
Closing the Case t = 3 for 3-D Spherical

t-Designs Using a Result-Verifying Nonlinear

Solver∗

Thomas Beelitz
Viadico AG, Sendlinger Straße 18, D-80331 München,
Germany†

Bruno Lang
University of Wuppertal, Institute for Applied Com-
puter Science and Scientific Computing, D-42097
Wuppertal, Germany

lang@math.uni-wuppertal.de

Peer Ueberholz
Niederrhein University of Applied Science, Depart-
ment of Electrical Engineering and Computer Science,
Reinarzstr. 49, D-47805 Krefeld, Germany

peer@ueberholz.de

Paul Willems
University of Wuppertal, Institute for Applied Com-
puter Science and Scientific Computing, D-42097
Wuppertal, Germany

willems@math.uni-wuppertal.de

Abstract

The question if there exists an N-point spherical t-design is not yet
settled for all combinations of t and N . Using our framework SONIC for
the solution of nonlinear systems, we were able to close the two remaining
open cases for t = 3. More precisely, a computational proof revealed that
there are no spherical 3-designs with N = 7 or N = 9 points. We describe
how these results were obtained and comment on the open cases for larger
values of t.

Keywords: interval analysis, quadrature on the sphere, nonlinear algebraic systems

AMS subject classifications: 65D32, 65H10, 65G20

∗Submitted: December 5, 2008; Revised: January 9, 2009; Accepted: July 1, 2009.
†T.B. contributed to this work while he was with the Institute for Applied Computer

Science and Scientific Computing at the University of Wuppertal.

66

Reliable Computing 14, 2010 67

N = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 . . .

t = 1 n y . . .

t = 2 n n n y n y y y y y y y y y y y y y y y y y y . . .

t = 3 n n n n n y ? y ? y y y y y y y y y y y y y y . . .

t = 4 n n n n n n n n n ? ? y ? y ? y y y y y y y y . . .

t = 5 n n n n n n n n n n n y ? ? ? y ? y ? y ? y y . . .

Figure 1: Known results for small t [13]. “y” means that a spherical t-design
is known to exist for the respective combination (t, N), “n” indicates that it
provably does not exist, and “?” marks an open case.

1 Introduction

Let Sd denote the unit sphere in d dimensions, i.e.,

Sd = {x ∈ R
d : ‖x‖2 = 1}.

An N-point spherical t-design is an arrangement of N points x1, . . . , xN on the sphere
Sd such that the unit-weight quadrature rule

∫

Sd

p(x) dµ ≈
σd

N

N
∑

i=1

p(xi) (1)

is exact for all polynomials p = p(x1, . . . , xd) with total degree ≤ t. Here, µ denotes
the unit measure, and σd is the area of the sphere. In the following we will focus on
the case d = 3, where σd = 4π.

Spherical designs have close connections to high-order numerical cubature for the
sphere (with applications in, e.g., molecular sciences [20]), to statistics [7], and to
algebra and coding theory [18, 21].

It is known that 3D spherical t-designs cannot exist if the number of points is too
small. More precisely, we must have [2, 3, 10]

N ≥











(t + 1)(t + 3)

4
, if t is odd,

(t + 2)2

4
, if t is even,

and these lower bounds can be increased by one if t 6= 1, 2, 3, 5. On the other hand,
constructive methods prove the existence of spherical t-designs for sufficiently large
N (see, e.g., [17]). In between these two extremes, the existence or non-existence of
spherical t-designs has been proved for various combinations (t, N), relying on different
techniques including interval computations; cf. [13]. Nevertheless, open cases remain
even for t = 3. The situation for t ≤ 5 is summarized in Fig. 1.

With the present paper we close the case t = 3. More precisely, we use result-
verifying methods to prove that spherical 3-designs with N = 7 or N = 9 points do
not exist.

The remainder of the paper is organized as follows. In Section 2 we will show
how N-point spherical t-designs are related to suitable nonlinear systems. Section 3
contains the result for the (3, 7) case and a description of our nonlinear solver SONIC

68 Beelitz et al, Spherical t-Designs

with which this case was solved. The nonlinear system corresponding to the (3, 9) case
could be handled only with an efficiently parallelized version of the solver, as explained
in Section 4. A discussion on the perspectives for larger t will close the paper.

