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Abstract

The numerical computation of the exponentiation of a real matrix has
been studied intensively. The main objective of a good numerical method
is to deal with round-off errors and computational cost. The situation
is more complicated when dealing with interval matrix exponentiation:
Indeed, the main problem will now be the dependence loss in the interval
evaluation due to multiple occurrences of some variables, which may lead
to enclosures that are too wide to be useful. In this paper, the problem of
computing a sharp enclosure of the interval matrix exponential is proved to
be NP-hard. Then the scaling and squaring method is adapted to interval
matrices and shown to drastically reduce the dependence loss compared
with the interval evaluation of the Taylor series.

Although most of what is presented in this paper seems to be known
to the experts, one can find nowhere a coherent source for the results.
The present paper fills the gap, and adds numerical examples and new
insights.

1 Introduction

The exponentiation of a real matrix allows one to solve initial value problems
(IVPs) for linear ordinary differential equations (ODEs) with constant coeffi-
cients: given A ∈ Rn×n, the solution of the IVP defined by y′(t) = A y(t) and
y(0) = y0 is y(t) = exp(tA) y0, where for any M ∈ Rn×n,

exp(M) :=

∞∑
k=0

Mk

k!
. (1)

Linear ODEs can be found in many contexts. The numerical computation of the
matrix exponential has been intensively studied (see, e.g., [1, 5, 7, 12, 23, 33]
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and references therein). While an approximate computation of (1) leads to an
approximate solution for the underliying IVP, interval analysis (see Section 2)
offers a more rigorous framework: In most practical situations the parameters
that define the linear ODE are known with some uncertainty only. In this
situation, one usually ends up with an interval of matrices A = [A,A] := {A ∈
Rn×n : A ≤ A ≤ A} inside which the actual matrix A is known to be. Then
a rigorous enclosure of the solution can be obtained by computing an interval
matrix that encloses the exponentiation of the interval matrix A.

This leads to the following definition of the exponentiation of an interval
matrix:

exp(A) := �{exp(A) : A ∈ A}, (2)

where � denotes the interval hull, i.e. the smallest interval matrix enclosing
this set of real matrices.

The most obvious way of obtaining an interval enclosure of exp(A) is to
evaluate the truncated Taylor series using interval arithmetic and to bound the
remainder (cf. Subsection 4.1 for details). However, even with high enough
order for the expansion, so that the influence of the remainder is insignificant,
the interval evaluation of the Taylor series computes very crude bounds on the
exponential of an interval matrix. The reason for this bad behavior of the Taylor
series interval evaluation is the dependency loss in the interval evaluation that
occurs due to multiple occurrences of variables. In general, one cannot expect
to compute (2) with good precision: The NP-hardness of this problem is proved
in Section 3.

Two well known techniques can help decreasing the pessimism of the interval
evaluation: First, for narrow enough interval inputs, centered forms can give rise
to sharper enclosures than the natural interval evaluation. Such a centered form
for the matrix exponential was proposed in [29, 30, 31]. However, this centered
evaluation dedicated to the interval matrix exponentiation is quite complex and
very difficult to follow or implement. Furthermore, there is an error in the proof
of Proposition 10M of [29]1 and some unjustified assumptions in Section VII [30].

The second technique consists of formally rewriting the expression so as to
obtain a formula more suited to interval evaluation (usually decreasing the num-
ber of occurrences of variables). For example, the evaluation of a polynomial
in its Horner form is known to improve its interval evaluation [6]. It can be
naturally applied to the Taylor series of the matrix exponential and was a actu-
ally used in [30] to exponentiate the center matrix as required in the centered
form. We give in Subsection 4.2 a proof of the correctness of the matrix expo-
nential Taylor series Horner evaluation with rigorous bound on the truncation
that is much simpler than the one given in [30]. In Subsection 4.3, we extend
the well known scaling and squaring process, which consists of rewriting the

