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Abstract

In control engineering, it is well known that model-predictive control
approaches are characterized by inherent advantageous robustness and
stability properties with respect to uncertainty in parameters and mea-
sured as well as estimated state variables. Therefore, the authors have de-
veloped interval-based extensions of model-predictive control procedures
which allow for a direct consideration of bounded uncertainty during the
computation of a robust control law. Moreover, it is directly possible
to deal with state and input constraints. For that purpose, an imple-
mentation of the control procedure is necessary that can be evaluated in
real time. This implementation makes use of interval analysis to deter-
mine state enclosures which describe guaranteed worst-case bounds of the
reachable system states over a finite prediction horizon. In addition, the
partial derivatives of state trajectories with respect to the manipulated
variables involved in this procedure are determined efficiently by means of
algorithmic differentiation. These derivatives are required to compute the
control signal for both single-input single-output and multi-input multi-
output systems. By means of the underlying state prediction procedure, it
becomes possible to prevent with certainty the violation of both state and
control constraints. A prototypical implementation of a corresponding
control strategy is described in this paper. It is validated in simulation
and experiment for the thermal subprocess of a high-temperature solid
oxide fuel cell system.
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1 Introduction

Control-oriented mathematical models for the thermal behavior of solid oxide fuel cell
systems (SOFC systems) [13, 3, 27, 10, 28, 29, 6, 18] are characterized by the fact that
internal parameters can only be determined within certain intervals [25, 7, 24]. This
is caused by simplifications which are necessary to make mathematical system models
usable for the synthesis of control strategies such that they can be evaluated in real
time. Furthermore, temperature uncertainty due to limited measurement facilities in
the interior of a fuel cell stack module (consisting of several individual cells which typ-
ically are installed in an electric series connection) as well as limited knowledge about
the spatial distribution of the electrochemical reaction processes can be expressed by
interval parameters in a natural way. Finally, disturbances result from the variation
of electrical load demands which are a priori unknown to the controller. To determine
control strategies which prevent the violation of constraints on both the admissible
maximum operating temperatures and the corresponding spatial variation rates, it is
reasonable to derive control laws directly accounting for these sources of uncertainty.

The approaches considered for this purpose are model-predictive control [5, 4] and
sensitivity-based state and parameter estimation [22, 17]. Both procedures can be ex-
tended by using interval analysis to obtain a verified and, therefore, robust implemen-
tation which directly accounts for uncertain variables with a bounded range [21, 20].

Model-predictive control approaches are well-known means to stabilize dynamic
systems and to compute input signals online which allow for both the tracking of
desired state trajectories and for disturbance compensation in stationary operating
points. These control procedures, which can be implemented by means of algorithmic
differentiation1 [9, 2], are inherently robust and can, therefore, also compensate dis-
turbances to some extent which are neglected during the derivation of the predictive
control strategy.

In this contribution, different verified extensions are described for the design of
model-predictive control strategies. These controllers are implemented by applying
interval analysis in real time. The use of interval analysis supports the design of
controllers which prevent the violation of predefined (one-sided) tolerance bounds for
desired state trajectories under consideration of given limitations for the actuator
operating range.

Like any other interval technique for the evaluation of dynamic system models,
interval-based predictive control procedures suffer from overestimation due to multi-
ple dependencies on identical interval variables as well as the wrapping effect. In the
case of predictive control procedures, this overestimation may lead to control strategies
which are more conservative than necessary. To detect overestimation in the interval
evaluation of the predictive control procedure, physical conservation properties (de-
rived on the basis of the first law of thermodynamics) can be exploited in an algebraic
consistency test. This test can be evaluated in real time in parallel to the computation
of the control law.

This paper is structured as follows. In Sec. 2, an overview of sensitivity-based
procedures for the design of tracking controllers is given with extensions to system
models with interval uncertainty. Sec. 3 gives a brief summary of the most important
modeling aspects of the thermal behavior of SOFC systems. For this type of applica-
tion, the implementation of interval-based predictive control procedures is described

1The term algorithmic differentiation, as used in [9], is widely understood as a synonym
for automatic differentiation. Throughout this paper, only procedures are employed which
make use of operator overloading for the computation of derivatives.
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in Sec. 4 on the basis of the mathematical model for a test rig available at the Chair
of Mechatronics at the University of Rostock. Furthermore, representative simulation
results and an experimental validation are presented in this section. This paper con-
cludes with a discussion of future work in Sec. 5 focusing on algorithmic improvements
for both reliable control strategies that can be used in real time and the dual problem
of sensitivity-based state and parameter estimation.

2 Tracking Controllers for Continuous-Time
Dynamic Systems

In this paper, robust tracking control strategies are presented for finite-dimensional
dynamic systems which are described by sets of ordinary differential equations (ODEs)
in terms of the nonlinear state equations2

ẋ(t) = f((x(t),p,u(t), t) (1)

and the corresponding system outputs

y(t) = h(x(t),u(t)) . (2)

These outputs may coincide with the measured outputs ym(t). In (1), p is a vector of
system parameters, while u(t) contains all system inputs.

If the system outputs are not directly measurable, the outputs y(t) have to be
computed on the basis of online estimates for the state vector x(t). These estimates
are determined by state observers as, for example, described in [16]. Commonly, it
is also necessary to employ state observers in the case that the outputs ym(t) are
measured directly. Then, the observer provides information about all internal system
states x(t) which are required for the implementation of a reliable control strategy.