2 Spherical t-designs and nonlinear systems

In three dimensions, (1) being exact for all polynomials p of total degree ≤ t is equiv-
alent to

∫

S

xkyℓzm dµ =
4π

N

N
∑

i=1

xk
i yℓ

iz
m
i for all k, ℓ, m s.t. k + ℓ + m ≤ t. (2)

The left-hand sides of (2) can be evaluated exactly. Using spherical coordinates
(x, y, z) = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) with ϕ ∈ [0, π] and θ ∈ [0, 2π], a straight-
forward but somewhat longish manipulation using the formulae in [8] yields

∫

S

xkyℓzm dµ =

∫ 2π

0

∫ π

0

(sin ϕ cos θ)k(sin ϕ sin θ)ℓ(cos ϕ)m · sin ϕ dϕ dθ

= 4π · γk,ℓ,m,

where

γk,ℓ,m =







o(k − 1) · o(ℓ − 1) · o(m − 1)

o(k + ℓ + m + 1)
, if k, ℓ, m are all even

0, otherwise

,

and

o(j) = 1 · 3 · . . . · j

denotes the product of the odd numbers up to j with o(−1) := 1.
Multiplying (2) by N/4π and switching to spherical coordinates, (xi, yi, zi) =

(sin ϕi cos θi, sin ϕi sin θi, cos ϕi), N-point spherical t-designs thus are exactly the so-
lutions of the nonlinear system

Nγk,ℓ,m =
N

∑

i=1

(sin ϕi cos θi)
k(sin ϕi sin θi)

ℓ(cos ϕi)
m, k + ℓ + m ≤ t, (3)

lying in the box θi ∈ [0, 2π], ϕi ∈ [0, π]. (For t = 3, the only non-zero left-hand sides
are Nγ0,0,0 = N and Nγ2,0,0 = Nγ0,2,0 = Nγ0,0,2 = N/3.) This system is modified
slightly to facilitate its solution with result-verifying methods.

1. The (k = 0, ℓ = 0, m = 0) equation reads “N = N” and is dropped. The
remaining system contains t

6
(t2 + 6t + 11) equations.

2. Given a spherical t-design, any rotation of the sphere yields another valid design.
To remove this rotational symmetry, the first point is located at the north pole
(θ1 = 0, ϕ1 = 0), and the second point is fixed to longitude θ2 = 0. Substituting
these values directly into the equations reduces the number of variables to 2N−3.

3. Given a spherical t-design, any renumbering of the points yields another valid
design. To remove this symmetry, we enforce an (almost) fixed ordering by
adding the (N − 2)(N − 3)/2 inequalities θi ≤ θj for 3 ≤ i < j. With this
ordering, the point x3 must lie in the eastern hemisphere. Thus the range of θ3

can be restricted to [0, π].

Reliable Computing 14, 2010 69

Mathematically, the N − 3 inequality constraints θi ≤ θi+1, i = 3, . . . , N − 1, are
sufficient, due to the transitivity of “≤”. However, we do not remove the remaining
inequalities because they may allow us to remove boxes at a higher recursion level.
To give a simple example, a box with (θ3, θ4, θ5) ∈ [π, 3π/2] × [π/2, π] × [0, π/2] may
be not be discarded if we only have the constraints θ3 ≤ θ4 and θ4 ≤ θ5 (since the
ranges of the variables are not disjoint), whereas the additional constraint θ3 ≤ θ5

would allow discarding the box. For similar reasons we do not apply the substitution
z2 = 1 − x2 − y2, which would reduce the number of equations to t(t + 2).

Finally, subtracting the right-hand sides from the (in)equalities leads to a system
of the form

f(z) = 0,

g(z) ≤ 0,

where z ∈ [0, π] × [0, 2π]N−3 × [0, π]N−1 contains the non-fixed angles θi and ϕi. For
arbitrary t and N , the system can be set up in a completely automated way.

In the following section we briefly describe our software SONIC, which is targeted
at the verified solution of such inequality-constrained systems.

3 Solving moderately difficult systems

As pointed out in the preceding section, to tackle spherical t-designs with N points we
must find all solutions for a nonlinear system over n = 1+(N − 3)+ (N − 1) variables
zi with given initial ranges [z](0) = [0, π]× [0, 2π]N−3 × [0, π]N−1, m = t

6
(t2 + 6t + 11)

equality constraints f(z) = 0, and k = (N − 2)(N − 3)/2 inequality constraints g(z) ≤
0.