Taylor series using the formula expM = (expM/2L)2
L

, to the exponentiation

1The proof of this Proposition is claimed to be similar to the proof of Proposition 10 of
[29]. However, the proof of Proposition 10 uses the fact that f(x) = ∪x∈xf(x), which is valid
only for scalar functions but not for vector-valued or matrix-valued functions, and thus cannot
be extended to prove Proposition 10M, which involves matrix-valued functions.
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of interval of matrices. In addition of the usual benefits of this process, its use in
conjunction with interval analysis allows an automatic control of the rounding
errors. Furthermore, it is shown to drastically reduce the dependence loss in the
interval evaluation, hence provides much more accurate and less expensive com-
putations. As explained in Section 5 dedicated to experiments, the enclosure
formula based on the scaling and squaring process is not only much simpler than
the centered evaluation proposed in [30] but it also provides sharper enclosures.

Related Work In this paper, only interval evaluations of Taylor series related
expressions are considered. Other interesting approches include Padé approxi-
mations [5] and more elaborated evaluation of matrix polynomials such as the
Paterson–Stockmeyer method [32]. Also, zonotopes of matrices are considered
in [3].

Notation Standard notation for interval analysis is used, see [16]. In partic-
ular, the sets of interval, interval vectors and interval matrices are respectively
denoted by IR, IRn and IRn×n. Interval objects are denoted by boldface char-
acters, e.g., x ∈ IR or A ∈ IRn×m.

2 Interval Analysis

Interval analysis (IA) is a modern branch of numerical analysis that was born
in the 1960’s. It consists of computing with intervals of reals instead of reals,
providing a framework for handling uncertainties and verified computations (see
[2, 13, 24, 25, 28] and [15] for a survey). The reader is assumed to be familiar
with the basics of interval analysis.

When an expression contains several occurrences of some variables its in-
terval evaluation often gives rise to a pessimistic enclosure of the range. For
example, the evaluation of x + xy for the arguments x = [0, 1] and y = [−1, 0]
gives rise to the enclosure [−1, 1] of {x+xy : x ∈ x, y ∈ y} while the evaluation
of x(1 + y) for the same interval arguments gives rise to the better enclosure
[0, 1] of the same range (the latter enclosure being optimal since the expression
x(1 + y) contains only one occurrence of each variables). This overestimation is
the consequence of the loss of correlation between different occurrences of the
same variables when the expression is evaluated for interval arguments.

In the following, except when explicitly mentioned, the notation Ak denotes
AA · · ·A, which is an enclosure of {Ak : A ∈ A}. However, let us note that
while AB = �{AB : A ∈ A, B ∈ B}, the interval evaluation of AA, which
encloses {A2 : A ∈ A}, is not optimal in general since several occurrences of
some entries of A appear in each expression of the entries of AA. An algorithm
for the computation of �{A2 : A ∈ A}, which can be evaluated with a number
of interval operations that is polynomial with respect to the dimension of A,
was proposed in [18]. However, it was proved in [18] that no such polynomial
algorithm exists for the computation of �{A3 : A ∈ A} unless P=NP, i.e., the
computation of �{A3 : A ∈ A} is NP-hard.
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The situation is even worse than this: Even computing an enclosure of {A3 :
A ∈ A} for a fixed precision is NP-hard. The notion of ε-accuracy of an enclosure
is introduced to formalize this problem (see e.g. [9, 19]). The following definition
is adopted for sets of matrices.

Definitiion 2.1 Let A ⊆ Rn×m be a bounded set of matrices, A = �A ∈
IRn×m, and consider an interval enclosure B of A (which obviously satisfies
B ⊇ A). The interval enclosure B is said ε-accurate if

max
{

max
ij
|aij − bij | , max

ij
|aij − bij |

}
≤ ε

Thus an ε-accuracy enclosure of a set of matrices is ε-accurate for each entry.
Although it is not stated in [18], the proof presented there also shows that the
computation of an ε-accurate enclosure of {A3 : A ∈ A} is NP-hard.