Using information about internal system states and measured outputs, control
strategies are designed in this paper in such a way that the actual system outputs
follow the desired output trajectory yd(t) with good accuracy, even in cases in which
the system dynamics are influenced significantly by uncertainty and disturbances.

Furthermore, it is necessary that the designed control strategies prevent with cer-
tainty the violation of feasibility constraints which are given as (upper) bounds for the
admissible system states and possible control inputs.

In addition to model-predictive control procedures, several other approaches exist
for the control of nonlinear dynamic systems. First, if a dynamic system is differentially
flat or if coordinate transformations can be found which allow for an exact input-output
linearization of the dynamics by means of a nonlinear state feedback approach, it is
possible to design linear tracking controllers in a straightforward way [8]. However, this
design is commonly performed for a nonlinear system model with nominal parameters.
Afterwards, the robustness of the resulting system design is typically validated by
means of simulations before the controller is applied to a real-life process. As shown
in [12], interval and other verified methods are applicable to evaluate the robustness
of control systems. However, if it cannot be guaranteed by the offline simulation

2Throughout this paper, vectors are denoted by boldface small letters and matrices by
uppercase bold letters to distinguish them from scalar variables. Moreover, intervals are

denoted explicitly by square brackets, e.g., [x] =
(
[x1] . . . [xn]

)T
represents an interval

vector with [xi] = [xi ; xi], xi ≤ xi ≤ xi, i = 1, . . . , n.
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using verified ODE solvers that feasibility constraints are not violated, this two-stage
design procedure has to be repeated iteratively. Here, the problem of overestimation
in the computation of guaranteed state enclosures using interval analysis can be quite
severe since long time horizons might be necessary for the simulation. Moreover,
the simulation results are usually only valid for one specific (vector-valued) reference
trajectory yd(t).

Therefore, design procedures which use Lyapunov functions for an online stabil-
ity analysis or for an online control design, respectively, are advantageous. These
procedures can be determined in such a way that nonlinearities and uncertainties
are directly accounted for. The design of guaranteed stabilizing control strategies by
means of Lyapunov functions can be performed on the basis of the sliding-mode control
methodology. Although this procedure allows for a verified stabilization of the system
dynamics by using a variable structure control law which compensates the influence
of all uncertain terms in a guaranteed way, the degrees of freedom for control opti-
mization are limited in this case. Such an optimization might aim at a minimization
of control switchings (to reduce actuator wear) or at a reduction of the energy for the
actuators to achieve the control goal.

An overview of interval extensions of sliding mode control [31, 30] can be found
in [25, 15, 24]. An improved flexibility with respect to the solution of the before-
mentioned optimization task can be obtained by means of the predictive control
procedure described in this paper. This even holds in cases in which the system
is subject to uncertainty resulting from an imperfect knowledge about internal pa-
rameters p ∈

[
p ; p

]
and from an imperfect reconstruction of the state variables

x(t) ∈ [x(t) ; x(t)]. As it will be shown in the following, it is not necessary to trans-
form the sets of state equations into any kind of canonical form (like nonlinear con-
troller normal form, input-affine system representations or strict feedback form) as is
necessary for many other nonlinear control techniques.

2.1 Derivation of the Fundamental Sensitivity-Based
Predictive Control Procedure

As an alternative to the two-stage, sliding-mode-type control procedure described
in [25, 15, 24], a sensitivity-based procedure can be implemented. It is based on the
analysis of the sensitivity of the solution x (t) to the set of ODEs ẋ (t) = f (x (t) , ξ)
with respect to a time-invariant parameter vector ξ ∈ Rnξ .

Defining the new state vectors

si (t) :=
∂x (t)

∂ξi
∈ Rnx for all i = 1, . . . , nξ , (3)

the sensitivity equations

ṡi (t) =
∂f (x (t) , ξ)

∂x
· si (t) +

∂f (x (t) , ξ)

∂ξi
(4)

with the corresponding initial conditions

si (0) =
∂x (0,p)

∂ξi
(5)

can be derived. In (5), the relation si (0) = 0 holds if x (0) is independent of ξi.
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Now, the control error

J =

ν+Np∑
µ=ν

D (y (tµ)− yd (tµ)) (6)

between the actual and desired system outputs y (t) and yd (t), respectively, is defined
to achieve an accurate tracking of desired output trajectories. As shown in [21, 20],
D is a continuously differentiable measure — usually either linear or quadratic —
for the output error y (tµ) − yd (tµ). Typical examples can be found in Sec. 4. The
minimization of J is performed over a finite horizon of Np prediction steps in real time
by means of an analytic representation of the output vector

y (t) = h (x (t) ,u (t)) (7)

in terms of the states x (t) and the control signal u (t), which is assumed to be piecewise
constant for tν ≤ t < tν+1.