The crucial point for our application is that we need reliable results, that is, the
methods used may never lose a solution to the system, even in the face of (inevitable)
rounding errors.

We use interval arithmetic [15, 16]. Most modern hardware platforms support
directed rounding modes for floating-point operations. By using the rounding modes
appropriately one can compute bounds [f]([z]) on the range of a (continuous) function
f : R

n → R over a (compact) real interval [z] ∈ IRn. These bounds are indeed verifiably
correct in the sense that they are guaranteed to contain the exact range f([z]). In
principle, such bounds alone are sufficient for the verified solution or optimization of
arbitrary nonlinear systems. A very general technique suitable (among other things)
for the solution of general nonlinear systems or global optimization is the Branch-and-
Prune approach, which is summarized in Fig. 2.

The remainder of this section is structured in two parts. First we will give a short
overview of our custom verified solver. Based on this overview we will then present and
discuss our first set of results for spherical t-designs, which close the case t = 3, N = 7.

3.1 The SONIC software framework

In an ongoing research project, which grew out of an application for the design of robust
dynamical systems [19], we are developing the custom software tool SONIC [4, 5, 22]
(Solver and Optimizer for Nonlinear Systems based on Interval Computations). At its
core we run a basic Branch-and-Prune engine similar to the one shown in Fig. 2. In
the following we give a coarse overview of the contraction techniques implemented in
our solver; more details are given in [6].

70 Beelitz et al, Spherical t-Designs

A := { [z](0) } { list of “active” subboxes of [z](0) }
L := ∅ { list of subboxes that might contain solutions }

while A 6= ∅
remove one box [z] from A

{ Prune }
use contraction techniques to discard parts of [z] which
provably cannot contain a solution of the system

if max{diam([zi])} ≤ tol then

insert [z] into L
else

{ Branch }
subdivide the box [z] along one or more of its coordinates into
smaller boxes and insert these into A

end if

end while

Figure 2: The basic Branch-and-Prune algorithm.

Symbolic Techniques. Internally, functions are represented symbolically, that
is, as term trees. Each node represents an atomic operation (like +, /, pow, ln, sin,
. . .) or a variable. The trees of all function terms of the nonlinear system are fused
together into a single directed acyclic graph, the constraint network, by merging nodes
that represent common subterms in the system. For each variable there is exactly
one node in the network without ingoing edges (a source). This handling of common
subterms is especially fruitful in the context of spherical designs, as e.g., subterms
such as (sin ϕi cos θi)

2 occur multiple times in the system (3).
The simplest symbolic technique is the evaluation of a function term on a box,

also called natural interval evaluation. Given the constraint network, natural interval
evaluation corresponds to a forward sweep from the variables (leaves) to the root,
evaluating each encountered elementary operation with interval arithmetic.

A more general symbolic contraction scheme is constraint propagation (CP), see
e.g., [14]. Each internal node in the constraint network corresponds to an intermediate
result in the evaluation of at least one function in the nonlinear system. The node
is assigned an internal interval variable, which holds the best known bounds on the
intermediate result and is initialized to R. Then we iteratively improve these bounds
(for all or some nodes of the net, in a suitable ordering) by using the elementary
operators to contract the (internal or not) variables connected to a node until the
changes become smaller than a given threshold.

The advantages of CP over the numerical techniques described below are twofold:
It is faster since its complexity is linear in the number of elementary operators in the
system, and it can be formulated to work on arbitrary real sets. The latter prop-
erty makes it applicable to systems with non-differentiable, non-continuous, or even
functions that are not defined everywhere.

Numeric Techniques. Consider a single equality constraint f(z) = 0 and a box

Reliable Computing 14, 2010 71

[z] ∈ IRn on which the (scalar) function f : R
n → R is differentiable. From the term

tree for f we can, using symbolic derivatives, construct term trees for the gradient
∇f and for the Hessian Hf of f . Based on these we can formulate order-1 or order-2
Taylor expansions of f around a point c ∈ [z] to get additional constraints

0 = f(c) + ∇f([z])([z] − c), (4)

for an order-1 expansion and

0 = f(c) +
(

∇f(c) + ([z] − c)T Hf

)

([z] − c), (5)

for order 2. Any solution z to f(z) = 0 must also satisfy (4) and (5). Therefore,
the symbolic techniques described earlier can be applied to (4) and/or (5) to obtain a
sharper enclosure [f]([z]) or to contract the box [z]. We call this Taylor-1 and Taylor-2
contraction, respectively.

