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Abstract

This paper investigates interval pseudo-inverse matrices. We state
an Interval Greville algorithm and extensions with bisections for calcu-
lation of interval pseudo-inverse matrices and give the examples of inter-
val pseudo-inversion application for estimation of solutions of systems of
linear equations, and show applications for estimations of solutions and
pseudo-solutions in a least squares sense.
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1 Introduction

For any square interval matrix A € IR™ ™ an interval inverse matrix is determined
as the minimal interval matrix A~' € IR™*" so that A™' D> {A™": A€ A} [2]. If
VA € A JA7! then A is regular. If condition p(mid(A)-A) < 1 holds, where
mid (A) is the midpoint matrix of A, A = rad (A) is the radius matrix, p(-) is the
spectral radius, then A is called strongly regular [6]. Some algorithms for computation
of interval inverse matrices can also be found in [5].

Our main topics of investigation are the development of algorithms for bounds
computation of interval inverse matrices and the determination of conditions for sim-
ple bounds identification. This paper generalizes and extends the difinition of interval
inverse matrices to interval pseudo-inverse matrices for non-regular square or rectan-
gular matrices.

2 Interval Pseudo-Inverse Matrices

For a real rectangular matrix A € R™*™ of any rank, the pseudo-inverse matrix
(also known as the Moore-Penrose inverse matrix or the Moore-Penrose generalized
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inverse matrix) AT € R™*™ is the only matrix satisfying the four conditions of Moore-
Penrose [1]:

AATA=A, ATAAT = AT, (4AN)T = 44T, (ATA)T =ATA (1)

It exists for any matrix. In the case of a regular square matrix it equals the usual
inverse matrix.

For any interval matrix A € IR™*™ we define the interval pseudo-inverse matrix
AT € IR™ ™ as the minimal interval matrix so that AT D {A+ A€ A}. AT
includes all real pseudo-inverse matrices A™ for all A € A [7]. Contrary to the interval
inverse matrix we do not need any assumptions of regularity on the matrix A. Hence
the interval pseudo-inverse matrix is defined for any interval matrix A.

Unfortunately there are no algorithms for its computation. There is an interval
algorithm for the computation of a real pseudo-inverse matrix [9], but it is not suitable
for interval pseudo-inverse matrix computation.

In many applications we need enclosure for A instead of an exact interval pseudo-
inverse matrix. Such an enclosure can be computed by an interval modification of the
well-known Greville algorithm for real pseudo-inverse matrix computation [1J.

3 Basic Interval Greville Algorithm

This algorithm was first introduced in [7]. Let A € IR™*"™ with ay, as its k-th column,
where k = 1,...,n. Let Ax be the submatrix of A constructed from the first k columns
of A,
Ak = (a1 as . ak) s
where a; is the i-th column of A, i =1,...,n. If k = 1then A1 =a1. Fork=2,...,n
it is clear that
Ak = (Ak,1 ak) .

Algorithm 1.

Call: IntPseudolnverse(A).

Input: A — interval matrix.

Output: AT — enclosure of pseudo-inverse matrix.

Step k = 1. Assume

m
di = [la|* =) al.
i=1
We have that

0, ifd; =0,
T

At = %, if dy >0,
1

ol
[ <0U —1) , otherwise,
d;

where 0 € IR™ is the null interval vector and [ is the inteval hull of union of interval
vectors.

Steps k = 2,...,n. Matrix A} can be computed by the formula

Af = (Aﬂl(ff; akfk)) ’
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where [ is the unitary matrix of the order m, and

ek = (I — Ap1 AL )an,

di = [lexl?,
Z—g, if dp >0,
et ar, ——
Te=y Al e T
else.

i <dT U a}f(A:l)TA:l>

1+ (|4 ax?

A} is the final estimation of the matrix A™.

4 Discussion of the Algorithm

The resulting interval pseudo-inverse matrix A;" may contain infinite bounds in some
cases. The probability of this situation is increased for wide matrices and matrices
with large sizes. If for any step k we will have

Fr = ([-o0,+00] ... [—00,+))
the work of the algorithm can be interrupted, and the result is the matrix

[—o0,+00] ... [—o0,+0]
At = : : : ,

[—o0,400] ... [—00,4x]

showing that the result can be any matrix of R"*™, not a particularly helpful insight.
This matrix would not be useful for subsequent calculations.

We need a way to compute the degree of usability of the matrix A™. An accuracy
criterion can be based on satisfaction of the Moore-Penrose conditions and defined as

t = |AATA-A|+|ATAAT - AT
+[[(AAT)" — AAT| +[|(ATA)" — AT Al

Another criterion is the width of A™T.