After computing the differential sensitivity of the tracking error J by using algo-
rithmic differentiation according to

∂J

∂∆uν
=

ν+Np∑
µ=ν

(
∂D (h (x,u)− yd (tµ))

∂x
· ∂x (tµ)

∂∆uν
+
∂D (h (x,u)− yd (tµ))

∂∆uν

)
, (8)

with
∂x (tν−1)

∂∆uν
= 0 , (9)

a piecewise constant control law u (tν) can be defined as

u (tν) = u (tν−1) + ∆uν (10)

with

∆uν = −
(

∂J

∂∆uν

)+

· J . (11)

Here, M+ :=
(
MTM

)−1
MT denotes the left pseudo-inverse3 of the matrix M. In (8),

the differential sensitivity of J is computed by means of algorithmic differentiation [9],

where the derivatives
∂x(tµ)
∂∆uν

are determined by an evaluation of the ODEs (4) with
a suitable discretization scheme and the input vector u = u (tν−1) + ∆uν , ∆uν = 0.

Additionally, the property
∂x(tν−1)
∂∆uν

= ∂x(tν)
∂∆uν

= 0 has to be taken into account during
the sensitivity analysis to ensure causality of the control strategy.

Moreover, the Jacobians ∂h
∂x

and ∂h
∂∆uν

in (8) are evaluated along the predicted
state trajectories x = x (tµ). During the algorithmic differentiation of J , the control
variations ∆uν are interpreted in the same way as the time-invariant parameters ξ
in (4). A summary of the basic building blocks of the sensitivity-based control proce-
dure can be found in Fig. 1.

3The matrix MTM is guaranteed to have full rank for all applications in this paper. This
property coincides with the fact that the considered dynamic system models are controllable. A
numerical proof of controllability is given by the existence of the transformation into nonlinear
controller canonical form that is described in detail in [24]. Note that a symbolic statement
of the corresponding controllability matrix is not reasonable for nx > 1 in the case of the
following SOFC model due to the excessive length of the symbolic expressions. Note that
controllability of (24) is obvious for nx = 1 since ∂f

∂u1
6= 0 holds in this case.
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Figure 1: Fundamental sensitivity-based predictive control procedure.
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2.2 Extension to Systems with Uncertainties

If interval uncertainties are taken into account for system parameters and measured
outputs, the control signal can be computed after redefining the control increment
∆uν from (9) according to

∆uν = −sup

((
∂ [J ]

∂∆uν

)+

· [J ]

)
. (12)

After evaluating the control law (10) with ∆uν defined in (12), the state equations
are simulated by a suitable interval method (replacing the floating point method from
the previous subsection) for the complete prediction horizon with the updated system
input. This simulation leads to guaranteed enclosures of all reachable states over the
corresponding horizon.

According to [21, 20], the updated input signal is applied to the real system for
the time interval [tν ; tν+1] if no violation of state constraints is detected over the

time interval
[
tν ; tν+Ñp

]
with Ñp ≤ Np. However, if a possible violation of state

constraints is detected (here, overshooting maximum admissible state values), a further
adjustment of the control input becomes necessary with

∆ũν = −sup

((
∂ [y]

∂∆ũν

)+

·∆yν

)
(13)

and

u (tν) := u (tν) + ∆ũν . (14)

In (13), the term ∆yν is given as

∆yν := max
t∈

[
tν ; t

ν+Ñp

] {0 , sup ([y (t)]− yd (t))} , (15)

where the operators max and sup are defined component-wise. It denotes the maxi-
mum possible overshoot of the desired trajectory over the prediction horizon.

A detailed discussion of this procedure — and an extension to path following in
cases for which control constraints are violated — can be found in [21].

2.3 Illustrative Example

As a simple illustrative example, the design of a predictive controller is considered for
the double integrating plant

ẋ (t) =

(
0 1
0 0

)
x (t) +

(
0
1
m

)
u (t) +

(
0
ad

)
with x (t) =

(
x1(t)
x2(t)

)
. (16)

This system model corresponds to an accelerated mass m with the input force u(t) and
the additive disturbance ad. Moreover, x1(t) denotes the position, and x2(t) denotes
the velocity.

In (16), only conservative bounds are assumed to be known for the mass m and
for the disturbance ad (representing an acceleration error) during control synthesis.
All following simulations are performed for the dimensionless parameter intervals m ∈
[m] = [0.9 ; 1.1], and ad ∈ [ad] = [−0.1 ; 0.1].
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The goal of the design of a suitable controller is the tracking of the desired output
trajectory defined by

yd (t) = x1,d (t) = 1− e−t (17)

despite the inconsistent initial state vector x (0) =
(
−1 0

)T
.

Applying the fundamental sensitivity-based predictive control procedure (without
the extension for overshoot prevention) leads to the results in Fig. 2. Here, the constant
step size tν+1 − tν = 0.01 with the prediction horizon Np = 200 has been used in the
evaluation of the sensitivity-based control scheme (8)–(10). The simulation results
have been obtained by gridding each of the corresponding parameter intervals [m] and
[ad] into 10 equally spaced points.

t in s

y
(t

),
y d

(t
)

0 2 4 6 8 10

−0.5

0.0

0.5

1.0

1.5
yd (t)

−1.0

(a) System outputs y(t) = x1(t) and yd(t).

t in s

u
(t

)

0 2 4 6 8 10
−2

−1

0

1

2

3

(b) Control signal u(t).

Figure 2: Fundamental sensitivity-based control procedure for the illustrative
example with an interval-based evaluation of the performance criterion J .