Taking a step back and looking again at the complete system f(z) = 0, where
f : R

n → R
m, we analogously can deduce that any solution of the system must also

be a solution of the interval linear system

(R · Jf ([z])) · ([z] − c) = −R · f(c), (6)

where Jf is the Jacobian of f , and R ∈ R
m×m is a suitable preconditioner. Now any

algorithm for the solution of interval linear systems can be employed to contract [z]
based on (6), for example one or more steps of the Gauss–Seidel iteration (see e.g. [16]).
We call the resulting contractor (Interval) Newton. The performance and cost of this
method strongly depend on the choice of the preconditioner R. A popular choice is
the inverse midpoint preconditioner

R =
[

mid Jf ([z])
]−1

,

which gives good contractions at a reasonable runtime overhead. (For non-square or
very ill-conditioned systems a suitable subset of the equations and/or variables must be
selected prior to inverting.) Even better results can be achieved with optimal linear
programming preconditioners [4, 16], but the incurred cost in runtime makes them
inefficient in some situations.

In its default configuration, SONIC uses constraint propagation heavily, coupled
with Taylor-1 and Interval Newton. For the latter, a linear programming precon-
ditioner is used, but only as backup, if the contraction resulting from the inverse
midpoint preconditioner was not satisfactory.

The development of SONIC is continued, and the software will be made publicly
available after a major code restructuring. Interested readers may obtain the current
version by sending an email to SONIC@math.uni-wuppertal.de.

There are many other excellent software tools, which could possibly have been
applied to solve the nonlinear systems resulting from the quest for spherical t-designs,
for example, the GlobSol package [12] or the ALIAS library [1]. We decided to use
SONIC because it had proved competitive to the other tools in a variety of test cases
[4] and because preliminary tests indicated that a highly scalable parallel solver would
be needed to tackle the t = 3, N = 9 problem; cf. Sect. 4.

72 Beelitz et al, Spherical t-Designs

3.2 Results for t = 3, N ≤ 8.

We started out with running our solver on the nonlinear systems of the form (3) for
the still open cases according to Fig. 1, beginning with t = 3.

Before we continue we want to make a few comments on the meaning of the phrase
“verified” computing. Although we can prove, in a mathematical sense, that an al-
gorithm is correct even in the face of rounding errors, we cannot exclude completely
the possibility of bugs and faulty implementations (that is, human error) or hardware
failures. In this sense, there can be no such thing as an absolutely verifed solver. Nev-
ertheless, the probability of a software or hardware error to persist and influence the
results can be driven arbitrarily close to zero by repeated testing with a good testset
on different hardware platforms.

Our solver framework SONIC has been, and is, tested exhaustively with a large
variety of test problems, e.g., from the COPRIN project [9]. The ramifications of the
previous paragraph notwithstanding, we are confident that the (comparatively small)
parts of the code, which are actually effecting the contraction of boxes, are indeed
correct.

To bolster this claim and to validate our results in this work regarding spherical t-
designs, we applied our solver to cases (t,N) where the exact solutions are known (see
Fig. 1 again). As pointed out in Sect. 2, the nonlinear systems for spherical designs
are all quite similar. Therefore any possible errors in the code which could endanger
correctness would be likely to affect more than one case.

For all of the following test cases, recall the parameter tol from Fig. 2: The compu-
tation is stopped when all boxes have been discarded (then the system has no solution)
or when none of the remaining boxes has an edge that is longer than tol (then these
small boxes cover the solution set).

t = 3, N = 4: The start box is discarded immediately, which verifies the known result
that there are no spherical 3-designs with 4 points.

t = 3, N = 5: After considering a total of 89 boxes, all boxes could be discarded. This
verifies the known result that there are no spherical 3-designs with 5 points.

t = 3, N = 6: According to [13], the solutions form regular octahedrons in this case.
In this case the steps we take to remove symmetry from the system (see Sect. 2)
do not suffice to make the solution set discrete or even unique. Nevertheless,
when run with tol = 0.01 and several different settings for the solver’s internal
switches, the remaining boxes always contained the complete solution set.

t = 3, N = 8: Hardin and Sloane give a particular solution for this case (see http://

www.research.att.com/\simnjas/sphdesigns), which was always recovered
by our solver.