Use of an interval hull is not necessary if we can work with generalized interval
arithmetic. In this case we have to use the union of a finite number of boxes.

Even for real matrices the result can be an interval matrix because of rounding
errors. The proposed algorithm can be applied to the computation of e-extensions A,
of real matrices A. It can be used for unstable real matrix pseudo-inversion detection.
When A7 is wide or the accuracy criterion t has a large upper bound, the pseudo-
inversion operation is unstable.

The recurrent interval Greville algorithm can be applied not by columns but by
rows. That is recommended if m > n, that is, if the count of rows is greater than the
count of columns. The matrix

AN ()" (2)
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can be taken as the result.

The proposed interval Greville algorithm has the property of monotonicity: if
A C B then A* c B*. This follows from the monotonicity of interval arithmetic
operations.

5 Modified Greville Algorithm with Bisections

The basic Greville algorithm can lead to huge overestimations of pseudo-inverse ma-
trices, but we can obtain better results using monotonicity of operations. Let us
see any bisection of the given matrix A into two interval matrices A; and Az by
any coordinate. Because A;|JAs = A, A7 C AT and A] C A" we have that
AT cll (AT UA7T). We will not lose any solution A*, but the bounds of the estima-
tion can be better.

We can construct any division of A;,i =1,...,p, such as
p
JA=A4,
i=1
and then
p
AT cl| Al

i=1
Let T € Z > 0 be the depth (count) of bisections. On every step 0 < ¢ < T we use
bisection by the widest coordinate. The recursive algorithm can be applied to improve
estimation of interval pseudo-inverse matrices.

Algorithm 2.

Call: IntPseudolnverseBisect(A, T, t).

Input: A - interval matrix, T' — depth of bisections, ¢ — current depth.
Output: A" — estimation of the interval pseudo-inverse matrix.

Step 1. If t = T then we return A" computed by the basic interval Greville algorithm:
A" = IntPseudolnverse(A).

Step 2. If ¢ < T then (i*, j*) = argmax, ; width A;;. We bisect by the element (i, j*)
into matrices A; and As.

Step 3. Then we make two recursive calls to this algorithm:

A} = IntPseudolnverseBisect(A;, T,t +1), i=1,2.

Step 4. Return [] (A} U A7J).
<

If the depth T" = 0 then the modified algorithm is basic interval Greville algorithm.
Obviously, the algorithm with a greater value of T' can give tighter results. For every
increment of T', the computation time increases by a factor of approximately 2 because
two times as many matrices are computed.

Instead of bisection by the widest coordinate we can bisect by any other strategy,
for example by the smallest coordinate or randomly. Also we can use intersections of
results computed with different bisection strategies.
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6 Examples of Interval Pseudo-Inverse Matrices

The proposed algorithms were realized in the C++ language using the C++ Builder
XE2 environment. The developed computer program was used for numerical exper-
iments on a computer with an Intel Celeron 1.86 GHz CPU, 1 Gb RAM and the
Microsoft Windows Vista operating system.

Let us see some examples of computation of interval pseudo-inverse matrices. Our
examples show how the results depend on the parameter T' of Algorithm 2.

1. Let A =[1,2] € IR be given. The true result is

AT =[0.5,1].

Table 1 contains estimation and accuracy of computations. We see from it that accu-
racy of estimation of the interval pseudo-inverse matrix increases when the depth T'
increases. For T' = 15 we already have very good estimation.

Table 1: Results for Example 1

Depth T | Estimation of A™ t width (A")  Time, min:sec
0 [0.2500, 2.0000] [0,137.1875] 1.7500 00:00
1 [0.3750, 1.5000] [0,55.7969) 1.1250 00:00
5 [0.4921,1.0313] [0,17.3699] 0.5392 00:00
10 [0.4997,1.0010] [0,15.7992) 0.5013 00:00
15 [0.4999, 1.0001] [0,15.7501] 0.5002 00:00
20 [0.4999, 1.0001] [0,15.7501] 0.5002 00:22
2. Let 24 | |
_ 274 7271 2X2
a= (Y ) em

be a well-known matrix taken from [3]. This matrix is regular, and its interval inverse
matrix can be computed exactly using interval determinant and adjoint matrix [8]:

-1 [1/6,1] [—1/2,1]
A ‘([71,1/2} [1/6,11)

Results are given in Tables[2]and[3] These tables show that the basic interval Greville
algorithm and its extension with bisections when the depth T is small give unsatisfac-
tory results. Increasing T leads to increased accuracy. We also note that the time for
computation with 7" = 20 is large enough.

