
An Environment for Testing, Verification and

Validation of Dynamical Models in the Context

of Solid Oxide Fuel Cells∗

Stefan Kiel, Ekaterina Auer
Computer and Cognitive Sciences (INKO),
University of Duisburg-Essen, Duisburg, Germany

(kiel,auer)@inf.uni-due.de

Andreas Rauh
Chair of Mechatronics,
University of Rostock, Rostock, Germany

andreas.rauh@uni-rostock.de

Abstract

Still in its early development stages, the technology of solid oxide fuel
cells is one of the important topics in modern engineering. One research
direction is to design robust and accurate control strategies for this kind
of fuel cell based on models spatially discretized into ordinary differential
equations that describe also non-stationary system behavior. To allow
users to employ new models and techniques for SOFCs easily in combina-
tion with various verified tools, we implement the environment VeriCell.
It features an intuitive graphical interface for construction of fuel cell mod-
els from predefined building blocks. It is based on the framework Uni-
VerMeC which provides a unified access to various verified arithmetics
and algorithms. New models can be added to VeriCell as they are being
developed, for which purpose a plug-in based interface is adopted. In this
paper, we present the environment, with the focus on the software de-
sign and verified simulation of initial value problems. The main features
of the software are demonstrated on examples modeled and simulated in
VeriCell.

Keywords: solid oxide fuel cells, initial value problems, software engineering, verifi-
cation, validation, UniVerMeC

AMS subject classifications: 65-06, 65G20, 65P99, 65Z99

∗Submitted: February 10, 2013; Revised: May 6, 2014; Accepted: May 6, 2014.

302

(kiel, auer)@inf.uni-due.de
andreas.rauh@uni-rostock.de

Reliable Computing 19, 2014 303

1 Introduction

Solid oxide fuel cells (SOFCs) are devices that convert chemical energy into electricity.
They are relatively compact, highly efficient, and flexible with respect to the kind of
fuel. A drawback is the complex production process. Moreover, SOFCs might suffer
from overheating, which needs to be avoided. These reasons have stimulated a lot of
research in the area [4,17], in which scientists typically use partial differential equations
based models to describe the behavior of SOFCs [22]. However, the technology is still
in its early development stages.

One approach to deal with the problems is to design and develop robust and
accurate control strategies for SOFCs which are based on mathematically more sim-
ple ordinary differential equation (ODE) models. This is a major goal of a current
joint project between the Universities of Rostock and Duisburg-Essen. State-of-the-
art SOFC control methods do not take non-stationary operating points into account
and are thus valid only in small operation ranges. Recently, we have presented control
oriented SOFC temperature models and new control strategies for them [6,5,20]. The
simulations are valid in wide operation ranges, and make partial use of methods from
verified numerics (in particular, interval arithmetic) to provide reliable control strate-
gies taking into account bounded uncertainty and disturbance. Reliability is especially
important in the SOFC area since it is necessary to guarantee that overheating does
not happen and so cannot damage the expensive cell.

Developing and testing control strategies with different models is a complex pro-
cess. The first step is obviously to choose the right kind of model, in our case, a control
oriented one. Usually, it is then necessary to adapt the selected model to the consid-
ered real SOFC. This can be done by parameter identification, which is applied to the
model on the basis of measured data from the cell obtained over a long period of time.
Experiment design is also of interest, and can be seen as an optimization problem. In
the final step, users might want to validate the chosen model and parametrization by
checking the resemblance between the simulation and measured results or by assessing
the performance of the employed control strategy. One possibility to validate in such
a way is to actually run a series of test simulations, which amounts to solving initial
value problems (IVPs) in our context.

To allow users to employ new models and techniques easily in combination with
various verified tools, we implement the environment VeriCell within the scope of
the joint research project VeriIPC-SOFC. Figure 1 gives an overview of the project
and highlights the parts relevant to this paper. The already mentioned project tasks
are development of SOFC models and control strategies for them as well as finding
means for accurate identification of their parameters, for simulation and for sensitivity
analysis. For this purpose, we (plan to) employ a variety of methods from the areas of
traditional and verified numerics (possibly, in combination with each other). Here, we
need at least methods for solving algebraic, differential, and/or differential-algebraic
equations as well as optimization algorithms. Stochastic approaches can be used to
model processes such as the aging of an SOFC stack. All these tasks are used for
and can be validated against the SOFC test rig available at the University of Rostock.
Finally, a certain expertise in the area of software engineering is necessary to be able
to develop an integrated simulation environment interacting with the test rig, since
common interfaces between different approaches are lacking (in particular, for verified
implementations).