3 Computational Complexity of an ε-Accurate
Interval Matrix Exponential

Computing ε-accurate interval enclosures of the range of a multivariate poly-
nomial f : Rn −→ R is NP-hard (cf. [9] and Theorem 3.1 in [19]). Even if
one restricts one’s attention to bilinear functions, the computation of ε-accurate
enclosures of their range remains NP-hard (cf. Theorem 5.5 in [19]). Note that
if one fixes the dimension of the problems, then the computation of these ε-
accurate enclosures is not NP-hard anymore, showing that the NP-hardness is
linked to the growth of the problem dimension.

Our next result, that computing an ε-accurate enclosure of the interval ma-
trix exponential is NP-hard, is therefore not a surprise.

Theorem 3.1 For every ε > 0, computing an ε-accurate enclosure of exp(A)
is NP-hard.

Proof: Let B ∈ Rn×n and x, y ∈ Rn and define A ∈ R(2n+2)×(2n+2) by

A :=


0 xT 0 0
0 0 6B 0
0 0 0 y
0 0 0 0

 . (3)

We check that A4 = 0:

A2 =


0 0 6xTB 0
0 0 0 6By
0 0 0 0
0 0 0 0

 , A3 =


0 0 0 6xTBy
0 0 0 0
0 0 0 0
0 0 0 0

 , A4 = 0.
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Therefore we have exp(A) = I +A+ A2

2 + 1
6A

3:

exp(A) =


1 xT 3xTB xTBy
0 I 6B 3By
0 0 I y
0 0 0 1


and the entry (1, 2n+ 2) of exp(A) is xT B y.

Now, define A = [A,A] ∈ IR(2n+2)×(2n+2) by

A :=


0 xT 0 0
0 0 6B 0
0 0 0 y
0 0 0 0

 and A :=


0 xT 0 0
0 0 6B 0
0 0 0 y
0 0 0 0

 ,

which are obviously built in polynomial time from B. Matrices that belong to
A are of the form (3); therefore{(

exp(A)
)
1,2n+2

: A ∈ A
}

= {xT B y : x ∈ x, y ∈ y}.

Thus, the entry (1, 2n+ 2) of an ε-accurate enclosure of exp(A) is an ε-accurate
enclosure of the image of x and y by the function xT B y. This proves that
the ε-accurate enclosure of the range of a bilinear function f(x, y) = xT B y,
which is NP-hard by Theorem 5.5 in [19], reduces to the ε-accurate enclosure of
the interval matrix exponential. Note that no approximation is involved in the
argument itself.

Roughly speaking, Theorem 3.1 states that computing sharp enclosure of
the exponentiation of large interval matrices that have no special structure is
not tractable.

4 Polynomial Time Algorithms for the Enclo-
sure of the Interval Matrix Exponential

This section presents three expressions dedicated to the enclosure of the expo-
nential of an interval matrix: The naive interval evaluation of the Taylor series,
the interval evaluation of the Taylor series following the Horner scheme, and the
interval evaluation of the series following the scaling and squaring process. The
following example will illustrate each expression.

Example 1 Consider the interval of matrices A := [A,A] where

A :=

(
0 1
0 −3

)
, A :=

(
0 1
0 −2

)
and A(t) :=

(
0 1
0 t

)
. (4)
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Computing the formal expression of the exponential of the matrix A(t) for t ∈
[−3,−2], it can be proved that exp(A) = [X,X] with

X =

(
1 1

3

(
1− e−3

)
0 e−3

)
≈

(
1 0.316738
0 0.0497871

)
,

X =

(
1 1

2

(
1− e−2

)
0 e−2

)
≈

(
1 0.432332
0 0.135335

)
.

(5)

4.1 Taylor Series

The naive interval evaluation of the truncated Taylor series for interval matrix
exponential becomes an enclosure if we include a rigorous bound on the trun-
cation error. The bound used here is the same as in [30]. Let us define for
K + 2 > ‖A‖

T̃ K(A) := I + A + 1
2A

2 + . . .+ 1
K!A

K ,

T K(A) := T̃ K(A) + RK(A),
(6)

where the interval remainder RK(A) is

RK(A) := ρ(‖A‖,K) [−E,E] with ρ(α,K) =
αK+1

(K + 1)!
(
1− α

K+2

) (7)

and E ∈ Rn×n has all its entries equal to 1. The interval matrix norm used here
and in the remainder of the paper is the infinity norm

‖A‖ = max
i

∑
k

|aik| = max
i

∑
k

max(−aik, aik)

defined in [28], which is the maximum of the infinite norm of all real matrices
included in the interval matrix. This norm is inclusion-increasing, i.e.,

A ⊆ B ⇒ ‖A‖ ≤ ‖B‖.