3. Let us consider the matrix from the system of linear equations [4]

(2,3] [0,1]

(1,2] [2,3])°
Results are given in Tables [ and [5] Interpretation of results is the same as for
Example 2. Contrary to the previous example, we obtain a useful result even for
depth T' = 5.

4. Let us consider the matrix

(1,2]  [2,3]

(1,2] [-1,1]

(2,31 [0,1]
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Table 2: Estimation of the interval pseudo-inverse matrix for Example 2

Depth T Estimation of AT Time, min:sec

[—00,+00]  [—00, +00] _

0 [—00, +00] [~ +o) 00:00

[—007 +OO] [—OO, +OO]

1 :

[—00, +00] |00, 0] 00:00
[_007 +OO] [—OO, +OO] .

5 [—00, +00]  [—00, 4] 00:00

10 [—0.6505,24.1336] [—13.7949, 21.4130] 00:00
[—21.4130,13.7949]  [0.0426,12.6689] '

15 [0.0734,3.5609] [—2.2261,4.4174] 00:03
[—4.4174,2.2261]  [0.0999, 3.3209] '
0.1413,1.8900]  [—1.1394,2.1210] _

20 [—2.1210,1.1394]  [0.1298,1.8744] 02:06

Table 3: Accuracy of the interval pseudo-inverse matrix for Example 2

Depth T t width (A™)
0 [0, +00] +00
1 [0, +00] +00
5 [0, +00] +00
10 [0,80007421.7958] 35.2078
15 [0,172622.8187] 6.6434
20 [0,25138.7173] 3.2604

Table 4: Estimation of the interval pseudo-inverse matrix for Example 3

Depth T Estimation of AT Time, min:sec

[—007 +OO] [—OO, +OO] .

0 [—00,+00]  [~00, 4] 00:00
[_007 +OO] [—OO, +OO] .

1 [—00, +00]  [—o00, 4] 00:00

5 [0.2240,13.2170] [—7.7032,0.3201] 00:00
[—15.7515,—0.0134]  [0.0624,9.7063] '
[0.2881, 3.0290] [—1.8939,0.0679] ]

10 [—3.7079,—0.0703]  [0.2260, 2.8724] 00:00
[0.3117,1.7873] [—1.0653,0.0324] )

15 [-1.9130,—-0.1000] [0.3102,1.7664] 00:03

20 [0.3227,1.3076] [—0.7342,0.0159] 02:19
[—1.3567,—0.1082]  [0.3258,1.3134] '
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Table 5: Accuracy of the interval pseudo-inverse matrix for Example 3

Depth T t width (A™)
0 [0, +00] +0o0
1 [0, +00] —+o0
5 [0,2772398.2393] 15.7381
10 [0,15187.8851] 3.6376
15 [0,2594.6570] 1.8129
20 [0,1046.6976] 1.2482

This matrix is rectangular, so an interval inverse matrix is undefined for it. Results
are shown in Tables[f]and [} We note the increase in the accuracy of estimation when

T is increased, as in Example 3.

Table 6: Estimation of the interval pseudo-inverse matrix for Example 4

Depth T Estimation of A™ Time, min:sec
[~00, +00]  [~00, +od]\
0 [—00,400]  [—00, +00] 00:00
[—OO, +oo] [—OO, +OO]
[~00, +00]  [—o0,+od]\
1 [—00,400]  [—00, +00] 00:00
[—OO, +oo] [—OO, —I—OO]
[~00,+00]  [—o0,+od]\
5 [—o00,4+00]  [—00, +00] 00:00
[—OO, +Oo] [—OO, +OO]
[—235.8145,0.6544]  [0.0145, 230.6975] \ ~
10 [-87.1795,111.6408] [—108.9520,85.3497] 00:00
[—0.8928,273.3233]  [—266.8085, 1.2718]
[—8.4930, 0.2954] [0.0939, 9.5901]
15 [—3.3600,3.9459]  [—4.4933,3.8531] 00:06
[0.0017,10.0504] [—10.7529,0.2457]
[—2.3703,0.1954]  [0.1644, 3.1050] T
20 [—0.9243,1.4099] [—1.6295,1.2288] 03:46
0.0879,3.1175]  [—3.3554,0.1615]

5. Let us consider the matrix with crisp values

(

— O

w o W

) |
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Table 7: Accuracy of the interval pseudo-inverse matrix for Example 4

