy Equations 5.4 and 5.5 and by Lemma 5.10 must be balanced.

We show, given ts
cms

6= td
cmd

, these conditions imply that all interior minima have the same response

time as the symmetric schedule.

We first use ts
cms

6= td
cmd

and Equations 5.4,5.5 to show �k = 1=p. We then show
P

j ajkcij

to have a value independent of k and use it to show the total communication cost at any interior

stationary point to equal that of the symmetric schedule. Since an interior local minima is balanced,

we may the response time of any interior minima to equal the symmetric schedule.

By Equation 5.4, Aik = �i
�k

at a stationary point. Using Definition 5.4, this may be rewritten as

2
X
j

ajkcij = ti +
X
j

cij �
�i

�k
(5.8)

Taking i = d and noting that the only neighbor of d is m, we obtain

2amkcmd = td + cmd �
�d

�k
(5.9)

) 2cmd = p(td + cmd)� �d
X
k

1
�k

summing over k

) �d = (ptd + (p� 2)cmd)=
X
l

1
�l

rearranging and renaming k to l

Substituting back in Equation 5.9 and rearranging

2amk =
td

cmd
[1� p

�k
P

l 1=�l
] + 1� p� 2

�k
P

l 1=�l

A similar derivation for i = s leads to another expression for amk .

2amk =
ts

cms

[1� p

�k
P

l 1=�l
] + 1� p� 2

�k
P

l 1=�l

CHAPTER 5. SCHEDULING MIXED PARALLELISM 105

Since ts
cms

6= td
cmd

, the above equations are consistent only if 1� p=[�k
P

l 1=�l] = 0 or

�k
X
l

1=�l = p (5.10)

) (
X
k

�k)
X
l

1=�l = p2 summing over k

)
X
l

1=�l = p2 using Equation 5.4

) �k = 1=p substituting back in 5.10

We now show that �k = 1=p implies
P

j ajkcij = 1=p
P

j cij . Substituting �k = 1=p in

Equation 5.8

p�i = ti +
X
j

(1� 2ajk)cij (5.11)

) p2�i = pti + (p� 2)
X
j

cij summing over k

) �i =
ti

p
+

(p� 2)
p2

X
j

cij (5.12)

Substituting the value of �i in Equation 5.11 and simplifying gives

X
j

ajkcij =
1
p

X
j

cij (5.13)

We now show that the communication cost to be the same at each stationary point. The total

communication cost of a schedule is
P

i;j;k aik(1� ajk)cij which is
P

i;j cij �
P

i;j;k aikajkcij .X
i;j;k

aikajkcij =
X
i;k

aik
X
j

ajkcij

=
X
i;k

aik
1
p

X
j

cij applying Equation 5.13

=
1
p

X
j;k

X
i

aikcij

=
1
p2

X
j;k

X
i

cij applying Equation 5.13

=
1
p

X
i;j

cij

The total communication cost is therefore p�1
p

P
i;j cij which is equal to the communication cost of

the symmetric schedule.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 106

t1=1

t3=2t2=1

c12 c13=0

Node1

Node2 Node3

Figure 5.4: Counter-Example: Tree for which Symmetric Schedule is a Saddle Point

By Lemma 5.10 an interior minima is balanced. It follows that the response time of any interior

minima equals that of the symmetric schedule. 2

It is worth observing that the set of equations 5.13 along with the constraint
P

k aik = 1 has

solutions other than the symmetric schedule. For example for n = 3, p = 2 any solution of the

a11 = a12 = 1=2; a21 = 1
2 +dc13=c12; a22 = 1

2 �dc13=c12; a31 = 1
2 �d ; a22 = 1

2 +d; is a solution

for any 0 � d � min(1
2c12=c13).

Lemma 5.16 The symmetric schedule may not be a local minima.

