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Abstract

In this article, optimal properties of the Bernstein basis of polynomi-
als are revisited. In particular, these include optimal shape preserving
properties and optimal stability for the evaluation in computer aided geo-
metric design, minimal conditioning of its collocation matrices and fastest
convergence rates of the corresponding iteration approximation property.
Recent advances on stable evaluation algorithms for this basis will be also
presented and discussed.

Keywords: Bernstein basis, optimal properties, de Casteljau algorithm, error analysis
AMS subject classifications: 65G50, 65D17

1 Introduction

The importance of the Bernstein basis of the space of polynomials on a compact
interval in Approximation Theory has been well known for many decades. In Computer
Aided Geometric Design (CAGD) this basis has played a key role since the beginning
of this subject. It is the standard basis for the design of polynomial curves, and
its multivariate extensions are also the standard bases for the design of polynomial
surfaces. In fact, in Section 2 we recall some relevant properties in CAGD for which
this basis is optimal.

The usual algorithm to evaluate a polynomial represented in the Bernstein basis
is the de Casteljau algorithm. In Section 3 we present and illustrate results and
techniques on the error analysis when using this evaluation algorithm.
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2 Delgado and Peña, Optimality of Bernstein Representations

2 Optimal Properties of the Bernstein Basis

This section presents several optimal properties of the Bernstein basis. Let us start
by introducing some notations.

A matrix is totally positive (TP) if all its minors are nonnegative. A nonnegative
matrix is stochastic if the elements of each row sum up to 1. We denote by Pn the
space of polynomials of degree not greater than n.

Let U be a vector space of real functions defined on an interval I ⊂ R and
(u0(t), . . . , un(t)) (t ∈ I) a basis of U . The collocation matrix of (u0(t), . . . , un(t))
at t0 < · · · < tm in I is given by

M

(
u0, . . . , un

t0, . . . , tm

)
:= (uj(ti))i=0,...,m;j=0,...,n.

A system of functions is TP when all its collocation matrices are TP. In Computer
Aided Geometric Design (CAGD) the functions u0, . . . , un also satisfy

∑n
i=0 ui(t) = 1

∀ t ∈ I (i.e. the system (u0, . . . , un) is normalized), and a normalized TP system is
denoted by NTP. In fact, shape preserving representations are associated with NTP
bases (see [2]).

The following result was proved in Theorem 4.3 of [2].

Theorem 2.1 Let (bn0 , . . . , b
n
n) be the Bernstein basis. A basis (v0, . . . , vn) of Pn is

normalized totally positive if and only if there exists a stochastic totally positive matrix
K such that

(v0, . . . , vn) = (bn0 , . . . , b
n
n)K.

The previous result shows that all NTP bases of the space Pn can be obtained
by multiplying the Bernstein basis by TP stochastic matrices. A nonsingular TP
stochastic matrix can be factorized in terms of a product of bidiagonal stochastic
matrices (see Theorem 2.6 of Chapter 4 of [11]). This biadiagonal decomposition can
be interpreted geometrically as a corner cutting algorithm (see p. 66 of [11]), which in
turn leads to the following interpretation in CAGD of Theorem 2.1: the Bernstein basis
has optimal shape preserving properties among all bases of Pn. In [2], the unique NTP
basis of a space satisfying the property satisfied by the Bernstein basis in Theorem
2.1 was called the normalized B-basis of the space. This concept generalizes Bernstein
bases to more general spaces of functions with NTP bases.

Given a basis u = (u0, . . . , un) of a real vector space U of functions defined on a
subset I of R and a function f ∈ U , we can write f(t) =

∑n
i=0 ciui(t) for all t ∈ I,

where ci ∈ R for all i = 0, . . . , n. The stability of the basis u = (u0, . . . , un) with
respect to the evaluation at a point is measured by the function Cu : U × I → R+

given by

Cu(f, t) :=

n∑
i=0

|ciui(t)|.

The following optimality result is a consequence of Theorem 3 of [7]. It shows that
there does not exist a nonnegative basis of polynomials better conditioned than the
Bernstein basis for any polynomial and at any point.