The following results enable us to apply the fundamental theorem of interval
analysis2 to expressions that include RK( · ).

Lemma 4.1 For any fixed positive integer K, the interval matrix operator
RK( · ) is inclusion-increasing inside {A ∈ IRn×n : ‖A‖ < K + 2}.

Proof: Let A,B ∈ IRn×n be such that ‖B‖ < K + 2 and A ⊆ B. Then
‖A‖ ≤ ‖B‖, since the norm is inclusion-increasing, which implies ‖A‖ < K +
2. Furthermore as ρ(α,K) is obviously increasing with respect to α, we have
ρ(‖A‖,K) ≤ ρ(‖B‖,K). Finally, as [−E,E] is centered on the null matrix, we
have

ρ(‖A‖,K) [−E,E] ⊆ ρ(‖B‖,K) [−E,E], (8)

2 The fundamental theorem of interval analysis is the basic argument stating that if an
interval function F is inclusion-increasing and if F (x) ∈ F (x) for some real function F , then
F (x) ⊇ {F (x) : x ∈ x}; see, e.g., Theorem 1.4.1 of [28].
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which concludes the proof.
The next lemma is a direct consequence of the well known upper bound on

the truncation error of the exponential series.

Lemma 4.2 Let A ∈ Rn×n and K ∈ N such that K+2 > ‖A‖. Then exp(A) ∈
T K(A).

Proof: Suppose that exp(A) /∈ T K(A), i.e., there exist i, j ∈ {1, . . . n} such that

(
exp(A)

)
ij
/∈
( K∑
k=0

Ak

k!

)
ij

+ ρ(‖A‖,K) [−1, 1]. (9)

This obviously implies

∣∣(exp(A)
)
ij
−
( K∑
k=0

Ak

k!

)
ij

∣∣ > ρ(‖A‖,K). (10)

Therefore ‖ exp(A)−
∑K
k=0

Ak

k! ‖ > ρ(‖A‖,K) holds, which contradicts the well
known bound on the truncation error for the exponential series (see e.g. [30]).
Therefore exp(A) ∈ T K(A) has to hold.

Theorem 4.1 below states that T K(A) is an enclosure of exp(A). It was
stated in [30] but proved with different arguments in [29], [30]. Note that the
usage of the fundamental theorem of interval analysis allows us to provide a
proof much simpler than the one given in [29], [30].

Theorem 4.1 Let A ∈ IRn×n and K ∈ N such that K + 2 > ‖A‖. Then
exp(A) ⊆ T K(A).

Proof: First, by Lemma 4.1 RK( · ) is inclusion-increasing, and therefore so
is T K( · ) because it is composed of inclusion-increasing operations. Second,
by Lemma 4.2, (∀A ∈ A) exp(A) ∈ T K(A). Therefore, one can apply the
fundamental theorem of interval analysis to conclude the proof.

Example 2 Consider the interval of matrices A defined in Example 1. Theo-
rem 4.1 with K = 16 gives rise to the following enclosure of exp(A):(

1 + [−4.4× 10−7, 4.4× 10−7] [−1.2092, 1.9582]
[−4.4× 10−7, 4.4× 10−7] [−6.2557, 6.4409]

)
. (11)

Using a higher order for the expansion does not improve the entries (1, 2) and
(2, 2) anymore.

The following proposition shows that the width of the interval Taylor series
evaluation decreases when K increases. Let (widA) ∈ Rn×n be the real matrix
formed of the widths of the entries of A ∈ IRn×n.