Proof: (Counter-Example)

Consider the tree shown in Figure 5.4 to be scheduled on two processors. Observing that c13 = 0,

the load on processor 1 is given by:

L1 = a11t1 + a21t2 + a31t3 + a11(1� a21)c12 + a21(1� a11)c12

= a11 + a21 + 2a31 + c12(a11 + a21 � 2a11a21)

Noting that for two processors, ai2 = 1 � ai1 and equal communication is incurred by both

processors

L2 = (1� a11)t1 + (1� a21)t2 + (1� a31)t3 + c12(a11 + a21 � 2a11a21)

= 4� a11 � a21 � 2a31 + c12(a11 + a21 � 2a11a21)

The condition for a balanced schedule is L1 = L2 which gives a11 + a21 + 2a31 = 2. The

response time of a balanced schedule is given by the load on any processor which we may now

write as:

L1 = a11 + a21 + 2a31 + c12(a11 + a21 � 2a11a21)

= 2 + c12(a11 + a21 � 2a11a21)

CHAPTER 5. SCHEDULING MIXED PARALLELISM 107

0
0.25

0.5

0.75

1

a11

0

0.25

0.5

0.75

1

a21
0

0.25
0.5

0.75
1

z

0
0.25

0.5

0.75

1

a11

Figure 5.5: Plot of z = a11 + a21 � 2a11a21 with a11 on x-axis, a21 on y-axis

Figure 5.5 shows a plot of the function z = a11 + a21 � 2a11a21 that makes it clear that the

symmetric schedule is a saddle-point. 2

5.4 Scheduling Trees with Two Nodes

We will now establish the following theorem that shows that tree with two nodes may be scheduled

optimally by a simple method. The proof is based on the two lemmas presented below.

Theorem 5.1 For n=2, the optimal schedule is either the symmetric schedule or a schedule that

computes the entire tree on a single processor.

Lemma 5.17 For n=2, any balanced schedule A in which processors Q = f1; : : : ; qg compute

both operators and Q1 = fq + 1; : : : ; pg compute only operator 1 is either not a local minima or

no better than the symmetric schedule.

Proof: Figure 5.6 illustrates the assumptions of the Lemma. We will show A to be inferior to

the symmetric schedule for q � 2 and to be not a local minima for q = 1.

Since A is a local minima AQ must also be a local minima (Lemma 5.6). Clearly AQ is an

interior schedule and thus (by Lemmas 5.13 and 5.14) must be the symmetric schedule. This implies

(by Definition 5.6) that aik is independent of k for k 2 Q. Since each processor k 2 Q1 computes

only operator 1 and processor loads are balanced, aik is independent of k for k 2 Q1.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 108

If a is the total fraction of operator 1 on Q, a1k = a=q; a2k = 1=q for k 2 Q and a1k =

(1� a)=(p� q); a2k = 0 for k 2 Q1. The total communication, C, in schedule A is

C =
X
k

[a1k(1� a2k)c12 + a2k(1� a1k)c12]

= 2c12 � 2c12

X
k

a1ka2k = 2c12 �
2ac12

q

Similarly, the communication cost of a symmetric schedule is 2c12 � 2c12=p. Among balanced

schedule, a schedule with lower communication has lower response time. The condition for A to

beat the symmetric schedule is therefore a=q > 1=p or a1k > 1=p for k 2 Q.

The loads on processors are:

Lk = a1kt1 + a2kt2 + a1k(1� a2k)c12 + a2k(1� a1k)c12

= a1kt1 + a2kt2 + (a1k + a2k)c12 � 2a1ka2kc12

=

8<
: at1=q + t2=q + (a+ 1)c12=q � 2ac12=q

2 if k 2 Q

(t2 + c12)(1� a)=(p� q) if k 2 Q1

Since a=q > 1=p may be rewritten as (1� a)=(p� q) < 1=p, we have Lk < (t2 + c12)=p for

k 2 Q1. Using the equation for k 2 Q, we may derive Lk � (t2 + c12)=q+ ac12=q[1� 2=q]. Thus

the schedule is not balanced provided q � 2.

We now show that if q = 1, then the schedule is not a local minima. We will show that A1k is

negative for k = 1 and positive for k > 1. Thus we cannot have a local minima since the load on

all processors may be reduced by increasing a.