Theorem 2.2 Let b = (bn0 , . . . , b
n
n) be the Bernstein basis. Then there does not exist

(up to reordering and positive scaling) another basis u = (u0, . . . , un) of nonnegative
functions in Pn such that Cu(p, t) ≤ Cb(p, t) for all t ∈ [0, 1] and p ∈ Pn.
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NTP bases also satisfy the property known as the progressive iteration approx-
imation property (see [3]), which plays an important role in the approximation of
interpolating curves in CAGD. Let us briefly describe this property. Let us consider
a sequence of points (Pi)

n
i=0 such that the ith point is assigned to a parameter value

ti for i = 0, 1, . . . , n, and a basis (u0, . . . , un). First we construct a starting curve
γ0(t) =

∑n
i=0 P

0
i ui(t) with P 0

i = Pi for all i ∈ {0, 1, . . . , n}. Then, computing the
adjusting vector ∆0

i = Pi − γ0(ti) we can take P 1
i = P 0

i + ∆0
i , for i = 0, 1, . . . , n, and

construct a new curve as γ1(t) =
∑n

i=0 P
1
i ui(t). Iterating this process we can get a

sequence of curves {γk}∞k=0. The progressive iteration approximation property holds
when this curve sequence converges to a curve interpolating the given initial sequence
of points (for more details in the iterative process associated to this property, see [3]).
Taking into account that the Bernstein basis is the normalized B-basis of the space
Pn (see Example 4.1 of Chapter 4 of [11]), we can deduce from Theorem 4 of [3] the
optimal convergence speed of the Bernstein basis.

Theorem 2.3 The Bernstein basis provides a progressive iterative approximation with
the fastest convergence rates among all NTP bases of Pn.

One key tool used in the proof of the previous result was also fundamental for
the following application about the optimal conditioning of the collocation matrices
of the Bernstein basis. This fact focuses on the minimal eigenvalues of these matrices
and is recalled in the following result. Let us recall that TP matrices have all their
eigenvalues nonnegative (cf. Corollary 6.6.7 of [1]). The following result follows from
the proof of Theorem 4 of [3].

Theorem 2.4 The minimal eigenvalue of a Bernstein collocation matrix is always
greater than or equal to the minimal eigenvalue of the corresponding collocation matrix
of another NTP basis of Pn.

Given a nonsingular matrix A, let us consider the condition number κ∞(A) :=
‖A‖∞ ‖A−1‖∞. The following result corresponds to Theorem 2.1 (i) of [4] and shows
that the collocation matrices of the Bernstein basis are the best conditioned among
all the corresponding collocation matrices of NTP bases of the space Pn on [0, 1].

Theorem 2.5 Let (bn0 , . . . , b
n
n) be the Bernstein basis, let (v0, . . . , vn) be another NTP

basis of Pn on [0, 1], let 0 ≤ t0 < t1 < · · · < tn ≤ 1 and V := M
(

v0,...,vn
t0,...,tn

)
and

B := M
(

bn0 ,...,bnn
t0,...,tn

)
. Then

κ∞(B) ≤ κ∞(V ).

Given a matrix A = (aij)1≤i,j≤n, we denote by |A| the matrix whose (i, j)-entry
is |aij |. Let us recall that the Skeel condition number of a nonsingular matrix A,
Cond(A), was introduced by Skeel and measures effects of perturbations of the data
in linear systems Af = c. It is defined as

Cond(A) := ‖ |A−1| |A| ‖∞.

The following result was presented in Theorem 2.1 (ii) of [4], and is similar to
Theorem 2.5, but using the Skeel condition number of the transposes of the collocation
matrices.
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Theorem 2.6 Let (bn0 , . . . , b
n
n) be the Bernstein basis, let (v0, . . . , vn) be another TP

basis of Pn on [0, 1], let 0 ≤ t0 < t1 < · · · < tn ≤ 1 and V := M
(

v0,...,vn
t0,...,tn

)
and

B := M
(

bn0 ,...,bNn
t0,...,tn

)
. Then

Cond(BT ) ≤ Cond(V T ).

Finally, let us mention that many computations with collocation matrices of the
Bernstein basis can be performed with high relative accuracy (see [10, 8]). The next
section deals with the problem of evaluating a polynomial represented in the Bernstein
basis.

3 Evaluation of Bernstein Representations

In this section, we consider error analysis when evaluating polynomials represented in
the Bernstein basis. Corner cutting algorithms form the main family of algorithms
in CAGD. An algorithm is said to be a corner cutting algorithm if each of its steps
consists of a convex combination. An example of corner cutting algorithm is the de
Casteljau algorithm. This is the usual algorithm for evaluating an nth-degree Bernstein
polynomial

p(t) =

n∑
i=0

cib
n
i (t),

where

bni (t) =

(
n

i

)
ti(1− t)n−i,

at a point t ∈ [0, 1] (see [6]). Let us recall this algorithm.