Obviously, the fundamental control procedure is not able to prevent overshooting
the desired trajectory yd(t). This can be avoided despite both the above-mentioned
uncertainties and the bounded measurement errors

x1(t) ∈ x1,m(t) + [−0.01 ; 0.01] and x2(t) ∈ x2,m(t) + [−0.01 ; 0.01] (18)

if the control law is evaluated by the extended definition (12), where (13) and (14) are
used as additional corrections. In (18), the index m denotes the measured quantities
provided by appropriate sensors. Then, the results shown in Fig. 3 are obtained.
Further details about the choice of the performance criterion J can be found in [21].

To improve the convergence properties of the sensitivity-based control procedure,
it is possible to introduce optional step size control factors 0 < αi < 1, i ∈ {1, 2, 3}, in
(11), (12), and (13) according to

∆uν = −α1 ·
(

∂J

∂∆uν

)+

· J , (19)

∆uν = −α2 · sup

((
∂ [J ]

∂∆uν

)+

· [J ]

)
, (20)
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(a) System outputs y(t) = x1(t) and yd(t).
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(b) Control signal u(t).

Figure 3: Results of the extended sensitivity-based control procedure.

and

∆ũν = −α3 · sup

((
∂ [y]

∂∆ũν

)+

·∆yν

)
. (21)

3 Practical Application Scenario: Temperature
Control for Solid Oxide Fuel Cell Systems

This section gives a brief overview of control-oriented modeling procedures for the ther-
mal behavior of SOFC systems. The corresponding models are then used for the design
of sensitivity-based control procedures which allow for disturbance compensation in
stationary operating points as well as for trajectory tracking in the non-stationary
heating phase of the system.

3.1 Control-Oriented Low-Order Model

To describe the thermal behavior of an SOFC with sufficient accuracy for control
purposes, integral energy balances are necessary in the form of a finite volume model,
given in terms of a coupled set of nonlinear ODEs. In these ODEs (a detailed derivation
can be found in [3, 18, 19, 25]), the effects depicted in Fig. 4 are included: internal
heat conduction and enthalpy flows of the anode gas (AG) and cathode gas (CG)
with temperature-dependent heat capacities, exothermic reaction processes (Q̇R) with
temperature-dependent reaction enthalpies, heat transfer between the stack module
and the ambient medium (Q̇A), as well as heat production due to internal Ohmic losses
(PEl).

The exothermic reaction between the fuel gas supplied to the anode (in this paper,
pure hydrogen) and the cathode gas (air) results from the electrochemical reaction

2 H2 + 2O2− → 2 H2O + 4e− and O2 + 4e− → 2O2− (22)

taking place at the anode and cathode in the SOFC stack. To develop robust control
strategies, it is essential to be able to cope with non-stationary operating points of the
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ṁCG ,out(t),
ϑCG ,out

ṁCG ,in(t) ,
ϑCG ,in

ṁAG,out(t) ,
ϑAG ,out

mFC ,ϑFC (t)

ṁAG,in(t),
ϑAG ,in

Q̇R(t)

P El(t)

system boundary

SOFC

Q̇A(t)

Figure 4: Integral energy balance for the SOFC stack module.

SOFC, in which the heat production due to the exothermic reaction (22) as well as
the Ohmic losses in the interior of the stack module are not constant over time. This
is caused by an a priori unknown variation of the demand for the electrical power to
be supplied to a consumer.

To reduce thermal stress on the stack module materials, inevitably leading to an
accelerated degradation of the cell materials, it is essential to keep the system tem-
perature as close as possible to a desired set-point. Simultaneously, spatial gradients
of the internal stack temperature have to be minimized effectively despite external
disturbances.

For that reason, the temperature distribution in the SOFC stack is described in
this paper by different finite volume models with user-defined spatial resolutions. The
complexity of these models ranges from a global system model, which only provides
one lumped temperature ϑFC for the complete SOFC system, to finite volume models
in which the temperature distribution is described after a semi-discretization into
nx = L ·M ·N > 1 finite volume elements (cf. Fig. 5).

In Fig. 5, the variables L, M , and N represent the numbers of finite volume
elements along each space coordinate, which can be chosen in a problem-oriented way.
For each volume element (i, j, k), an integral energy balance

ci,j,kmi,j,kϑ̇i,j,k(t) = CAG,i,j,k(ϑ, t) · (ϑi,j−1,k(t)− ϑi,j,k(t))

+ CCG,i,j,k(ϑ, t) · (ϑi,j−1,k(t)− ϑi,j,k(t))

+ Q̇η,i,j,k(t) + Q̇R,i,j,k(t) + PEl,i,j,k(t)

(23)

is set up according to the effects described above with the local specific heat capac-
ity ci,j,k and the local mass parameter mi,j,k. The expressions CAG,i,j,k(ϑ, t) and
CCG,i,j,k(ϑ, t) depend on both gas temperatures as well as on their corresponding
mass flows.