Now, A11 = t1 +(1�2a21)c12 = t1�c. We observe the condition for balanced loads for q = 1

is

at1 + t2 + (a+ 1)c12 � 2ac12 = (t2 + c12)(1� a)=(p� 1)

� (t2 + c12) + a(t1 � c12) = (t2 + c12)(1� a)=(p� 1)

Since (1 � a)=(p � 1) < 1, we may conclude t1 � c12 < 0. For k > 1, we have A1k =

t1 + (1� 2a2k)c12 = t2 + (p� 2 + a)=(p� 1) which is clearly positive since p � 2.

2

Lemma 5.18 For n=2, any balanced schedule is either not a local minima or no better than the

symmetric schedule.

CHAPTER 5. SCHEDULING MIXED PARALLELISM 109

= { q+1, ..., p}Q = { 1, 2, ..., q } Q1

Figure 5.6: “One Sided” schedule

: Operator 2 only : Operator 1 onlyQ : Both operators Q1
Q2

Figure 5.7: Balanced Schedule for n=2 (Some communication arcs omitted)

Proof: We will assume A to be a balanced local minima and argue it to be no better than the

symmetric schedule. A balanced schedule for a tree with two nodes has the structure shown in

Figure 5.7 where the load on all processors is identical. The set of processors Q compute both

operators, Q1 computes only operator 1, and Q2 computes only operator 2. Applying Lemma 5.17

twice completes the proof. 2

5.5 Discussion

We have developed a model for exploiting both pipelined and partitioned parallelism. We investi-

gated the classes balanced and symmetric schedules.

We showed that there may be more than one balanced schedule and none of the balanced

schedules may be optimal. We characterized the structure of optimal schedules. If a minimal

schedule is not balanced then any processor k that has more load than some other processor must

CHAPTER 5. SCHEDULING MIXED PARALLELISM 110

have aik = 0 or 1 for all operators i. Further, if S is the set of operators for which aik = 1, then

(8i 2 S)ti +
P

j =2S cij �
P

j2S cij .

We showed symmetric schedules to be optimal when communication is free. They are locally

minimal for trees of size 2 but may not be locally minimal for larger trees. However, under extremely

likely conditions, the symmetric schedule has the same response time as any interior local minima.

Finally, symmetric schedules may be arbitrarily more expensive than the global minimum.

While we have characterized the problem and developed several results, further research is

needed to yield practical algorithms for the problem.

Chapter 6

Summary and Future Work

6.1 Summary of Contributions

In this thesis we have addressed the problem of optimizing SQL queries for parallel machines.

Exploiting parallel machines has led to new query processing strategies based on exploiting several

forms of parallel execution. Further, the decreasing cost of computing motivates minimizing the

response time to produce the query result as opposed to the traditional practice of minimizing the

machine resources consumed in answering the query. The problem of finding the best procedural

plan for a declarative query poses fresh challenges since we are dealing with a new space of

procedural plans as well as a new optimization objective.

The response time of a query may be reduced by two complementary tactics, reducing total

work and partitioning work among processors. Partitioning work among processors may not

yield ideal speedup due to two obstacles. First, timing constraints between operators and data

placement constraints place intrinsic limits on available parallelism. It may become impossible

to partition work equally over all processors thus reducing the speedup from parallel execution.

Second, partitioning work generates extra work due to the resulting need to communicate data

across processors. This may reduce or even offset the benefit from exploiting parallel execution.

Our two-phase architecture (Figure 6.1) for parallel query optimization is a refinement of ideas

due to Hong and Stonebraker [HS91, Hon92b]. We apply the two tactics for reducing response time

as two phases. The first phase, JOQR (for Join Ordering and Query Rewrite), minimizes total work

while the second phase, parallelization, partitions work among processors. Breakup into phases

provides a way of conquering problem complexity. It eases the understanding of problems as well

as the development of solutions.