Algorithm 1 De Casteljau algorithm for the evaluation of a polynomial p at a
point t

Require: t ∈ [0, 1], n ≥ 0 and (ci)
n
i=0

Ensure: p(t) =
∑n

i=0 cib
n
i (t)

for i = 0 to n do
c0i = ci

end for
for r = 1 to n do
for i = 0 to n− r do
cri = (1− t)cr−1

i + tcr−1
i+1

end for
end for
p(t) = cn0

As we can observe, the de Casteljau algorithm is a corner cutting algorithm. In [9]
Mainar and Peña carried out a backward and forward error analysis of corner cutting
algorithms. In particular, the forward error analysis of corner cutting algorithms
presented in Corollary 3.2 of [9] applied to the particular case of the de Casteljau
algorithm and the Bernstein basis gives rise to the following result.
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Theorem 3.1 Let p(t) =
∑n

i=0 cib
n
i (t) be a polynomial of nth-degree represented in

the Bernstein basis b = (bn0 , . . . , b
n
n). If 2nu < 1, where u is the unit roundoff, then the

value p̂(t) = fl(p(t)) computed with the de Casteljau algorithm satisfies

|p̂(t)− p(t)| ≤ γ2n
n∑

i=0

|ci|bni (t) = γ2nCb(p, t),

where γ2n := 2nu
1−2nu

.

The previous result presents an upper bound of the absolute error of the approx-
imation p̂(t) to p(t) provided by the de Casteljau algorithm. An estimation of this
upper bound can be obtained by evaluating the polynomial q(t) =

∑n
i=0 |ci|b

n
i (t) with

the de Casteljau algorithm and multiplying the obtained value by the approximation

γ2n =
2nu

1− 2nu
= 2nu+O(u2) ≈ 2nu.

Example 3.2 Let us consider the 20th-degree polynomial given by

p(t) =

20∏
k=1

(
t− k

20

)
. (1)

The 20 roots of this polynomial are uniformly distributed in the interval [1/20, 1]. This
polynomial was firstly considered by Wilkinson in [12, 13], where its ill-conditioning
was showed.

First we have computed in exact arithmetic the coefficients c0, c1, . . . , c20 such that
p(t) =

∑20
i=0 cib

20
i (t) and the exact values of the polynomial at the points of the follow-

ing mesh:

M =

{
1

100
+

i

29

98

100
, i = 0, 1 . . . , 29

}
. (2)

Then we have evaluated the polynomial by Algorithm 1 in floating point arithmetic at
the points in M with double precision. In addition, we have computed the absolute
errors corresponding to the obtained approximations. Finally, we have calculated an
estimation of the upper bounds of the absolute errors by evaluating the polynomial∑n

i=0 |ci|b
n
i (t) with Algorithm 1 and multiplying the approximation obtained by 2nu.

These data can be seen in Figure 1. We can observe in this figure that the forward
error analysis provides quite realistic and sharp bounds for the absolute error. In
addition, the shape of the curve corresponding to the error bounds mimics the shape of
the curve corresponding to the absolute errors, that is, as the absolute error increases,
the corresponding forward bound also increases, showing a good behaviour.

The previous example assumes that the exact coefficients of the Wilkinson pol-
ynomial have been computed exactly. It should be noted however that the exact
computation of these coefficients in floating point arithmetic is a very ill-conditioned
problem.

The upper bound of the absolute error when evaluating p(t) provided in Theorem
3.1 is computed independently of the approximation p̂(t) given by the de Casteljau
algorithm. But, using data calculated while performing the de Casteljau algorithm,
more realistic upper bounds of the absolute error can be obtained. Error analyses
leading to these kinds of bounds are called running error analyses. In Section 4 of
[9] a running error analysis of corner cutting algorithms was carried out. This error
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Figure 1: Absolute errors and absolute forward error bounds evaluating p(t)

Algorithm 2 De Casteljau algorithm with running error bound of the absolute
error for the evaluation of a polynomial p at a point t

Require: t ∈ [0, 1], n ≥ 0 and (ci)
n
i=0

Ensure: p̂(t) ≈ p(t) =
∑n

i=0 cib
n
i (t) and µ such that |p(t)− p̂(t)| ≤ µ

for i = 0 to n do
c0i = ci
M0

i = |ci|
end for
for r = 1 to n do

for i = 0 to n− r do
cri = (1− t)cr−1

i + tcr−1
i+1

Mr
i = (1− t)Mr−1

i + tMr−1
i+1 + |cri |

end for
end for
p̂(t) = cn0
µ = (2Mn

0 − p̂(t))u

analysis gives rise to an extension of the de Casteljau algorithm, which provides the
approximation p̂(t) to p(t) and, at the same time, an upper bound of the absolute
error.