Proposition 4.1 Let A ∈ IRn×n and K ∈ N such that K + 2 > ‖A‖. Then
wid T K+1(A) ≤ wid T K(A).
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Proof: The Taylor series differ only on their last terms, therefore we just need
to prove that

wid AK+1

(K + 1)!
+ wid RK+1(A) ≤ wid RK(A),

where we used wid (M + M ′) = wid M + wid M ′ and wid (aM) = awid M .
Now, noting that wid AK+1 ≤ ‖AK+1‖wid [−E,E] ≤ ‖A‖K+1wid [−E,E], and
factorizing and canceling wid [−E,E], it is sufficient to prove that

‖A‖K+1

(K + 1)!
+

‖A‖K+2

(K + 2)!(1− ‖A‖K+3 )
≤ ‖A‖K+1

(K + 1)!(1− ‖A‖K+2 )
,

or equivalently

1 +
‖A‖

(K + 2)(1− ‖A‖K+3 )
≤ 1

(1− ‖A‖K+2 )
.

Putting together the three summands, this is equivalent to

‖A‖2

(K + 2)(K + 3− ‖A‖)(K + 2− ‖A‖)
≥ 0,

which holds provided that ‖A‖ < K + 2, which is assumed.

4.2 Horner Scheme

The Horner evaluation of a real polynomial both reduces the computation effort
and improves the numerical stability compared to the straightforward polyno-
mial evaluation (see, e.g., [17]). When an interval evaluation is computed, the
Horner evaluation can furthermore reduce the effect of the loss of correlation
(see [6]). It is therefore natural to evaluate (6) using a Horner scheme:

H̃K(A) := I + A
(
I + A

2

(
I + A

3

(
· · ·

(
I + A

K

)
· · ·
)))

,

HK(A) := H̃K(A) + RK(A).
(12)

Lemma 4.3 Let A ∈ Rn×n and K ∈ N such that K+2 > ‖A‖. Then exp(A) ∈
HK(A).

Proof: When interval operations are evaluated with real arguments, the Horner
scheme can be expanded exactly, leading to HK(A) = T̃ K(A). As a conse-
quence, HK(A) = T K(A) and Lemma 4.2 concludes the proof.

Theorem 4.2 Let A ∈ IRn×n and K ∈ N such that K + 2 > ‖A‖. Then
exp(A) ∈HK(A).

Proof: As a consequence of Lemma 4.1, HK( · ) is composed of inclusion-
increasing operations, hence is inclusion increasing. Lemma 4.3 shows that
exp(A) ∈ HK(A). Therefore one can use the fundamental theorem of interval
analysis to conclude the proof.
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Example 3 Consider the interval of matrices A defined in Example 1. By
Theorem 4.2 with K = 16, we have the following enclosure of exp(A):(

1 + [−4.4× 10−7, 4.4× 10−7] [−0.0706, 0.7352]
[−4.4× 10−7, 4.4× 10−7] [−1.2056, 1.2117]

)
. (13)

This enclosure is sharper than the one computed using the Taylor series: as
it was foreseen, the Horner evaluation actually reduces the effect of the loss of
dependency in the expression of the Taylor expansion of the matrix exponential.

Although the proof still eludes us, our experiments have shown that the
width of the interval Taylor series Horner evaluation decreases whenK increases.

4.3 Scaling and Squaring Process

The scaling and squaring process is one of the most efficient way to compute
a real matrix exponential. It consists of first computing exp(A/2L) and then
squaring L times the resulting matrix:

exp(A) =
(
exp(A/2L)

)2L
. (14)

Therefore, one first has to compute exp(A/2L). This computation is actually
much easier than that of exp(A) because ‖A/2L‖ can be made much smaller than
1. Usually, Padé approximations are used to compute exp(A/2L). However, this
technique has not been extended to interval matrices, hence we propose here to
use instead the Horner evaluation of the Taylor series. More specifically, we pro-
pose the following operator for the enclosure of an interval matrix exponential:
Let K and L be such that (K + 2)2L > ‖A‖, and define

SL,K(A) :=
(
HK(A/2L)

)2L
. (15)

The exponentiation in (15) is of course computed with L successive interval ma-
trix square operations, computed using the optimal interval matrix square [18].
For assessing its improvement with respect to the simple interval matrix product
AA, we denote the scaling and squaring process implemented using this simple
product by S•L,K(A), which obviously satisfies S•L,K(A) ⊇ SL,K(A) since the
latter is optimal.