111

CHAPTER 6. SUMMARY AND FUTURE WORK 112

We started with a performance study to understand how use of parallel execution can result

in the generation of extra work. The study was conducted on NonStop SQL/MP, a commercial

parallel database system from Tandem Computers. Since a query is executed in parallel by a set

of cooperating processes, we measured two kinds of overhead costs of parallel execution, startup

and communication. Startup consists of obtaining and initializing the processes. Communication

consists of data transfer among processes. Our experiments led to three findings: First, startup costs

become negligible when processes are reused rather than created afresh. Second, communication

cost consists of the CPU cost of sending and receiving messages. Third, communication costs can

exceed the cost of operators such as scanning, joining or grouping.

SQL

PARALLELIZATION

 Query
Parallel

E
xt

ra
ct

io
n

P
ar

al
le

lis
m

S
ch

ed
ul

er

Plan

TreeQuery (Schedule)

OPTIMIZATION

(JOQR)

Annotated

 Tree
OperatorJoin Ordering

&
Query Rewrite

JOQR

Figure 6.1: Phases and Sub-phases of Parallel Query Optimization

One conclusion from our experiments is that startup costs can be effectively controlled by

modifying a query execution system to reuse processes rather than creating them afresh. Com-

munications costs, on the other hand, appear endemic to parallel execution. Machine architecture

changes, such as offloading communication to specialized processors, hold the possibility of reduc-

ing communication costs. However, much of CPU cost of communication is incurred by software

layers above the communication layer and will therefore still be substantial. This is a consequence

of the low levels of abstraction offered by communication layers due to the need to cater to many

different applications. We therefore concluded that query optimization should be based on models

that incorporate the cost of communication but omit the cost of startup.

In Chapter 3, we developed algorithms for a series of increasingly sophisticated models for the

JOQR phase. We started by posing the minimization of communication costs as a tree coloring

problem (related to the Multiway Cut [DJP+92] problem) where colors represent data partitioning.

CHAPTER 6. SUMMARY AND FUTURE WORK 113

We then enhanced the model by two generalizations. The first generalization was to capture the

interaction of computation and communication costs by supporting a set of alternate methods for

each operator. The cost of a method can be an arbitrary function of the color and statistical properties

of the inputs. Each method has an input-output constraint that provides guarantees on the color

of the output as a function of colors of the inputs. The second generalization was based on the

observation that communication may be viewed as resulting from changing the physical location

of data. Since other physical properties of data such as sort-order or the existence of an index also

impact the cost of a method, we generalized colors to represent collections of physical properties.

The final enhancement of the model was to permit joins to be reordered.

Our work on the JOQR phase shows that optimally exploiting physical properties may be

separated from join ordering. The separation has some advantages. Firstly, we showed that physical

property optimization may be achieved by a fast polynomial algorithm. In contrast, only exponential

algorithms are known for optimal ordering of joins. Secondly, physical property optimization is not

limited to SPJ queries, it applies as well to query trees that contain operators such as grouping and

foreign functions. Thirdly, we open up alternate ways of combining physical property optimization

with join ordering. Another contribution of our work is an explanation and formalization of the

basic ideas used in existing commercial query optimizers.

After addressing problems in the JOQR phase, we moved on to the problems in the parallelization

phase. We addressed the problem of POT (pipelined operator tree) scheduling which is to exploit

pipelined parallelism for operator trees with only pipelining edges. Our model of response time

captured the fundamental tradeoff between parallel execution and its communication overhead. We

assessed the quality of a scheduling algorithm by its performance ratio which is the ratio of the

response time of the generated schedule to that of the optimal. We developed worst-case bounds on

the performance ratio by analytical methods and measured the average performance ratios by use

of experimental benchmarks. Of the several algorithms developed, we consider Hybrid to be the

algorithm of choice since it has the best average performance ratio and a worst-case performance

ratio of about 2 for many cases.

Our work on POT scheduling has several aspects that are interesting in their own right. We

developed the notion of worthless parallelism which is parallelism that is never beneficial. Such

parallelism may be efficiently removed from operator trees to yield a subclass of operator trees that

we term monotone. Monotone trees have an additional lower bound that proved useful in analyzing

the performance ratio of algorithms. We showed that the optimal connected schedules may be found

by an efficient polynomial-time algorithm. Connected schedules have the practical advantage that

CHAPTER 6. SUMMARY AND FUTURE WORK 114

certain code generation schemes can generate code with a single thread of control for a connected

sets of operators. The context switching between operators is efficiently built into the generated

code rather than being managed by more expensive mechanisms such as thread packages.