Depth T t width (A™)
0 [0, +00] +00
1 [0, +00] ~+o0
5 [0, +00] +00
10 [0,950238500568, 4360]  274.21601
15 [0, 2238047.1275] 10.9985
20 [0, 34090.8096] 3.5168

Even the basic interval Greville algorithm gives a good result:

[0.0499,0.0501] [0,0] [0.0499, 0.0501]
[0.1500,0.1500] [0,0] [0.1500,0.1500] ) °

Computation errors in this case are insignificant.
6. If we consider an interval extension of the matrix from Example 5

[0.9999,1.001] [2.9999, 3.0001]
[—0.0001,0.0001] [-0.0001,0.0001] | ,
[0.9999,1.001] [2.9999, 3.0001]

we obtain useless result for the basic and modified algorithms:

([foo,oo] [~00, 00] [foo,oo]) |

[—00,00] [—o0,00] [—00, 0]

The reason for such a result is the discontinuous nature of pseudo-inversion due to
existence of real matrices of different ranks within the interval matrix.

7 Application to Estimation of Linear Equations
Systems Solutions and Pseudo-Solutions

Interval pseudo-inversion can be used to estimate solutions or pseudo-solutions of
systems of linear equations. Although is not suitable for optimal estimation, it can be
efficiently used for an iterative improvement of estimation by the interval Gauss-Seidel
method, for instance.

It is known [I] that solutions or minimal pseudo-solutions (in the least squared
sense) of a system Az = b in the real case can be found from the relation

z* = A"h, (3)

where A and b are a known matrix and a vector, respectively, and z is an unknown
vector. Relation allows us to compute a vector z* such that ||Az — b||2 and ||z]|2
are minimal. For an interval system of linear algebraic equations

Az =0»>
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we have to find an & which contains the set of all solutions x for any A C A and b C b.
Hence,
z* = A'b (4)

contains all solutions and minimal pseudo-solutions if the system Ax = b is incon-
sistent. Formula gives an analytic enclosure of the solution to an interval linear
system.

Let us consider the example from [4]:

2,3] [0,1]\ (@1 _ [ [0,120]
(1,2] [2,3]) \@2/) = \[60,240] )
The minimal interval box containing all solutions is
S [—120,90]
T\ [—60,240] )
Interval pseudo-inverse matrices for this matrix A are given in Table [d] Results are

given in Table The interval pseudo-inverse matrix computed with parameter 1" = 20
is close to interval solution and can be used as good initial approximation.

Table 8: Estimation of the set of solutions

Depth T Estimation of x* width (*) Time, min:sec
0 (00, +oc] oo 00:00
[_007 +OQ]

[ 1848.7500, 1662.8295] .

g ([—1886.4302, 2329.5039] )  4219-9341 00:00
[—454.5175,379.7517] ,

10 313700 so.sera]) 11207472 00:00
[-255.6499, 222.2492] .

15 [-210.9405, 423.9334] 634.8739 00:03

2 {:176.1879, 160.7234} 1584617 0216

143.2525, 315.2092

Formula also can solve systems with a rectangular interval matrix A. Let us
consider the system

2 23 20, 20]
12 1] (2) = [ poo
[2,3] [0,1] [0,100]

This system is overdetermined. Instead of its solution, we have to find a pseudo-
solution. Interval pseudo-inverse matrices for this matrix A are given in Table @
Results are shown in Table[0] The vector on the right side is wide, so the result is also
wide, even for T = 20.

The value ||Axz — b||2 estimates the computation accuracy. If its lower bound is
greater than zero, the system is inconsistent. So the system has no solutions for any
ACAandbChb.
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Table 9: Estimations of the set of solutions

Depth T Estimation of x* width (x*)  Time, min:sec
0 [—00, +od] 00 00:00
[_007 +OO]

[—12651.7095, 42096.2877]

10 [—41100.4630,12422.5933] ) 24747, 9972 00:00
[—472.4241, 1530.0130] |

b ([—1671.4830, 563.1493] 2234.6323 00:06
[—130.5874, 486.0415] |

20 ([—544.2885, 188.8328] 733.1211 03:46

8 Conclusion

This article proposes basic and modified Greville algorithms for the computation of
estimations of interval pseudo-inverse matrices, which can be used for analytic con-
struction of upper bounds of solutions of systems of linear equations with matrices
of any rank. Our algorithms also can be used for initial approximation of solution
bounds and further application of known methods such as Gauss-Seidel. Interval
pseudo-inverse matrices are also useful for 2-norm optimization problems. In the lin-
ear case, they are equivalent to problems of computation of pseudo-solutions of systems
of linear equations.
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