The VeriCell software supports users during the task of testing new SOFC con-
trol strategies and models. It features an intuitive graphical interface for construction

304 Kiel et al., An Environment for Solid Oxide Fuel Cells

Probabilistic methods

Dempster-Shafer

Fault trees

Markov set chains
Verified methods

Arithmetics

AE solvers

ODE solvers

DAE solvers

Optimizers

Floating point methods

AE solvers

ODE solvers

DAE solvers

Optimizers

...

Project tasks

ModelsSensitivity

SimulationControl

Parameter optimization

SOFC

VeriCell

Software engineering

Design

Figure 1: Overview of the VerIPC-SOFC project. The parts discussed in this
paper are shown in red.

Reliable Computing 19, 2014 305

of SOFC models from predefined building blocks. New models can be added to Veri-
Cell as they are being developed. Moreover, users can apply a GPU-accelerated
parameter identification algorithm [12] with their own measured data to adapt the
models to their actual SOFCs. To simulate controlled or non-controlled models, sev-
eral external initial value problem solvers can be employed inside VeriCell. Among
these are verified (ValEncIA-IVP [18] and VNODE-LP [16]) as well as non-verified
ones (currently, ODE and VODE [1]). An important design aspect of VeriCell
is flexibility with respect to external solvers and basic data types. The users are
able to incorporate new models and interface new solvers through a mechanism based
on the framework UniVerMeC [8]. It not only provides a unified access to various
arithmetics and algorithms but also centralizes the model description inside the en-
vironment. That is, the same model definition (e.g. an IVP defined according to the
VeriCell specifications) can be used with all the supported solvers.

Verification in the context of SOFC modeling, simulation, and control does not
primarily mean a guarantee of a certain number of digits after the decimal point.
Since we apply methods of verified numerics to a model of a real-life SOFC stack, we
can only certify that the exact solution to this model is within the bounds obtained on
a computer. By using the term ‘verification’, we emphasize, on the one hand, that the
rounding and numerical discretization errors (within the restrictions of the considered
model) are taken into account. In this way, we are sure that no uncertainty is added
to the model due to numerics, even if parameters of the model are not known exactly.
On the other hand, this is a term which denotes the set-based methods with result
verification in general, for example, interval, affine or Taylor model analysis. These set-
based methods help us to propagate bounded uncertainty through the system without
adding further numerical uncertainty, as explained above.

The paper is structured as follows. First, we briefly describe SOFC models cur-
rently available in VeriCell. Next, we summarize the main software engineering
principles of UniVerMeC in Section 3. In the next section, we give details on how to
define a model in and to interface a solver using UniverMeC. In Section 5, the main
features of VeriCell are demonstrated on several simulation examples. A discussion
of the results and a perspective on future work conclude this paper.

2 Models

An SOFC model adopted in [6] consists of three main parts, each describing a specific
aspect of the system behavior: its fluid dynamics, electrochemistry and thermodynam-
ics. At the moment, our research is concentrated on thermal models, since this is the
most influential component. The phenomenon can be described by nonlinear ODEs
obtained using the finite volume method by spatial semi-discretization of the stack
into L×M ×N volume elements. For example, the 1× 1× 1 model [19] characterizes

306 Kiel et al., An Environment for Solid Oxide Fuel Cells

IVP

f : R|s|+|p|+|u| → R|s|

p

t

u(t)

u0 x0 t0

x(t)

(a) Abstract IVP class used for representing
model components.

IVP solver

IVP

tend

So

x(tend)

(b) Representation of an IVP solver
and the necessary input parameters.