The algorithms that “lost” to Hybrid have features that make them useful. The GreedyPairing

algorithm has the advantage of being extremely simple. It is also easily usable when data placement

constraints pre-allocate some of the operators to specific processors. While we could prove the

worst-case performance ratios of Hybrid and GreedyPairing for some cases, we could not prove or

find counter-examples for the remaining cases. On the other hand, the LocalCuts and BoundedCuts

algorithms have the advantage providing a guarantee on the worst-case performance ratio.

The last problem addressed in this thesis is the POTP (pipelined operator tree with partitioning)

problem of exploiting both pipelined and partitioned parallelism in scheduling a pipelined operator

tree. POTP is the continuous version of POT scheduling since partitioned parallelism permits several

processors to each execute some fraction of an operator. POTP expands the class of permissible

schedules as compared to POT. One effect of this expansion is to simplify the problem for the

case of zero communication costs. While the zero-communication case is NP-hard for POT, it is

easily solvable for POTP (a symmetric schedule is optimal). However, when communication costs

are non-zero, POTP has an NP-hard problem embedded in it and falls in the class of non-linear,

non-convex continuous optimization problems. We investigated two classes of schedules: balanced

and symmetric. This led to a characterization of optimal schedules and several results on local

minimization. We also showed that trees of size 2 may be optimally scheduled by a simple rule.

The overall contribution of our thesis is the development of models and algorithms for parallel

query optimization that account for the benefit as well as the cost of parallel execution. We have

used a formal approach in addition to experimentation on real systems and simulations. Our models

capture opportunities for parallelism and obstacles to speedup that are likely to be applicable beyond

database query processing to parallel computing applications such as N-body simulations [Her88,

Kat89, Sal90, Sin93] in scientific computing and radiosity computations [M.F85, P. 91] in graphics.

6.2 Future Work

There are several open problems in the area of parallel query optimization. Some may be investigated

within the models that we have proposed, other require extensions.

Integration of JOQR and Parallelization: An open issue is to devise and evaluate approaches

for integrating the two phases of optimization so as to produce globally optimal plans. An interesting

CHAPTER 6. SUMMARY AND FUTURE WORK 115

approach is to produce a set of plans as the output of the JOQR phase, parallelize each of them and

take the best. Interesting questions are the criteria for choosing the set of plans, the size of the set,

and an analysis of how close we get to the optimal plan.

Space-Time Trade-off: Since main memory is available at increasingly lower prices, an

important problem is to exploit the space-time tradeoff in scheduling. Additional memory can be

exploited to reduce the I/O and CPU cost of operators such as sorting. In a parallel machine, more

memory may be obtained for an operator by partitioning it over a larger number of processors – thus

I/O and CPU can be traded for memory and communication. It is challenging to devise models and

algorithms that minimize response time subject to limits on maximum memory usage while taking

this trade-off into account.

Heterogeneous Architectures: It is standard for work in parallel query optimization to assume

all nodes of a parallel machine to be identical. However, heterogeneity arises for several reasons.

One often touted advantage of parallel machines is the ability to incrementally add components

(processors, disks). It should be noted that by the time more computing power is needed, newer

and faster components are likely to be available. A more general scenario for heterogeneity is

the existence of a large number of diverse machines in most offices. Many of these machines are

under-utilized, especially at night. Commodity interconnects such as Myrinet, FDDI or an ATM

switch may be used to turn idle machine cycles into a useful parallel machine. Thus, optimization

for heterogeneous parallel machines is an important problem.