Theorem 4.3 Let A ∈ IRn×n and K,L ∈ N such that (K + 2) 2L > ‖A‖.
Then exp(A) ⊆ SL,K(A).

Proof: By Theorem 4.2, we have exp(A/2L) ∈ HK(A/2L) for an arbitrary

A ∈ A. The interval evaluation M2L of an arbitrary interval matrix M en-

closes {M2L : M ∈M}; therefore SL,K(A) 3 exp(A/2L)2
L

. This holds for an
arbitrary A ∈ A, which concludes the proof.
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Example 4 Consider the interval of matrices A defined in Example 1. Theo-
rem 4.3 with L = 10 and K = 10 leads to the following enclosure of exp(A):(

1 + [−3.5× 10−13, 6.9× 10−13] [0.3165, 0.4325]
[−1.7× 10−19, 1.8× 10−19] [0.0496, 0.1355]

)
. (16)

This enclosure is much sharper than the two previously computed enclosures
using the Taylor series (cf. Example 2) and its Horner evaluation (cf. Example
3). It is also very close to the optimal enclosure (5). The computational cost for
L and K is approximately the same as that for the Horner scheme with order
L+K. The interval matrix product and the optimal square interval matrix give
rise to the same enclosure on this example.

5 Experiments

The direct Taylor series is not presented as it is similar but always worse than
its Horner evaluation. Therefore we compare in this section only the interval
Horner evaluation of the truncated Taylor series with the interval scaling and
squaring method. In order to compare these two enclosures, we use the width
of these interval enclosure: Recall that wid M is the real matrix formed of the
widths of the entries of M . We will use the ‖wid M‖ as a quality measure of
the enclosure M . Subsection 5.1 presents a detailed study of the exponentia-
tion of a particular real matrix of dimension 3, while Subsection 5.2 deals with
the exponentiation of an interval matrix of dimension 3. Finally, Subsection
5.3 presents the interval exponentiation of tridiagonal interval matrices, and
Subsection 5.4 presents experiments on random matrices.

Except when explicitly mentioned, we use the following heuristic choice for
the order of the expansions of the Taylor series: H(A) denotes HK(A) where
K is chosen as the smallest integer such that ρ(‖A‖,K) ≤ 10−16. Furthermore,
S(A) denotes SS,K(A) where S = dlog2(10‖A‖)e (so that S is the smallest in-
teger such that ‖A/2S‖ ≤ 0.1) and K = 9 (applying the previous heuristic with
‖A‖ = 0.1). This choice may lead to some overscaling, but this is not discussed
here (see, e.g., [1] and references therein for more elaborated heuristics).

As explained in introduction, the comparisons presented in this section do
not include the interval matrix enclosure method proposed in [29, 30, 31]. How-
ever, this method is based on an interval Horner evaluation and thus cannot
give rise to better enclosures than the interval Horner evaluation of the center
matrix, which – as demonstrated above – is of poor quality.

5.1 Interval Exponentiation of a Real Matrix

In this subsection, we consider the matrix A defined by

A :=

−131 19 18
−390 56 54
−387 57 52

 (17)
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Figure 1: Plots of ‖widHK(A)‖ with respect to K, for two different precisions:
Plain line for p = 110 digits precision, and dashed line for p = 120 digits
precision.

proposed in [5]. This matrix has a significant eigenvalue separation and a poorly
conditioned eigenvector set.

The matrix A is too difficult to exponentiate using the Horner evaluation of
the truncated interval Taylor series: As ‖A‖ = 500 the Taylor series requires
an expansion of order greater than 502. Computing HK(A) using double preci-
sion does not provide any meaningful enclosure. Figure 1 shows the quality of
the enclosure obtained for different orders ranging from 1330 to 1450 and two
different precisions for computations (the Mathematica [34] arbitrary precision
interval arithmetic was used). It shows that no meaningful enclosure is obtained
for precision less than p = 110 digits and order less than K = 1350 using the
Horner interval evaluation of the Taylor expansion.