Under consideration of the inter-element conditions characterizing the continuity of
the heat flow over each boundary surface between neighboring finite volume elements,
a set of ODEs

ẋ(t) = f (x(t),p,u1(t),u2(t)) (24)

is obtained with the state vector xT =
(
ϑ1,1,1 . . . ϑL,M,N

)
∈ Rnx . The parameter

vector p in (24) has been identified experimentally by the procedures described in [19,



Reliable Computing, 2010 371

i=1 ,...,L

j=1 ,...,M
k=1,...,N

L ,M ,N

L ,1 ,1

⋮

1,1 ,N

1,M ,11,1 ,1

system
boundary

mass flow

Figure 5: Semi-discretization of the fuel cell stack module into finite volume
elements.

1]. Moreover, the control vector u1 consists of the mass flow ṁCG,in of preheated
cathode gas with the temperature ϑCG,in. The vector u2 contains all other system
inputs, which are the mass flows of hydrogen (ṁH2), nitrogen (ṁN2) and water vapor
(ṁH2O) at the anode with their temperature ϑAG = ϑAG,in as well as the electric
current

I =
∑
i,j,k

Ii,j,k , (25)

see also (28).
In (23), the term

Q̇η,i,j,k(t) =
∑
η∈N

1

Ri,j,kth,η

(ϑη(t)− ϑi,j,k(t)) (26)

characterizes the heat transfer and the heat conduction by the thermal resistance Ri,j,kth,η

from all neighboring volume elements denoted by the multi-index η ∈ N to the vol-
ume element (i, j, k). In (26), the resistances for heat conduction in the interior of the
semi-discretized fuel cell stack module are distinguished from thermal resistances for
finite volume elements with a direct connection to the environment, leading to different
values for the corresponding variables Ri,j,kth,η in the parameter identification. Here, the
thermal resistances on the system boundary are typically larger due to the insulation
layer than the ones in the interior of the fuel cell stack module which correspond to an
averaged material parameter of the electrodes, the solid electrolytes, and the intercon-
nection layers. The term (ϑη − ϑi,j,k) represents either the temperature difference to
the neighboring finite volume elements in the interior of the stack or the temperature
difference to the surrounding air. Here, the temperatures of the neighboring elements
are denoted by ϑη, while ϑA is the ambient temperature.

The reaction enthalpy is included in the model (23) by the relation

Q̇R,i,j,k(t) =
∆RHi,j,k(ϑi,j,k) · ṁR

H2,i,j,k
(t)

MH2

(27)

in terms of the local temperature-dependent molar reaction enthalpy ∆RHi,j,k(ϑi,j,k)

and the local molar flow of hydrogen
ṁRH2,i,j,k

MH2
. Furthermore, Faraday’s law for elec-

trochemical reactions yields

Q̇R,i,j,k(t) = ∆RHi,j,k(ϑi,j,k)
Ii,j,k(t)

z F
(28)
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with the electric current Ii,j,k in the corresponding volume element, the Faraday con-
stant F , and the number of electrons z transferred in the overall reaction (22) [3].
The electric current Ii,j,k significantly influences the local Ohmic losses PEl,i,j,k(t) =
REl,i,j,kI

2
i,j,k(t) with the internal resistance REl,i,j,k. For the computation of the heat

capacities CAG,i,j,k(ϑi,j,k, t) and CCG,i,j,k(ϑi,j,k, t) of the fluids inside each finite vol-
ume element, the local consumption of hydrogen H2 at the anode, of oxygen O2 at the
cathode, and the local production of water vapor H2O at the anode have to be taken
into account as described in [19].

3.2 Methods for Reduction of Overestimation

As mentioned in the previous section, the interval-based predictive control procedure
uses an online evaluation of the state equations of the thermal SOFC model over the
time horizon t ∈

[
tν ; tν+Np

]
with Np > 0 steps and a constant sampling time T :=

tν+1 − tν . During this evaluation, overestimation arises due to multiple dependencies
on common interval variables as well as due to the wrapping effect [11].

This overestimation in the resulting state enclosures can make the predictive con-
trol procedure inefficient and unnecessarily conservative. Hence, the following energy-
related criterion is used for an online detection and reduction of overestimation.

3.2.1 The Continuous-Time Case: General Formulation

Firstly, the energy-related term

Eµ := E (tµ) =
∑
i,j,k

ci,j,k ·mi,j,k · ϑi,j,k(tµ) (29)

is evaluated directly for the predicted state intervals ϑi,j,k(tµ) ∈ [ϑi,j,k(tµ)]. These
intervals already contain the overestimation due to both above-mentioned effects.

Secondly, the physically equivalent integral formulation

Eµ = Eν +

tµ∫
tν

Ė (τ) dτ = Eν +

tµ∫
tν

∑
i,j,k

ci,j,k ·mi,j,k · ϑ̇i,j,k(τ)

 dτ (30)

is computed. The variant (30) typically leads to tighter interval bounds than the
variant (29) if it is evaluated for uncertain parameters p ∈ [p] and for uncertain states
ϑi,j,k(tν) ∈ [ϑi,j,k(tν)]. The reason for this property can be explained by the fact that
the integrand in (30) can be simplified symbolically before the interval evaluation.
Then, due to the first law of thermodynamics (describing the conservation of energy)
common expressions cancel exactly which are related to the heat flows between directly
neighboring finite volume elements. These terms are related to the heat conduction
terms included in (26), which are the basic coupling terms between the individual
components of the vector-valued function f in (24) and, therefore, also the source
for overestimation in an interval-based computation of state enclosures over the time
horizon t ∈

[
tν ; tν+Np

]
.