Dynamic/Pre-emptive Optimization: The machine resources available for executing a query

may change while the query is in execution. For example, another query may complete and release

resources. This motivates the need for pre-emptive scheduling that allows dynamic revision of

scheduling decisions [Roy91, Der92]. Optimization decisions other than scheduling may also

benefit from revision at execution time. Join ordering is sensitive to estimates of intermediate result

sizes. It is well known that such estimates may have large errors and better information may be

available at execution time. We observe that the additional freedom to revise scheduling decisions

gives two advantages in classical scheduling problems such as multi-processor scheduling. Firstly, it

typically makes the algorithmic problem easier. Secondly, pre-emptive schedule are better than non-

preemptive schedules. An important question is whether pre-emptive scheduling yields advantages

in parallel query processing. One issue is the cost of pre-empting a query that uses a large number

of resources on a parallel machine. Designing pre-emptive schemes requires innovations in both

query execution and optimization.

CHAPTER 6. SUMMARY AND FUTURE WORK 116

Data Placement and Precedence Constraints: Data placement constrains the allocation of

scan operators to specific processors. While this aspect can be easily incorporated into some of

the algorithms such as GreedyPairing, we have not explored the issue in depth. We have also not

developed scheduling algorithms that account for precedence constraints. While there is substantial

work on precedence constraints in scheduling theory, the challenge is to account for the cost of

communication. Since edges in operator trees represent the flow of data, a precedence constraint

implies materialization of a set of tuples. Transferring such a set incurs substantial communication

cost.

Bibliography

[AHY83] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization Algorithms for Distributed

Queries. IEEE Transaction on Software Engineering, 9(1), 1983.

[ASU79] A.V. Aho, Y. Sagiv, and J.D. Ullman. Efficient Optimization of a Class of Relational

Expressions. Transactions on Database Systems, 4(4):435–454, 1979.

[BBT88] B.Ball, W. Bartlett, and S. Thompson. Tandem’s Approach to Fault Tolerance. Tandem

Systems Review, 4(1), February 1988. Part Number 11078.

[BC81] P. A. Bernstein and D.W. Chiu. Using Semi-Joins to Solve Relational Queries. Journal

of the ACM, 28(1):25–40, January 1981.

[BCC+90] H. Boral, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Val-

duriez. Prototyping Bubba, A Highly Parallel Database System. IEEE Transactions

on Knowledge and Data Engineering, 2(1), March 1990.

[BGW+81] P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve, and J.B. Rothnie. Query Processing

in a System for Distributed Databases (SDD-1). Transactions on Database Systems,

6(4):602–625, December 1981.

[CGK90] D. Chimenti, R. Gamboa, and R. Krishnamurthy. Abstract machine for LDL. In

Proceedings of the Extending Database Technology Conference, 1990.

[CLYY92] M-S Chen, M-L Lo, P.S. Yu, and H.C. Young. Using Segmented Right-Deep Trees for

the Execution of Pipelined Hash Joins. In Proceedings of the Eighteenth International

Conference on Very Large Data Bases, pages 15–26, June 1992.

[CM77] A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunctive Queries in

Relational Databases. In Proceedings of the Ninth Annual ACM Symposium on Theory

of Computing, pages 77–99, 1977.

117

BIBLIOGRAPHY 118

[CNW83] S. Ceri, S. B. Navathe, and G. Wiederhold. Distribution Design of Logical Database

Schemas. IEEE Transactions on Software Engineering, 9(4):487–563, July 1983.

[CR91] S. Chopra and M.R. Rao. On the Multiway Cut Polyhedron. Networks, 21:51–89,

1991.

[CS94] S. Chaudhuri and K. Shim. Including group-by in query optimization. In Proceedings

of the Twentieth International Conference on Very Large Data Bases, Santiago, Chile,

September 1994.

[Day87] U. Dayal. Of Nests and Trees: A Unified Approach to Processing Queries That Contain

Nested Subqueries, Aggregates, and Quantifiers. In Proceedings of the Thirteenth

International Conference on Very Large Data Bases, Brighton, England, 1987.

[Der92] M.A. Derr. Adaptive Optimization in a Database Programming Language. PhD thesis,

Stanford University, 1992. In Preparation.

[DGS+90] D.J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I. Hsiao, and R. Ras-

mussen. The Gamma database machine project. IEEE Transactions on Knowledge

and Data Engineering, 2(1), March 1990.

[DJP+92] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.