Example 3.3 Let us consider again the 20th-degree polynomial defined in formula
(1). In this example we have repeated the process followed in Example 3.2 at the same
points, but calculating the running error bounds instead of the absolute error bound
provided by the forward error through Algorithm 2. Figure 2 shows the absolute errors,
the running error bounds and the absolute error bounds provided by the forward error
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analysis in Theorem 3.1, which had already been computed in Example 3.2. In this
figure we can observe that the running error bounds also have a good behaviour and,
in addition, these bounds of the absolute errors are sharper and more realistic than the
corresponding ones to the forward error analysis.
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Figure 2: Absolute errors and absolute running and forward error bounds when
evaluating p(t)

Nevertheless, the relative error is the best measure of the error when approximating
a value a by â. But the error analyses presented before provide bounds of the absolute
error corresponding to the approximation p̂(t) to p(t) obtained when evaluating a
polynomial p(t) at a point t by the de Casteljau algorithm. In [5] the problem of
finding bounds of the relative errors corresponding to approximations p̂(t) to the value
of a function p(t) at a point t obtained by an evaluation algorithm was faced. In
Theorem 3.1 of [5], Delgado and Peña assumed an absolute error bound |p̂(t)−p(t)| ≤
uK+O(u2), and provide a sufficient condition on p̂(t) in order to assure a relative error
bound. Applying that theorem to the case of polynomials represented with Bernstein
polynomials we obtain the following result.

Theorem 3.4 Let us consider an evaluation algorithm of a polynomial of the form
p(t) =

∑n
i=0 cib

n
i (t) such that p(t) 6= 0, let p̂(t) be the computed value, and let us

assume that
|p̂(t)− p(t)| ≤ uK +O(u2), (3)

where u is the unit roundoff. If |p̂(t)| > uK, then∣∣∣∣ p̂(t)− p(t)p(t)

∣∣∣∣ ≤ u K

|p̂(t)| +O(u2). (4)

Moreover, assuming that p̂(t)p(t) > 0, a necessary condition for expecting∣∣∣∣ p̂(t)− p(t)p(t)

∣∣∣∣ < 1

2
(5)
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using a formula with the absolute error bound (3) is |p̂(t)| > uK.

The previous theorem can be applied to both bounds, the one provided by the
forward error analysis and the one provided by the running error analysis. Taking
into account the results obtained in Example 3.3 and the experiments in [5], we can
observe that running error bounds are more realistic and sharper than forward error
bounds. Hence, we apply Theorem 3.4 to the running error bound of the absolute
error computed in Algorithm 2, obtaining the following algorithm, which computes
an approximation p̂(t) to the value p(t) at t by using the de Casteljau algorithm
and, at the same time, calculates an approximation of the bound of the relative error
|p(t)− p̂(t)|/|p(t)| given by (4).

Algorithm 3 De Casteljau algorithm with running error bound of the relative
error for the evaluation of a polynomial p at a point t

Require: t ∈ [0, 1], n ≥ 0 and (ci)
n
i=0

Ensure: p̂(t) ≈ p(t) =
∑n

i=0 cib
n
i (t) and µ such that |p(t) − p̂(t)|/|p(t)| ≤ µ if

|p̂(t)| > u (2Mn
0 − p̂(t)) or µ = −1 in otherwise if |p̂(t)| > uµ

for i = 0 to n do
c0i = ci
M0

i = |ci|
end for
for r = 1 to n do

for i = 0 to n− r do
cri = (1− t)cr−1

i + tcr−1
i+1

Mr
i = (1− t)Mr−1

i + tMr−1
i+1 + |cri |

end for
end for
p̂(t) = cn0
µ = (2Mn

0 − p̂(t))u
if |p̂(t)| > µ then
µ = µ/p̂(t)

else
µ = −1

end if

Example 3.5 Let us consider again the 20th-degree polynomial defined by (1). First
we have computed in exact arithmetic the coefficients c0, c1, . . . , c20 such that p(t) =∑20

i=0 cib
20
i (t) and the exact values of the polynomial at the points of the mesh M

given by (2). Then we have evaluated the polynomial by Algorithm 3 in floating point
arithmetic with double precision at the points in M . That algorithm calculates at the
same time, under certain conditions, a bound of the corresponding relative error. In
addition, we have computed the relative errors corresponding to the obtained approxi-
mations. We have checked that, when evaluating polynomial p(t) at any point t ∈ M
we have that |p̂(t)| > (2Mn

0 − p̂(t))u and, hence, a running relative error bound can
be given for all points at M . Figure 3 shows the relative errors and its corresponding
running bounds. We can observe in the figure that the bounds are very tight. In fact,
the polygon formed by the relative running error bounds is very close to the polygon
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formed by the true relative errors and the shape of both polygons are very similar.
Hence we can conclude that relative running errors have a good behaviour.
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Figure 3: Relative errors and relative running error bounds when evaluating
p(t)
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