Figure 2: The two main components necessary for simulating SOFCs. The
abstract description of a component acts as an input for an IVP solver.

the cell temperature θFC by

θ̇FC = ṁH2 ·
(
p∆H,2 · θ2

FC + p∆H,1 · θFC + p∆H,0

)
+ 6 · pA · (θA − θFC) (1)

+ (θAG − θFC) ·
(
ṁH2 · (pH2,2 · θ

2
FC + pH2,1 · θFC + pH2,0)

+ ṁH2O · (pH2O,2 · θ2
FC + pH2O,1 · θFC + pH2O,0)

+ ṁN2 · (pN2,A,2 · θ2
FC + pN2,A,1 · θFC + pN2,A,0)

)
+ IFC · pel

− ṁA · (θFC − θCG) ·
(
77 · pN2,C,0/100 + 11 · pO2,0/50 + 77 · pN2,C,1 · θFC/100

+ 11 · pO2,1 · θFC/50 + 77 · pN2,C,2 · θ2
FC/100 + 11 · pO2,2 · θ

2
FC/50

)
with the initial condition θFC = 299.7053K. Parameters denoted by ṁ describe mass
flows of, for example, nitrogen and are assumed to be piecewise constant. The param-
eters p are constant and represent approximations to the temperature-dependent heat
capacities of hydrogen, nitrogen, water vapor and air as well as the reaction enthalpy
and material and thermal resistances of the cell [3]. We omit further details on the
model parameters such as their actual values since they are not relevant for our present
discussion.

On an abstract level, an IVP we have to deal with in VeriCell is composed
of the components shown in Figure 2a. The right-hand side of the ODEs has to be
specified. It can be seen as a function f depending on a number of constant parameters
p and piecewise constant, time-varying external signals u(t). This leads to the model
equation shown below

ẋ = f(x, p, u(t)),︸ ︷︷ ︸
R|s|+|p|+|u|→R|s|

(2)

where |s| is the dimension of the state vector x, and |p| and |u| are the dimensions
of the constant and time-dependent parameter vectors. (Note that the u(t) are not
treated simply as a function of time, being a part of the right-hand side f , but as pa-
rameters constant during each time step and possibly changing in between.) Together
with initial values t0, u0, and x0, the equation (2) forms the basis for the abstract
class representing the IVP in VeriCell shown in Fig. 2a. If we want to interface an
external IVP solver, it is sufficient to implement a mapping from the abstract IVP
representation to the solver’s internal one. As shown in Fig. 2b, the class for intro-
ducing an IVP solver into VeriCell takes as its input the maximum integration time
tend and solver specific parameters SO in addition to the abstract IVP representation.

Reliable Computing 19, 2014 307

core

Uniform interfaces for arithmetics

functions

Uniform function representation

ivp

IVP model

representation

objects

Uniform geometric

object representation

section

Multisection schemes

and box management

trees

Uniform interval

tree representation

algorithms

Algorithms built upon the framework

Real/interval/affine arithmetic
Taylor models

Matrices and vectors

Model right-hand side
Derivatives

Taylor coefficients

SOFC models

Implicit objects/CSG-operations
Polyhedrons/parametric objects
Deformations/transformations

Naive/Ratz multisection
Coordinate direction weights

Standard interval trees
Contracting trees

Global optimization
VNODE-LP interface

ValEncIA-IVP interface

Figure 3: Relaxed layered structure of the UniVerMeC framework and its
application in the scope of VeriCell.

Currently, VeriCell supports ValEncIA-IVP and VNODE-LP as external ver-
ified IVP solvers. Furthermore, non-verified simulation results can be obtained by
ODE, VODE or the use of a “verified” approximation of the exact solution by Euler’s
method (needed for parameter identification)

xk := xk−1 + h · f(xk−1, p, u(t))

which does not account for the local discretization errors but deals with the rounding
errors and parameter uncertainties. Although the simplest interval version of the Euler
method suffers considerably from the wrapping effect, we actually have no choice but
to use it for parameter identification in the set-based case since every other possibility
to express the solution to the IVP (apart from the analytical expression which is not
available) takes too much CPU time [2]. This is also one of the reasons why the high
dimensional models do not correspond with the reality as well as the one dimensional
model (cf. Section 5).

Depending on the chosen solver, it is necessary to access different kinds of informa-
tion stored in the abstract IVP representation. For example, if we use an interval IVP
solver, we need to be able to evaluate the right-hand side f with interval arithmetic,
whereas solvers like VODE evaluate it using standard floating point arithmetic. An-
other example for the differences in the required information is that ValEncIA-IVP
uses only the Jacobian of f whereas VNODE-LP needs Taylor coefficients of both f
and its Jacobian. That is, the major task for us to deal with consists of representing f
in such a way to allow for ready availability of such information. Moreover, it should
be possible to extend the representation if additional features are required.