Complexity of Multiway Cuts. In Proceedings of the 24th Annual ACM Symposium

on the Theory of Computing, pages 241–251, 1992.

[ES94] P.L. Erdos and L.A. Szekely. On Weighted Multiway Cuts in Trees. Mathematical

Programming, 65:93–105, 1994.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data ware-

housing environments. In Proceedings of the Twenty First International Conference

on Very Large Data Bases, Zurich, Switzerland, September 1995.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and

Company, 1979.

[GLLK79] R.L Graham, E.L. Lawler, J.K. Lenstra, and A.H.G Rinnooy Kan. Optimization and

Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of

Discrete Mathematics, 5:287–326, 1979.

BIBLIOGRAPHY 119

[GMW81] P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press,

1981.

[Gra69] R.L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of Applied

Mathematics, 17(2):416–429, March 1969.

[Gra90] G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System.

In Proceedings of ACM-SIGMOD International Conference on Management of Data,

May 1990.

[GW87] R.A. Ganski and H.K.T Wong. Optimization of Nested SQL Queries Revisited. In

Proceedings of ACM-SIGMOD International Conference on Management of Data,

1987.

[Had74] F.O. Hadlock. Minimum Spanning Forests of Bounded Trees. In Proceedings of the

5th Southeastern Conference on Combinatorics, Graph Theory and Computing, pages

449–460. Utilitas Mathematica Publishing, Winnipeg, 1974.

[Hal76] P.A.V. Hall. Optimization of a Single Relational Expression in a Relational Data Base.

IBM Journal of Research and Development, 20(3):244–257, May 1976.

[Her88] L. Hernquist. Hierarchical N-body Methods. Computer Physics Communications,

48:107–115, 1988.

[HFLP89] L.M. Haas, J.C. Freytag, G.M. Lohman, and H. Pirahesh. Extensible Query Pro-

cessing in Starburst. In Proceedings of ACM-SIGMOD International Conference on

Management of Data, June 1989.

[HLY93] K.A. Hua, Y. Lo, and H.C. Young. Including the Load Balancing Issue in The Opti-

mization of Multi-way Join Queries for Shared-Nothing Database Computer. In Second

International Conference on Parallel and Distributed Information Systems, San Diego,

California, January 1993.

[Hon92a] W. Hong. Exploiting Inter-Operation Parallelism in XPRS. In Proceedings of ACM-

SIGMOD International Conference on Management of Data, June 1992.

[Hon92b] W. Hong. Parallel Query Processing Using Shared Memory Multiprocessors and Disk

Arrays. PhD thesis, University of California, Berkeley, August 1992.

BIBLIOGRAPHY 120

[HS91] W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plans in XPRS.

In Proceedings of the First International Conference on Parallel and Distributed

Information Systems, December 1991.

[Kat89] J. Katznelson. Computational Structure of the N-body problem. SIAM Journal of

Scientific and Statistical Computing, 10(4):787–815, 1989.

[Kim82] W. Kim. On Optimizing an SQL-like Nested Query. Transactions on Database

Systems, 7(3), September 1982.

[Kin81] J. J. King. Query Optimization by Semantic Reasoning. PhD thesis, Stanford University,

1981. Stanford CS Report STAN-CS-81-857.

[Knu73] D. E. Knuth. The Art of Computer Programming, Vol 1: Fundamental Algorithms.

Addison-Wesley, 2nd edition, 1973.

[LMH+85] G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P. Selinger, and P. Wilms.

Query Processing in R*. In W. Kim, D. Reiner, and D. S. Batory, editors, Query

Processing in Database Systems. Springer Verlag, 1985.

[LMS94] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query optimization by predicate move-around.

In Proceedings of the Twentieth International Conference on Very Large Data Bases,

Santiago, Chile, September 1994.

[LST91] H. Lu, M-C. Shan, and K-L. Tan. Optimization of Multi-Way Join Queries for Parallel

Execution. In Proceedings of the Seventeenth International Conference on Very Large

Data Bases, Barcelona, Spain, September 1991.

[Lue89] D.G. Luenberger. Linear and Nonlinear Optimization. Addison-Wesley Publishing

Company, second edition, 1989.