Based on the confidence resulting from these testing safeguards, we ran our solver
to find spherical 3-designs with 7 points. The default configuration terminated with an
empty solution list after considering a total of 880 509 boxes, which is a computational
proof of our first major result:

There are no spherical 3-designs with 7 points.

More detailed information about multiple runs with differing configurations and acti-
vated contraction techniques is given in Tab. 1. For the nonlinear systems resulting
from spherical t-designs, the more expensive contraction techniques did not yield a
significant reduction of the overall number of boxes to be considered and thus led to

Reliable Computing 14, 2010 73

Configuration # Boxes Time
Only symbolic CP (“fast”) 1 051 611 2h 09m 47s
+ Taylor-1, Newton (“default”) 880 509 15h 17m 14s
+ Taylor-2 (“pedantic”) 1 731 083 95h 08m 18s

Table 1: Statistics of different runs for the t = 3, N = 7 problem. All computa-
tions were done on a 1.7GHz Pentium-4 system.

a heavy increase in the processing time, compared to the “fast” (CP only) version.
Adding the Taylor-2 contractor can even increase the number of boxes, due to a dif-
ferent subdivision strategy. Based on these results, the experiments in the following
sections were made with the “fast” version.

4 The case t = 3, N = 9: A difficult system

The application of our result verifying solver SONIC to the last open case of the spher-
ical 3-designs, N = 9, turned out to be computationally very demanding. An efficient
shared-memory parallelization with OpenMP and a Task Scheduling algorithm is de-
scribed in [5]. However, the t = 3, N = 9 case requires even more computational power,
and therefore an efficient distributed memory parallelization with MPI is needed. A
static load balancing algorithm cannot be applied, since the time for analyzing a box
completely varies widely, depending on the size of the box, the effectiveness of the
contraction methods, and the size of the associated subtree.

In a first attempt we implemented a simple master–worker model [4], which is a
centralized dynamic load balancing algorithm. In this ansatz a master process stores
all active boxes. The master sends the boxes to the worker processes, which analyze
them. If a box provably does not contain a solution then it is discarded. If a box
may contain a solution and if it is small enough then the worker stores this box in a
solution list. Otherwise the box is split into several subboxes, and these are sent back
to the master process.

This algorithms scales quite well, but in our problem the number of active boxes
increased very rapidly because “not enough” boxes could be discarded at the higher
levels of the Branch-and-Prune tree (for more details see Tab. 2 and the discussion,
both in Sect. 5). Therefore we ran out of memory on the master node.

This memory problem can be avoided using a nearest neighbor dynamic load bal-
ancing algorithm. In the context of a parallel Interval Newton algorithm, such methods
were first applied by Gau and Stadtherr [11]. We modified the method such that the
active boxes are distributed over all processes, arranged in a d-dimensional process
grid. Each process manages its own worklist of active boxes. Neighboring processes
frequently exchange the number of active boxes in their worklists, this number serving
as a rough estimate for the computational load. If one process has much more load
than one of its neighboring processes then they exchange load, i.e., boxes are sent
from processes with a large number of boxes to processes with only a few boxes in
their worklist. Almost all communication is done without explicit synchronization. In
this way a good load balancing in computing time and memory usage can be achieved
and idle processors are avoided, resulting in very good scaling behavior up to a large
number of processors. Details of the algorithms are given in [22].

74 Beelitz et al, Spherical t-Designs

t = 3, N = 6 t = 3, N = 7 t = 3, N = 8 t = 3, N = 9
ε hmax bcons hmax bcons hmax bcons hmax bcons

3.2 3 5 4 7 5 9 6 11
1.6 12 667 15 2 489 18 8 201 21 24 905
0.8 21 11 225 26 266 571 31 3 702 869 36 35 795 105
0.4 30 14 381 37 954 337 44 77 466 455 51 > 1G
0.2 39 14 605 48 1 051 579 57 316 947 331
0.1 48 14 937 59 1 051 611 70 886 623 249

havg 13.9 20.0 (≈ 30) 38.5

Table 2: Number of boxes, bcons, that had to be considered to reach a prescribed
precision ε, and “average recursion height” havg for four problems with t = 3.