3 UniVerMeC

To solve the aforementioned task of representing the right-hand side f and allowing for
computations with different arithmetics, we employ our framework UniVerMeC [8,13]

308 Kiel et al., An Environment for Solid Oxide Fuel Cells

IDerivative

ISlope

ITaylorCoeff

. . .
F

ea
tu

res

IVFunction

Specific
right side f

IFunction

Figure 4: Representation of functions in UniVerMeC.

in VeriCell. It was developed within the scope of verified geometric computations,
and uses the relaxed1 layered structure shown in Figure 3. The bottom layer core

provides access to floating point, interval, and affine arithmetic as well as to Taylor
models. All arithmetic types share a common interface. At the function layer, a
uniform representation of functions in their mathematical sense is provided both for
scalar valued fs : Rn → R and vector valued fv : Rp → Rq ones. This concept allows
us to evaluate a function so represented with all arithmetics supported at the core

layer. Further, abstractions for derivatives, slopes, Taylor coefficients or contractors
are provided at this level, a list which can be extended if necessary.

The third layer is responsible for defining models in the framework, for example,
geometrical objects or IVPs. It merges the relevant abstractions provided at the
previous two layers into one entity. Since models depend on the problem domain, the
layer is divided into several independent sublayers. For the purposes of this paper, the
ivp (the IVP representation described in the previous section) and opt (optimization
problems) sublayers are of relevance.

At the fourth level, the two appearing sublayers are responsible for providing data
structures for special types of search space decomposition used in optimization, of
which only the section sublayer is relevant for this paper. Actual algorithms are
implemented at the topmost level. UniVerMeC offers its own global optimization
algorithm [7] which is employed in VeriCell for parameter identification of SOFC
models (p in Eq. (1)). Additionally, external software such as IVP solvers can be
interfaced at this level.

The function representation provided by UniVerMeC at the second layer plays a
key role in interfacing different solvers. In Figure 4, details on functions are outlined.
The layer consists of several abstract interfaces representing different concepts from the
vicinity of mathematical functions. The main ones are IFunction (scalar functions)
and IVFunction (vector functions). Both interfaces can provide additional features
which represent concepts such as derivatives, Taylor coefficients or slopes of a function.
New notions can be easily introduced by additional features attached to the abstract
function representation. An important advantage of this internal structure is that the
rows or single entries of a function or its Jacobian can again be viewed to be of the
type IVFunction or IFunction. Thus, we can treat derivatives as normal functions,
for example, pass them to algorithms or attach further features to them. In this way,
we can represent the right-hand side of (2) such that it can be evaluated by different
arithmetics and/or differentiated using various techniques. Moreover, such features
as Taylor coefficients of functions can be now computed in a user-defined way and
evaluated with every available arithmetic.

The uniform function representation in combination with the initial values (either

1that is, a layer can be skipped

Reliable Computing 19, 2014 309

intervals or floating point numbers) produces the abstract IVP problem called IIVP in
the framework as shown Fig. 2a. The time-dependent, piecewise constant parameters
u(t) are described by IVFunction again. To interface an external solver with the
framework, it is sufficient to allow it to work with problems described by the IIVP

interface. Then, it can be used to simulate different SOFC models developed in the
scope of the research project.

4 Interfacing the Solvers

In this section, we provide details on interfacing external IVP solvers with VeriCell
using the library UniVerMeC. For this purpose, we outline the specifics of interfaces
for each of the available solvers ValEncIA-IVP, VNODE-LP and VODE.

4.1 ValEncIA-IVP

In VeriCell, we employ the basic version of the verified IVP solver ValEncIA-
IVP. It computes an enclosure of the exact solution to an IVP over a certain time
interval by an algorithm derived from the Picard iteration. Basically, it relies only
on enclosures of the codomain of the right-hand side of the problem at equidistant
points of time specified by the user (a constant stepsize) and over intervals between
them. Additionally, it requires bounds on the Jacobian of the right-hand side over the
same points or time intervals. The Hessian is needed only for the sensitivity analysis
which we do not consider in this paper. All three types of information can be provided
using the UniVerMeC function representation directly. However, ValEncIA-IVP
was designed to work as a stand-alone application and not as a library which can be
accessed from external programs. Users have to specify their problem by adjusting
global functions representing the right-hand side of the problem and by setting the
initial values and parameters in the main function of ValEncIA-IVP accordingly.
Besides, the solver is permanently coupled with the libraries PROFIL/BIAS [14] and
Fadbad++ [21]. This makes altering the code of the solver inevitable if we are to
employ it in the context of VeriCell, a dynamic environment where IVPs can be
exchanged at runtime. That is why we decided to integrate ValEncIA-IVP into
UniVerMeC directly (instead of just interfacing).