The interval scaling and squaring formula gives rise to ‖wid S(A)‖ ≈ 6.2×
10−6 computed using the standard double precision arithmetic. Note that
‖wid S•(A)‖ ≈ 1.4 × 10−5 so the optimal interval matrix square sensibly im-
proved the enclosure. As noted in [7], preprocessing the matrix exponential
using a matrix decomposition can improve the stability of the computation. If
one uses a decomposition PMP−1 where M = P−1AP is easier to exponentiate
then one can compute expA = P exp(M)P−1. This gives a rigorous enclosure
for arbitrary P , as long as P−1 is rigorously enclosed. In particular, we may
choose P to be the result of an approximate matrix decomposition. Using the
Schur decomposition, we obtain

‖wid
(
P S(P−1AP )P−1

)
‖ ≈ 1.10234× 10−10.

Here, the improvement with respect to the simple interval matrix product is not
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Figure 2: Norm of the width of the different interval of exp(Aε) enclosures with
respect to ε.

sensitive anymore: ‖wid
(
P S•(P−1AP )P−1

)
‖ ≈ 1.10240× 10−10.

5.2 Interval Exponentiation of an Interval Matrix

In order to compare the different methods, we will use 0.1A, where A is given
by (17), which is simpler to exponentiate than (17). We have exponentiated
Aε := 0.1A + [−ε, ε] for various values of ε inside [10−16, 1]; the results are
plotted in Figure 2.

The three plain gray curves represent ‖widHK(Aε)‖ for K = 110, K = 140
and K = 170. Increasing K improves the enclosure until K = 170 above
which no significantly improvement is found. The two black curves represent
‖widS(Aε)‖ and ‖widS•(Aε)‖, which are very close to each other. The dashed
line represents

‖wid �{expAε, expAε}‖,

which is a lower bound of ‖wid exp(Aε)‖. Each plot show three phases: The
first phase shows flat plots, then ‖wid ( · )‖ increases linearly3 with respect to ε
before it is eventually exponentially increasing.

During the flat phase, the rounding errors represent the main contribution
to the final width of the enclosures. Thus decreasing ε does not decrease the
width of the final enclosure.

3 The linear plot displayed within the log-log scale indicates a polynomial behavior, the
polynomial degree being fixed by the slope in the log-log representation. Here, the slope is 1
inside the log-log plot and thus so is the degree of the polynomial.
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Figure 3: Norm of the width with respect to n of S(An) (in black) and H(An)
(in gray).

The linear phase is the most interesting. For these values of ε, the width
of exp(Aε) grows linearly because the contribution of quadratic terms are neg-
ligible. On the other hand, the interval evaluations H170(Aε) and S(Aε) are
pessimistic. It is well known that the pessimism of interval evaluation grows lin-
early with respect to the width of the interval arguments. Indeed, the computed
enclosure shows a linear growth with respect to ε which are approximately

‖wid H170(Aε)‖ ≈ 3.1× 1010 ε (18)

‖wid S(Aε)‖ ≈ 5.6× 103 ε. (19)

This clearly shows how much smaller is the pessimism introduced by the interval
scaling and squaring process.

Finally, both the interval Horner evaluation and the interval scaling and
squaring process show an exponential growth when ε is too large. The lower
bound represented by the dashed line also shows an exponential growth, which
proves that this is inherent to the exponentiation of an interval matrix. For such
ε, some matrices inside Aε eventually see some of their eigenvalues becoming
positive, leading to some exponential divergence of the underlying dynamical
system, which is also observed in the matrix exponential.

5.3 Tridiagonal Interval Matrices

Consider the tridiagonal interval matrix An ∈ IRn×n defined by tii = [−11,−9]
and ti+1,i = ti,i+1 = [0, 2]. For example,

A3 =

[−11,−9] [0, 2] 0
[0, 2] [−11,−9] [0, 2]

0 [0, 2] [−11,−9]

 .