3.2.2 The Continuous-Time Case: Simplified Formulation

If the finite volume model for the thermal behavior of the SOFC is described with
state-independent and time-invariant parameters ci,j,k and mi,j,k which are identical
for all finite volume elements, the following simplifications become possible.
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Equation (29) can be replaced with

Eµ := E (tµ) =
∑
i,j,k

ϑi,j,k(tµ) (31)

and equation (30) with the expression

Eµ = Eν +

tµ∫
tν

Ė (τ) dτ = Eν +

tµ∫
tν

∑
i,j,k

ϑ̇i,j,k(τ)

 dτ . (32)

In both (30) and (32), the offset Eν ∈ [Eν ] = [E(tν)] is determined on the basis
of measured temperatures including interval bounds for measurement tolerances and
estimation errors at the point of time t = tν .

3.2.3 The Discrete-Time Case

Both formulations above rely on a continuous-time system model. However, verified
integration of the ODEs, characterizing the thermal behavior of the fuel cell, can be
replaced with good accuracy by a pure discrete-time formulation in which the time
discretization error is neglected. Due to sampling step sizes which are smaller by at
least two orders of magnitude than the time constants of the system, the resulting
errors have significantly less effect on the state enclosure than the uncertainties in
parameters and measured state variables. Hence, the following verified explicit Euler
method is used for all further evaluations.

The corresponding discrete-time approximation of the thermal subsystem of the
SOFC, described by the state equations (24) for the complete prediction horizon[
tν ; tν+Np

]
, µ > ν, is replaced by

ϑi,j,k (tµ) ∈ [ϑi,j,k (tµ−1)] + T ·
[
ϑ̇i,j,k (tµ−1)

]
(33)

with the piecewise constant inputs u1 = u1 (tν−1) and u2 = u2 (tν−1).
In analogy to the continuous-time case described above, an energy-related criterion

for the detection and reduction of overestimation at the point of time tµ can be derived
in the discrete formulation.

Then, the expression (31) is replaced by

Eµ ∈ [E(tµ)] =
∑
i,j,k

[ϑi,j,k(tµ)] (34)

and the term (32) — which is a simplified version of (30) — by its equivalent discrete-
time term

Eµ ∈
[
Ẽµ
]

:=
[
Ẽν
]

+

µ∑
ζ=ν

T ·

∑
i,j,k

[
ϑ̇i,j,k(tζ)

] . (35)

Here, tν is the starting point of the time horizon for which the performance crite-
rion J for the predictive controller is evaluated.

Overestimation in the resulting state enclosures can be detected by the following
consistency test: Firstly, the interval vector [x (tµ)] is subdivided into subintervals
[x′ (tµ)] along its longest edge. Then,

E′µ ∈
[
E′µ
]

=
∑
i,j,k

[
ϑ′i,j,k(tµ)

]
(36)
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is evaluated for [x′ (tµ)] according to (34):

• The subinterval [x′ (tµ)] is guaranteed to be caused by overestimation if
[
E′µ
]
∩[

Ẽµ
]

= ∅ holds.

• In the case
[
E′µ
]
⊆
[
Ẽµ
]
,
[
Ẽµ
]

is consistent with (35).

• All further intervals, for which
[
E′µ
]
∩
[
Ẽµ
]
6= ∅ and

[
E′µ
]
6⊆
[
Ẽµ
]

hold, are

undecided and can be examined after further subdivision.

The evaluation of [J ] is then again performed for the reduced predicted overshoot,
see for example (15). All further update rules for the piecewise constant predictive
control law remain unchanged.

4 Simulation and Experimental Validation

In this section, different variants for interval-based predictive control procedures are
designed and compared by simulations and experiments with the following objectives:

1. The system inputs and operating temperature should stay close to their desired
set-points.

2. Large spatial gradients of the temperature distribution in the interior of the
SOFC stack module have to be penalized.

3. Local violations of a maximum admissible cell temperature should be prevented
with good accuracy.

4. Temporal variation rates of the physical system inputs should be accounted for
in a suitable, parameterizable cost function.

Besides a global system model, containing only a single temperature ϑFC (L = 1,
M = 1, N = 1), the system model depicted in Fig. 6 is investigated. In both cases,
a sensitivity-based manipulation of the supplied mass flow of cathode gas ṁCG and
its corresponding temperature ϑCG is used to determine the control input u1. All
other inputs u2 are specified by independent underlying controllers that cannot be
influenced by the choice of u1.

ϑ1,3 ,1ϑ1,2 ,1ϑ1,1 ,1

ṁAG ,in(t) ,ϑAG(t)

ṁCG ,in (t),ϑCG (t)

ṁAG,out (t),ϑAG ,out(t)

ṁCG ,out(t), ϑCG ,out(t)

ϑAG ,out(t)=ϑCG ,out (t)=ϑ1, 3 ,1(t)

system boundary
i

j
k

Figure 6: Semi-discretization of the stack module into three finite volume ele-
ments along the direction of the gas mass flow.