To minimize the necessary changes to the ValEncIA-IVP code itself and allow for
easy integration of newer versions, we implemented a compatibility layer. It replaces
the parts of PROFIL/BIAS and Fadbad++ APIs which ValEncIA-IVP usually
expects by the corresponding parts from UniVerMeC decoupling computations from
the actual data types. The interval operations are mapped onto the abstraction of an
interval arithmetic employed by UniVerMeC. The actual library can be, for example,
C-XSC [11], Filib++ [15], PROFIL/BIAS itself, or even the Taylor model library
RiOT [9]. The derivatives are obtained through the IDerivative feature of IFunction
and then mapped to the fadbad::F template type which ValEncIA-IVP normally
uses.

Finally, we reimplemented the main function of ValEncIA-IVP in such as way
that it can extract the initial values, the parameters and other problem or solver spe-
cific characteristics from a set based on the user supplied IIVP object. These adjust-
ments allow users to exchange their problems at runtime by defining them according
to the uniform problem description mentioned in Section 3 in our implementation.
Solver specific options for ValEncIA-IVP are currently SVA = {tend, s}, where tend

310 Kiel et al., An Environment for Solid Oxide Fuel Cells

is the time of integration ending and s the stepsize. These options can be extended by
the user if the need arises. The implementation is not thread safe, since several global
variables still have to be used.

4.2 VNODE-LP

The design principles of VNODE-LP allow for its use as an external library. The
solver relies on Taylor coefficients of the right-hand side and its Jacobian. VNODE-
LP accesses them through two abstract interfaces, AD ODE for the right-hand side and
AD VAR for the variational equation. For interfacing the solver with UniVerMeC, it is
only necessary to provide reimplementations of these interfaces, allowing us to obtain
the required information through the uniform function representation (basically, the
ITaylorCoeff feature). The only further difficulty is that VNODE-LP and UniVer-
MeC might use different interval libraries, since the library is not fixed a priori in
UniVerMeC. However, a lossless conversion between the libraries is possible, since
both sides represent intervals by their double endpoints which can be accessed. Us-
ing VNODE-LP’s public interface, the initial values and other characteristics can be
derived in a straightforward way from the IIVP object. Solver specific options are
SVN = {tend, t0, qorder, isub, cb} where t0 and tend are the integration starting and fin-
ishing times, respectively, and qorder is the maximum order of the Taylor expansion.
The isub option can be used to subdivide the integration interval [t0, tend] into subin-
tervals [t0, t0 +isub], . . . , [t0 +k ·isub, tend] for which intermediate results are generated.
Furthermore, users can specify a callback function cb which is called after the integra-
tion over each subinterval is completed. It can be used to manupulate intermediate
results, parameters or solver settings and is necessary, for example, to cope with the
control variables u(t) which are seen as constant parameters for each subinterval but
are allowed to change between them. Our side of the VNODE-LP implementation is
thread safe.

4.3 VODE and ODE

Since the interfaces for floating point IVP solvers are largely standardized, the strategy
for incorporating both non-verified routines ODE and VODE from the NAG library
into UniVerMeC is the same; therefore we focus on VODE in the following. The most
important parameters this Fortran solver expects are a pointer to the right-hand side
of the IVP, the problem dimension, and possibly a pointer to the function computing
the Jacobian of the right-hand side. All this information can be easily derived from
the corresponding IIVP object. The solver settings are SVO = {tend, isub}, where tend
again is the integration ending time and isub indicates that intermediate results are
required at times tk = k · isub within the integration interval [0, tend]. This interface
is again not thread safe because the implemented wrapper routine is global in the
current version.

5 Usage of VeriCell

The developed internal structure allows for a versatile use of the available SOFC
models inside VeriCell. Owing to it, different algorithms, for example, floating
point or interval IVP solvers, can operate with the same model representation, which
reduces the amount of work for users and their potential transformation errors as well

Reliable Computing 19, 2014 311

as ensures a higher degree of interchangeability and comparability for the employed
software. The following code excerpt shows an internal UniVerMeC definition for
the 1 × 1 × 1 model (cf. Eq. (1)) and use of the interfaces described in the previous
section.