[M.F85] M.F.Cohen and D.P.Greenberg. The Hemi-cube: A Radiosity Solution for Complex

Environments. In Proceedings of SIGGRAPH, 1985.

[ML86] L. F. Mackert and G. M. Lohman. R* Optimizer Validation and Performance Evaluation

for Local Queries. Technical report, IBM Research Division, January 1986. IBM

Research Report RJ 4989.

BIBLIOGRAPHY 121

[OV91] M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-Hall,

1991.

[P. 91] P. Hanrahan, D. Satzman, and L. Aupperle. A Rapid Hierarchical Radiosity Algorithm.

In Proceedings of SIGGRAPH, 1991.

[PHH92] H. Pirahesh, J.M. Hellerstein, and W. Hasan. Extensible/Rule Based Query Rewrite

Optimization in Starburst. In Proceedings of ACM-SIGMOD International Conference

on Management of Data, June 1992.

[PMC+90] H. Pirahesh, C. Mohan, J. Cheung, T.S. Liu, and P. Selinger. Parallelism in Relational

Data Base Systems: Architectural Issues and Design Approaches. In Second Interna-

tional Symposium on Databases in Parallel and Distributed Systems, Dublin, Ireland,

1990.

[Roy91] S. Roy. Adaptive Methods in Parallel Databases. PhD thesis, Stanford University,

1991. Stanford CS Report STAN-CS-91-1397.

[SAC+79] P. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access

Path Selection in a Relational Database Management System. In Proceedings of ACM-

SIGMOD International Conference on Management of Data, 1979.

[Sal90] J.K. Salmon. Parallel Hierarchical N-Body Methods. PhD thesis, California Institute

of Technology, December 1990.

[Sch90] D. A. Schneider. Complex Query Processing in Multiprocessor Database Machines.

PhD thesis, University of Wisconsin—Madison, September 1990. Computer Sciences

Technical Report 965.

[SE93] J. Srivastava and G. Elsesser. Optimizing Multi-Join Queries in Parallel Relational

Databases. In Second International Conference on Parallel and Distributed Informa-

tion Systems, San Diego, California, January 1993.

[Sin93] J. P. Singh. Parallel Hierarchical N-Body Methods and their Implications for Mul-

tiprocessors. PhD thesis, Stanford University, March 1993. Stanford CSL Report

CSL-TR-93-565.

BIBLIOGRAPHY 122

[SYT93] E. J. Shekita, H.C. Young, and K-L Tan. Multi-Join Optimization for Symmetric

Multiprocessors. In Proceedings of the Nineteenth International Conference on Very

Large Data Bases, Dublin, Ireland, 1993.

[Tan] Tandem. Cyclone/R Message System Performance. Technical report, Tandem Com-

puters.

[Tan94] Tandem. NonStop SQL/MP Reference Manual, December 1994. Tandem Part Number

100149, Release ID D30.00.

[Ull75] J.D. Ullman. NP-Complete Scheduling Problems. JCSS, 10:384–393, 1975.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-base Systems. Computer Science

Press, 1989.

[WY76] E. Wong and K. Youseffi. Decomposition - A Strategy for Query Processing. Trans-

actions on Database Systems, 1(3):223–241, September 1976.

[X3H92] X3H2. Information technology - database language sql, July 1992. Also available as

International Standards Organization document ISO/IEC:9075:1992.

[YL95] W. P. Yan and P. A. Larson. Eager Aggregation and Lazy Aggregation. In Proceed-

ings of the Twenty First International Conference on Very Large Data Bases, Zurich,

Switzerland, September 1995.

[ZG90] H. Zeller and J. Gray. Hash Join Algorithms in a Multiuser Environment. In Proceed-

ings of the Sixteenth International Conference on Very Large Data Bases, Brisbane,

Australia, 1990.

[ZZBS93] M. Ziane, M. Zait, and P. Borla-Salamet. Parallel Query Processing in DBS3. In

Second International Conference on Parallel and Distributed Information Systems,

San Diego, California, January 1993.