Based on the experience with the t = 3, N = 7 case, the t = 3, N = 9 problem was
solved using only symbolic CP. This setting minimizes the time per box, at the cost of
a higher number of boxes to be considered; cf. Tab. 1. The computations were done
partly on the IBM Blue Gene at the University of Edinburgh and partly on the HP
XEON-Cluster at the University of Wuppertal. The algorithm finished with an empty
solution list after considering a total of 385 821 409 493 boxes. This implies that

There are no spherical 3-designs with 9 points,

closing the last open case for the t = 3 spherical t-design problem.

5 Discussion and perspectives

Given the results from the preceding sections, a natural question is whether the re-
maining open cases for t = 4, 5, . . . can be closed in a similar way. In our opinion the
answer is “not yet”, for the reasons explained below.

Table 2 gives, for four of the t = 3 problems, the overall number of boxes that had
to be considered during the Branch-and-Prune algorithm in order to reach a prescribed
precision ε, i.e., maxn

i=1 diam[zi] ≤ ε for each resulting box.
For ε = 3.2 only the θ4, . . . θN components of the starting box [z](0) must be

subdivided (or tightened) because the other components are already small enough.
Thus the precision ε = 3.2 is reached after at most hmax = N − 3 bisection steps, and
at most bmax =

∑hmax

k=0 2k = 2hmax+1 − 1 boxes can be considered in a bisection tree
of height hmax. Halving ε can require one additional bisection in each direction, i.e.,
increase the maximum height hmax of the bisection tree by 2N − 3.

The bcons data show that at the highest levels of the tree, the number of boxes
grows roughly as 1.65ℓ, ℓ denoting the level; cf. the left picture in Fig. 3. When the
boxes are small enough (ε . 0.4) then SONIC’s elimination and tightening techniques
become more effective, and the overall number of boxes is saturating, corresponding
to an “average height” havg = log2(max bcons). These values are also given in Tab. 2.

If the trend carries over to t = 4 (with havg lower by approximately 4, as suggested
by the data in Tab. 3 and the right picture in Fig. 3), then we would expect a value
havg ≈ 46 for the smallest open case, N = 10. The huge number of boxes, 246 ≈ 1014,
together with the fact that for t = 4 considering a single box takes roughly three
times longer than in the cases t = 3, implies that the t ≥ 4 problems by far exceed the

Reliable Computing 14, 2010 75

1

2^5

2^10

2^15

2^20

2^25

2^30

 0 10 20 30 40 50 60 70

h_max

Overall number of boxes

N = 6
N = 7
N = 8
N = 9

1

2^5

2^10

2^15

2^20

2^25

2^30

 0 10 20 30 40 50 60 70

h_max

Overall number of boxes

N = 6
N = 7
N = 8
N = 9

N = 10

Figure 3: Overall number of boxes that had to be considered in the uppermost
levels of the Branch-and-Prune tree for several problems (t = 3, left, and t = 4,
right).

available computational ressources and that substantial theoretical and/or algorithmic
progress is necessary before being able to solve them.

There might be hope, though. It seems that a spherical t-design with an even
number of points always contains at least one pair of diametrically opposite points on
the sphere. Since we already fix the first point to the north pole, we can implement
this assumption by requiring that the second point not only has longitude θ2 = 0 but
is fixed to the south pole (θ2 = 0, ϕ2 = π).

In the t = 3, N = 6 case, this makes the solution indeed unique. For the resulting
system, the solver finishes after working on just one box: the default contraction
techniques are sufficient to contract the start box to tol = 10−8 without any need for
bisection. In the t = 3, N = 8 case, two different solutions remain. To cover these,
a total of 5 792 291 boxes had to be considered for ε = 10−8 — much less than the
roughly 900 million without this restriction, cf. Tab. 2. In other cases the gain is not

t = 4, N = 6 t = 4, N = 7 t = 4, N = 8 t = 4, N = 9 t = 4, N = 10
ε hmax bcons hmax bcons hmax bcons hmax bcons hmax bcons

3.2 3 5 4 7 5 9 6 11 7 13
1.6 12 667 15 2 489 18 8 201 21 24 905 24 71 415
0.8 21 1 465 26 59 125 31 1 659 563 36 31 345 513 41 334 129 383
0.4 30 1 465 37 71 051 44 12 587 781 51 > 1G 58 > 1G
0.2 39 1 465 48 71 103 57 14 471 185
0.1 48 1 465 59 71 103 70 14 471 201

havg 10.5 16.1 23.8 (≈ 34) (≈ 46)

Table 3: Number of boxes, bcons, that had to be considered to reach a prescribed
precision ε, and “average recursion height” havg for five problems with t = 4.