1 core::arith::mreal stop=19000.0;
2 core::arith::mreal veri_t0(0.0);
3 core::arith::ivector veri_x0(1,core::arith::interval(299.7053));
4 functions::IVFunction* veri_u = models::vericell_param_fun("measurements.txt");
5 core::arith::ivector veri_u0((veri_u)->eval(core::arith::rvector(1,0.0)));
6 functions::IVFunction* veri_mod = models::create_vericell_rhs_111_cpu();
7 core::arith::ivector veri_par(core::arith::ivector(

models::vericell_parameters(models::VERICELL_MODEL_111)));
8 ivp::details::IVPImpl ivp(*veri_mod, veri_par, *veri_u, veri_x0, veri_u0);

9 extras::interfaces::solve_ivp_vode(ivp, stop, output_vo, 1.0);
10 extras::interfaces::solve_ivp_valencia(ivp, stop, 1.0, output_va);
11 extras::interfaces::solve_ivp_vnodelp(ivp, stop, veri_t0, output_vn, 1.0, &cb, true);

In Lines 1–8, the IIVP object is defined for the simple one dimensional SOFC
model. First, the integration interval is set to [0, 19000] s (Lines 1,2) and the initial
condition for the temperature is defined to be the point interval [299.7053, 299.7053]K
(Line 3). We specify that the time dependent parameters u(t) (declared as a Uni-
VerMeC function) should be read from the data file measurements.txt in Line 4 and
initialized with the values for t = 0.0 in Line 5. Next, the function for the right-hand
side is defined (Line 6) and the parameters are assigned their values from the corre-
sponding predefined vector (Line 7). After that, all the necessary information is there
for us to be able to define the IVP-describing object ivp. Now it is possible to solve the
IVP with the help of the available solvers (Lines 9–11) with the corresponding settings
(cf. Section 4). Here, output_ denotes the file for the output of the corresponding
solver.

The environment VeriCell hides this internal structure from the user. In Fig-
ure 5, a screenshot of the VeriCell GUI is shown. In the first step, users create
graphical models from the predefined components and connect them logically by ar-
rows (black in the figure). It is also possible to load a previously saved configuration.
The arrow from the element Data indicates that a data file is used for the parameters
u(t) (and not, for example, a controller), since these parameters are the only input to
the element ThermoDynamics. Users can access the constant parameters p through
a special dialog window of the thermodynamical element. After the model and the
corresponding input are defined, it is possible to run an IVP solver with them, for
example, VNODE-LP as in the figure. Finally, the obtained simulation results can
be plotted.

An example of additional benefits offered by the increased interchangeability be-
tween floating point and interval software is validation of parameter identification
results made possible in UniVerMeC. At the moment, SOFC model parameters can
be identified by using a floating point solver IPOPT [23] and by our own implementa-
tion of the interval algorithm from [10]. For more details on parameter identification,
see [19, 3, 12]. In UniVerMeC, it is possible to run IPOPT first and automatically
assign intervals around the obtained parameter values to the verified algorithm so it
can try to verify that the optimum is inside them. Alternatively, we can employ the
interval implementation just to filter the search space and thus to reduce the deviation
between the measured and simulated results (for example, for the cell temperature).
However, the most interesting way to combine these two software kinds is, in our opin-
ion, for validation of floating point results. A consistency condition for the parameter

312 Kiel et al., An Environment for Solid Oxide Fuel Cells

the 1x1x1 model

a plot of simulation results

the choice of a component

the chosen solver

IVP solving

model parameters

Figure 5: A screenshot of VeriCell — a GUI for the library UniVerMeC.

identification of the thermal SOFC model is that the simulated temperature values
are not higher than the measured value plus 15 K and not lower than the same value
minus 15 K. A temperature model with the parameter set obtained by a floating point
optimizer can be simulated using a verified solver to prove that the enclosure of the
simulated temperature lies inside the predefined bounds. In Figure 6, this scenario is
shown for the 1×1×1 model with the parameter set obtained by IPOPT: the enclosures
computed by VNODE-LP are inside the interval ±15K around the measured value
at every point of time. The blue curve represents the upper bound of the obtained
enclosures and the grey area shows the consistent region (measurements ±15K). This
is not true for the set of parameters obtained for the same model by the MATLAB
optimizer fminsearch: the verified enclosure can be shown to have no intersection
with the predefined bounds at certain points of time with the maximum deviation of
2 K [12]. Therefore, strictly speaking, the fminsearch parameter set leads to incon-
sistent simulation results, although this degree of deviation is not very important in
a real life setting. The red curve represents the upper bound of these enclosures, the
lower bound cannot be distinguished from it in the figure scale. Likewise, the deviation
of 2 K is not representable in the figure scale.