Reliable Computing, 2010 375

4.1 Comparison of Different Performance Criteria

In all following simulations and experiments, the inputs u2 are assumed to be uncer-
tain over the prediction horizon (Np = 40, tµ+1−tµ = 1 s for all simulations) according
to u2 ∈ diag {[0.95 ; 1.05] , . . . , [0.95 ; 1.05]} · u2,m, where u2,m is a vector containing
input data gathered during one heating phase of the SOFC test rig, see Fig. 7. More-
over, the measured stack temperatures are assumed to be affected by the additive,
independent measurement tolerances [−2.5 ; 2.5] K in each point of time t = tν .
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(a) Measured anode gas temperature.
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(c) Measured hydrogen mass flow ṁH2
.

Figure 7: Measured data of anode gas temperature and mass flows of the anode
gas components, where the spike in ṁN2 around t = 8·103 s represents an outlier
in the measurement.

The cost function for the fundamental sensitivity-based control design is given by

D = κ1 · (θFC − ϑnom)2 + κ2 · (ṁCG − ṁCG,nom)2 + κ3 · (ϑCG − ϑCG,nom)2 (37)

with the parameters κ1 = 10−3, κ2 = 1, κ3 = 1. Here, the term θFC denotes the
average fuel cell temperature (evaluated for the predicted temperature intervals at
each point of time tµ) according to

θFC =
1

M

M∑
i=1

ϑ1,i,1 . (38)
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Moreover, the values ṁCG,nom = 0.003 kg
s

and ϑCG,nom = 850 K specify the desired
set-points for the SOFC system. As shown in the left column of Fig. 8, the sensitivity-
based control procedure does not prevent overshoots of the maximum admissible stack
temperature ϑmax = 880 K without further adjustments (case A).

To prevent the overshoots from arising, the cost function (37) has been replaced
by

D = (ϑmax −min {ϑmax − ϑ1,i∗,1})2 (39)

with
i∗ = arg max

i=1,...,M
{sup [ϑ1,i,1]} (40)

for the complete prediction horizon if a possible overshoot is detected for at least
one point of time in

[
tν ; tν+Np

]
. Here, a quadratic error measure replaces the basic

criterion that has been used for the illustrative example in Sec. 2. The reason for this
modification is that small overshoots over ϑmax can be tolerated, while larger ones
have to be penalized severely since they might be especially harmful to the system.
According to Fig. 8, this extension (case B) successfully prevents overshoots for the
simple global SOFC model.

Fig. 9 gives a summary of the corresponding simulation results that can be achieved
for a semi-discretization of the SOFC stack into three finite volume elements. Also in
this scenario, a large overshoot over the maximum admissible temperature ϑmax can
be observed in case A. This can be avoided in case B if the extended criterion (39) is
used to penalize the resulting violation of the predefined state constraint. However, the
preheater temperature for the cathode gas reaches its minimum value (corresponding
to the ambient temperature) as soon as one of the stack temperatures reaches the
upper bound ϑmax. This conservative behavior can be avoided by the two extensions
shown in Fig. 10.

In the left part of Fig. 10, the cost function (37) has been replaced with

D = κ1 · (θFC − ϑnom)2 + κ2 ·
1

M − 1

M∑
i=1

(ϑ1,i,1 − θFC)2

+ κ3 · (ṁCG − ṁCG,nom)2 + κ4 · (ϑCG − ϑCG,nom)2 ,

(41)

where the free parameters are chosen as κ1 = 10−3, κ2 = 1, κ3 = 1, κ4 = 10. This
extension also takes into account spatial variations of the temperature in the interior
of the SOFC stack module. These variations can be counteracted by a suitably large
value κ2. Moreover, the weighting factor for the deviation of the cathode gas tem-
perature from its predefined set-point has been increased as compared to the previous
cases. Additionally, the energy-related criterion for reduction of overestimation is now
activated. The combination of all of these measures leads to preventing significant
overshoots over ϑmax and simultaneously avoids the problem that ϑCG falls down to
its minimum value as soon as the maximum admissible cell temperature is reached.

As as final extension, the modified cost function

D = κ1 · (θFC − ϑnom)2 + κ2 ·
1

M − 1

M∑
i=1

(ϑ1,i,1 − θFC)2

+ κ3 · (ṁCG − ṁCG,nom)2 + κ4 · (ϑCG − ϑCG,nom)2

+ κ5 ·

(
exp

(
β ·
(
−θFC + ϑ−FC

))
+ exp

(
β ·
(
θFC − ϑ+

FC

))) (42)
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ṁ
C
G

(t
)

in
10

−
3

kg
/s

0 4 8 12 16 20

4

2

0

5

3

1

6

(c) Cathode gas mass flow (case A).
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(d) Cathode gas mass flow (case B).
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(e) Fuel cell temperature (case A).
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(f) Fuel cell temperature (case B).

Figure 8: Simulation of the predictive control procedure for L = 1, M = 1,
N = 1 without overshoot prevention (case A) and with overshoot prevention
(case B).
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(c) Cathode gas mass flow (case A).
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(d) Cathode gas mass flow (case B).
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(e) Fuel cell temperature (case A).
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Figure 9: Simulation of the predictive control procedure for L = 1, M = 3,
N = 1 without overshoot prevention (case A) and with overshoot prevention,
but without the energy-based overestimation reduction (case B).
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with κ1 = 10−3, κ2 = 1, κ3 = 1, κ4 = 10, κ5 = 1, β = 0.02, ϑ−FC = 820 K, and
ϑ+
FC = 880 K has been studied in the right part of Fig. 10. It shows a similar behavior

as the previous result. However, the advantage of this cost function is that it not
only penalizes overshoots over the admissible maximum cell temperature ϑ+

FC but
also actively penalizes cell temperatures which are smaller than ϑ−FC . The simulations
without prevention of overshoots have been evaluated with the step size control factor
αi = 0.001, while αi = 0.002 is used in the case that the overshoot prevention was
active (see also the end of Sec. 2).