76 Beelitz et al, Spherical t-Designs

that spectacular, but we expect substantial savings for the harder problems.

Thus a promising first step might be to prove the conjecture formulated above.

Acknowledgements

This work was partly carried out under the HPC-EUROPA project (RII3-CT-2003-
506079), with the support of the European Community - Research Infrastructure Ac-
tion under the FB6 “Structuring the European Research Area” program. Furthermore
we would like to thank Peter Mättig and Torsten Harenberg from the University of
Wuppertal for giving us access to their XEON cluster and the two unknown referees
for their valuable comments.

References

[1] ALIAS homepage. http://www-sop.inria.fr/coprin/logiciels/ALIAS.

[2] E. Bannai and R. M. Damerell, Tight spherical designs I, J. Math. Soc. Japan,
31 (1979), pp. 199–207.

[3] , Tight spherical designs II, J. London Math. Soc., 21 (1980), pp. 13–30.

[4] T. Beelitz, Effiziente Methoden zum verifizierten Lösen von Optimierungsauf-
gaben und nichtlinearen Gleichungssystemen, PhD thesis, Bergische Universität
Wuppertal, 2006. In German.

[5] T. Beelitz, C. Bischof, and B. Lang, Efficient task scheduling in the par-
allel result-verifying solution of nonlinear systems, Reliab. Comput., 12 (2006),
pp. 141–151.

[6] T. Beelitz, A. Frommer, B. Lang, and P. Willems, Symbolic-numeric tech-
niques for solving nonlinear systems, Proc. Appl. Math. Mech., 5 (2005), pp. 705–
708.

[7] F. Bertrand, Plans sphériques de force t et applications en statistique, PhD
thesis, Université Louis Pasteur (Strasbourg I), 2007.

[8] I. N. Bronstein and K. A. Semendjaev, Taschenbuch der Mathematik, Teub-
ner Verlagsgesellschaft, Leipzig, Germany, 1979.

[9] COPRIN homepage. http://www-sop.inria.fr/coprin.

[10] P. Delsarte, J.-M. Goethals, and J. J. Seidel, Spherical codes and designs,
Geom. Dedicata, 6 (1977), pp. 363–388.

[11] C.-Y. Gau and M. Stadtherr, Parallel interval-Newton using message passing:
Dynamic load balancing strategies, in Proc. ACM/IEEE Conference on Supercom-
puting, ACM, New York, 2001.

[12] GlobSol homepage. http://interval.louisiana.edu/GlobSol.

[13] R. H. Hardin and N. J. A. Sloane, McLaren’s improved snub cube and other
new spherical designs in three dimensions, Tech. Rep., AT&T Bell Laboratories,
2002.

[14] E. Hyvönen, Constraint reasoning based on interval arithmetic: The tolerance
propagation approach, Artificial Intelligence, 58 (1992), pp. 71–112.

Reliable Computing 14, 2010 77

[15] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
Springer-Verlag, London, 2001.

[16] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Aca-
demic Publishers, Dordrecht, 1996.

[17] J. Korevaar and J. L. H. Meyers, Spherical Faraday cage for the case of equal
point charges and Chebychev-type quadrature, J. Integral Transforms and Special
Functions, 1 (1993), pp. 105–127.

[18] W. Lempken, B. Schröder, and P. H. Tiep, Symmetric squares, spherical
designs, and lattice minima, J. Algebra, 240 (2001), pp. 185–208.

[19] M. Mönnigmann, W. Marquardt, C. Bischof, T. Beelitz, B. Lang, and

P. Willems, A hybrid approach for efficient robust design of dynamic systems.,
SIAM Rev., 49 (2007), pp. 236–254.

[20] R. J. Morris, An evaluation of spherical designs for molecular-like surfaces, J.
Mol. Graphics Modell., 24 (2006), pp. 356–361.

[21] G. Nebe, Codes and invariant theory, 2006. RWTH Aachen University. Unpub-
lished survey for the Farewell Symposium for R. van der Waall, Universiteit van
Amsterdam.

[22] P. Ueberholz, P. Willems, M. Bull, and B. Lang, Non-blocking load bal-
ancing for branch-and-bound algorithms, 2008. To appear in Proc. PARA 08.