In Figure 7, we compare the output temperature for SOFC models of different
resolutions. For the one dimensional model, this temperature corresponds to its single
state. For higher resolutions, the third and the eighth states correspond to it for
the 1 × 3 × 1 and 3 × 3 × 1 models, respectively. Again, only the upper bounds
of the obtained enclosures are shown in the figure, along with the consistent region.
The simulations for the one dimensional and the nine dimensional models can be
proved to be consistent, whereas the fminsearch parameter set leads to a slightly
inconsistent output temperature for the three dimensional model (which again cannot
be distinguished in the figure scale). However, the second measurable state for the

Reliable Computing 19, 2014 313

0 0.5 1 1.5 2

·104

400

600

800

1,000

Time (s)

T
em

p
er
at
u
re

(K
)

Measurement

IPOPT 1 × 1 × 1

fminsearch 1 × 1 × 1

Figure 6: Upper bounds for the solution enclosures to the 1×1×1 SOFC model
with parameter sets from IPOPT and fminsearch.

314 Kiel et al., An Environment for Solid Oxide Fuel Cells

0 0.5 1 1.5 2

·104

400

600

800

1,000

Time (s)

T
em

p
er
at
u
re

(K
)

Measurement

1 × 1 × 1

1 × 3 × 1

3 × 3 × 1

Figure 7: Simulation results for SOFC models with different resolutions. The
optimized parameter sets for the 1×1×1 (IPOPT) and 3×3×1 (fminsearch)
model lead to consistent trajectories for the output temperature, whereas the
1× 3× 1 (fminsearch) is (slightly) inconsistent.

Reliable Computing 19, 2014 315

3 × 3 × 1 model can be shown to be inconsistent, which might be an indication that
the model needs to be extended or modified to improve its correspondence to reality.

To provide graphic counterparts for those functionalities of UniVerMeC which
are lacking in VeriCell (e.g. elements for optimizers) is a topic of our ongoing work.

6 Conclusions

In this paper, we presented a new software environment for testing, verification and
validation of SOFC models. Owing to the internal design of UniVerMeC, it is pos-
sible to perform verified and floating point based computations using the same model
definition. The interchangeability between different kinds of software allowed us to
improve the correspondence between measured data and simulation as well as to val-
idate the simulation results. Each newly developed model can be easily incorporated
into the software. Additionally, further IVP solvers or optimizers can be interfaced
or added to the system in a straightforward way. For user convenience, we imple-
mented a GUI VeriCell which, however, does not reflect the whole functionality of
UniVerMeC at the moment.

Our future work will be concerned with extending the GUI by further function-
alities. In particular, we plan to improve the interval based parameter identification
by replacing the Euler method of approximating the IVP solutions with a verified
enclosure provided by VNODE-LP or ValEncIA-IVP.

Acknowledgements

This project was funded by the DFG (the German Research Foundation).

References

[1] Numerical libraries — NAG. Web page. http://www.nag.co.uk.

[2] E. Auer, S. Kiel, Th. Pusch, and W. Luther. A flexible environment for accurate
simulation, optimization, and verification of SOFC models. In Proc. of ASCE-
ICVRAM-ISUMA, July 13–16, 2014, Liverpool, UK, 2014. Accepted.

[3] E. Auer, S. Kiel, and A. Rauh. Verified parameter identification for solid oxide fuel
cells. In Proceedings of the 5th International Conference on Reliable Engineering
Computing, pages 41–55, Brno, Czech Republic, 2012. LITERA.

[4] R. Bove and S. Ubertini, editors. Modeling solid oxide fuel cells. Springer, Berlin,
2008.

[5] T. Dötschel, E. Auer, A. Rauh, and H. Aschemann. Thermal behavior of high-
temperature fuel cells: Reliable parameter identification and interval-based sliding
mode control. Soft Computing, 17(8):1329–1343, 2013.