4.2 Analysis of Convergence Properties

Concerning the analysis of the applicability of the predictive control strategy on the
boundary of the admissible operating range, the reader is referred to the discussion
in [14, Sec. 3.2.4, pp. 51, 52]. The corresponding criteria can easily be checked within
the current implementation of the interval-based predictive control procedure since the
required partial derivatives of the temperature value at the boundary of the admissible
operating range are computed anyway by algorithmic differentiation in the presented
procedure for overshoot prevention.

4.3 Experimental Validation of the Trajectory Tracking
Control Procedure

In Fig. 11, experimental results for the tracking of a desired temperature profile of the
SOFC stack module are summarized. Here, the performance criterion

D = κ1 ·Θ2
FC + κ2 ·∆ϑ2

FC + κ3 ·(ṁCG − ṁCG,d)
2

+ κ4 · (ϑCG − ϑFC,d)2 + κ5 ·∆ṁ2
CG + κ6 ·∆ϑ2

CG

(43)

with the tracking error ΘFC = ϑFC,d − ϑFC , the desired stack temperature ϑFC,d,
a representative mass flow ṁCG,d, the spatial variance ∆ϑ2

FC of the stack module
temperatures ϑi,j,k (simplifying to zero in the case L = 1, M = 1, N = 1), and
∆ũν = [∆ṁCG ∆ϑCG]T has been used to implement a robust tracking controller for
the model with a single lumped temperature value ϑFC .

A suitable choice of the weighting factors leads to quite smooth control inputs
(Figs. 11b and 11c). The resulting control errors in Fig. 11d (thin line around zero)
for t ∈ [4, 000 ; 13, 000] s are caused by the dynamics of the preheaters which are
currently not explicitly accounted for in the control design. On the one hand, the
preheater reaches its saturation value during this time interval. On the other hand, it
can also be noted that the commanded value for the preheater temperature (solid line
in Fig. 11b) changes its value significantly faster than the actual value (dashed line).
Hence, future work will deal with an extension of the system model by ODEs which
describe this lag behavior of the gas preheaters [26, 23].

5 Conclusions and Outlook on Future Work

In this paper, a framework for the design of sensitivity-based open-loop and closed-loop
control strategies has been presented. Representative simulations and experimental
results show the applicability of these design procedures to real-life scenarios. In these
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(c) Cathode gas mass flow (case C).
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(d) Cathode gas mass flow (case D).
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(e) Fuel cell temperature (case C).
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(f) Fuel cell temperature (case D).

Figure 10: Simulation of the predictive control procedure for L = 1, M = 3,
N = 1 with overshoot prevention and energy-based overestimation reduction
(case C: extended cost function (41), and case D: cost function (42)).
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Figure 11: Experimental validation of the predictive controller for L = 1, M = 1,
N = 1.

cases, either disturbances have to be compensated in the neighborhood of steady-state
operating conditions or the major objective is trajectory tracking.

The main advantage of the presented techniques is their capability to handle un-
certainties in system parameters and measured as well as estimated state variables in
a straightforward manner. In such a way, it becomes possible to develop approaches
which guarantee the compliance of controllers with state and input constraints. As a
typical example, the guaranteed prevention of overshooting predefined trajectories has
been presented in this paper. Besides an illustrative example of an uncertain linear
second-order system (which can be interpreted as a simplified model for the longitu-
dinal dynamics of a vehicle), the design of control strategies for solid oxide fuel cell
systems has been considered. These systems typically are described by nonlinear state
equations with more than twenty uncertain parameters.

Future work will deal with a generalization of the presented control techniques in
a framework using interval analysis for the implementation of sensitivity-based model-
predictive control algorithms. Besides the automatic choice of suitable cost functions
and the inclusion of Newton-like optimization procedures [22], extensions will be taken
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into consideration which allow for the design of state and disturbance estimators. Note
that the estimation task is dual to the control of uncertain dynamic systems. For both
control and state estimation, possibilities for a guaranteed analysis of the asymptotic
stability of the resulting procedures will be investigated. Finally, sensitivity-based
approaches also seem to be promising to design gain scheduling methods for other
types of nonlinear controllers such as, for example, robust sliding mode control for
systems with interval uncertainty.
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[8] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and Defect of Nonlinear
Systems: Introductory Theory and Examples. International Journal of Control,
61:1327–1361, 1995.

[9] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. SIAM, Philadelphia, 2008.

[10] A. Gubner. Non-Isothermal and Dynamic SOFC Voltage-Current Behavior. In
S. C. Singhal and J. Mizusaki, editors, Solid Oxide Fuel Cells IX (SOFC-IX):
Volume 1 — Cells, Stacks, and Systems, pages 814–826. The Electrochemical
Society, 2005.

[11] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter. Applied Interval Analysis.
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