[6] T. Dötschel, A. Rauh, and H. Aschemann. Reliable control and disturbance
rejection for the thermal behavior of solid oxide fuel cell systems. In Proc. of 7th
Vienna Intl. Conference on Mathematical Modelling MATHMOD 2012, volume 7,
pages 532–537, Vienna, Austria, 2012. DOI: 10.3182/20120215-3-AT-3016.00093.

[7] E. Dyllong and S. Kiel. Verified distance computation between convex hulls of
octrees using interval optimization techniques. PAMM, 10(1):651–652, 2010.

http://www.nag.co.uk

316 Kiel et al., An Environment for Solid Oxide Fuel Cells

[8] E. Dyllong and S. Kiel. A comparison of verified distance computation be-
tween implicit objects using different arithmetics for range enclosure. Computing,
94:281–296, 2012.

[9] Ingo Eble. Über Taylormodelle. PhD thesis, Universität Karlsruhe, 2006.

[10] E. Hansen and G. W. Walster. Global Optimization Using Interval Analysis.
Marcel Dekker, New York, 2004.

[11] W. Hofschuster and W. Krämer. C-XSC 2.0 – A C++ library for extended
scientific computing. In René Alt, Andreas Frommer, R. Baker Kearfott, and
Wolfram Luther, editors, Numerical Software with Result Verification, volume
2991 of Lecture Notes in Computer Science, pages 259–276. Springer Berlin /
Heidelberg, 2004.

[12] S. Kiel, E. Auer, and A. Rauh. Uses of GPU powered interval optimization for
parameter identification in the context of SO fuel cells. In Proc. of NOLCOS 2013,
pages 558–563, Toulouse, France, 2013. DOI:10.3182/20130904-3-FR-2041.00169.

[13] S. Kiel, W. Luther, and E. Dyllong. Verified distance computation between
non-convex superquadrics using hierarchical space decomposition structures. Soft
Computing, 17(8):1367–1378, 2012.

[14] O. Knüppel. PROFIL/BIAS — a fast interval library. Computing, 53(3):277–287,
1994.

[15] M. Lerch, G. Tischler, J.W.V. Gudenberg, W. Hofschuster, and W. Krämer.
filib++, a fast interval library supporting containment computations. ACM
Transactions on Mathematical Software (TOMS), 32(2):299–324, 2006.

[16] N.S. Nedialkov. VNODE-LP a validated solver for initial value problems in ordi-
nary differential equations. Technical Report CAS-06-06-NN, McMaster Univer-
sity, 2006.

[17] J.T. Pukrushpan, A.G. Stefanopoulou, and H. Peng. Control of fuel cell power
systems: principles, modeling, analysis and feedback design. Springer, Berlin,
2nd edition, 2005.

[18] A. Rauh and E. Auer. Verified simulation of ODEs and DAEs in ValEncIA-IVP.
Reliable Computing, 5(4):370–381, 2011.

[19] A. Rauh, T. Dötschel, E. Auer, and H. Aschemann. Interval methods for control-
oriented modeling of the thermal behavior of high-temperature fuel cell stacks.
In Proc. of 16th IFAC Symposium on System Identification SysID 2012, vol-
ume 16, pages 446–451, Brussels, Belgium, 2012. DOI:10.3182/20120711-3-BE-
2027.00374.

[20] A. Rauh, L. Senkel, and H. Aschemann. Sensitivity-based state and parameter es-
timation for fuel cell systems. In Proc. of 7th IFAC Symposium on Robust Control
Design, volume 7, pages 57–62, Aalborg, Denmark, 2012. DOI: 10.3182/20120620-
3-DK-2025.00071.

[21] O. Stauning and C. Bendtsen. Fadbad++ web page. http://www.fadbad.com/

(Accessed on 18.01.2010).

[22] K. Sundmacher, A. Kienle, H.J. Pesch, J.F. Berndt, and G. Huppmann, editors.
Molten carbonate fuel cells. Modeling, analysis, simulation, and control. Wiley-
VCH, Weinheim, 2007.

http://www.fadbad.com/

Reliable Computing 19, 2014 317

[23] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Math. Program.,
106(1):25–57, 2006.

	Introduction
	Models
	UniVerMeC
	Interfacing the Solvers
	ValEncIA-IVP
	VNODE-LP
	VODE and ODE

	Usage of VeriCell
	Conclusions