Figure 3 shows the widths of the enclosures of the exponential of An for the
different methods presented in the previous section and for values of n ranging
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Figure 4: Norm of the width of the S(Mn) (in black), H(Mn) (in gray), and
the inner lower bound (in dashed) with respect to ε. For each case, the worst
and best random samples are displayed. The left and right graphics correspond
to n = 3 (i.e., Mn,ε ∈ IR9×9) and n = 5 (i.e., Mn,ε ∈ IR15×15) respectively.

from 3 to 15 (we have checked the widths remains constant until at least n =
100). Here, the optimal interval matrix square and the naive product give rise
to the same enclosure. It clearly shows that the naive interval evaluation and
the interval evaluation of the Horner form of the Taylor series are too wide to
be useful, while the interval scaling and squaring process gives rise to sharp
enclosures.

5.4 Random Matrices

We consider random normal matrices Mn,ε ∈ IR3n×3n, for n ≥ 1, generated
as follows: First, Mn = P−1AnP ∈ R3n×3n where P ∈ R3n×3n is a random
orthonormal matrix (generated by taking the Q factor of a QR decomposition
of a random matrix), and An ∈ R3n×3n is a block diagonal matrix with 1 × 1
and 2× 2 blocks

1,

(
2 2
−2 2

)
, 3,

(
4 4
−4 4

)
, . . . , 2n− 1,

(
2n 2n
−2n 2n

)
,

whose eigenvalues are 1, 2± 2i, 3, 4± 4i, . . ., 2n− 1 and 2n± 2ni. The interval
matrix Mn,ε is then obtained adding an uncertainty of |mij |[−ε, ε] to each entry
of Mn. The value of n ranges from 3 to 5 (so the dimension of Mn,ε ranges
from 9 to 15), and ε from 10−16 to 1. For each value, we have considered
10 random matrices, and reported the best and worst enclosure width, together
with the width of the interval hull of the two extreme matrix exponentials (which
provides an inner enclosure of the interval exponentiation, as in Subsection 5.2).
Figure 4 displays the resulting enclosure widths, which show a similar behavior
as in Subsection 5.2. Here, the optimal interval matrix square allows improving
the widths up to 20% with respect to the naive interval matrix product.
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6 Simulation of Linear ODEs

Subsection 6.1 shows how the exponential of interval matrices can help rig-
orously simulate homogeneous and autonomous linear ODE. Subsection 6.2
shows the link between the interval matrix exponentiation and the application of
odd/even reduction proposed by Gambill and Skeel in [10], which allows some-
how to generalize the scaling and squaring process to non-autonomous linear
ODE.

6.1 Homogeneous and Autonomous Linear ODE

We consider the uncertain autonomous linear ODE x′(t) = Ax(t), where A is
known to belong to A = An, the tridiagonal matrix defined in Subsection 5.3.
For simplicity, we use a simple simulation algorithm which consists of enclos-
ing the states in a boxes by composing successive time steps using interval
analysis (more complex enclosing sets like, e.g., parallelotopes [8, 11, 22, 27],
zonotopes [20] or nonlinear sets [4] could be used, but were not implemented).
The initial condition is fixed to belong to x0 = (1, . . . , 1) ∈ Rn, and define
xk+1 = S(An)xk. As S(An) ⊇ exp(An), the state at time tk = k is obviously
contained inside xk. Now, as ‖S(An)‖ < 1 for all n ≤ 100, the sequence xk is
proved to converge to 0. The left diagram in Figure 5 shows the norm of xk,
which indeed converges to 0, the simulation is performed for n = 3.

For comparison, let us consider the well known ODE solver VNODE-LP [26],
which is able to enclose rigorously the solution of a nonlinear ODE x′(t) =
f(x(t)) with uncertain parameters. As most of rigorous ODE solvers based
on interval analysis (see [27] and references therein), it is based on the interval
evaluation of the Taylor coefficients of the solution: The solution x(t) is enclosed
by

x0 + tf [1](x0) + t2f [2](x0) + · · ·+ tmf [m](x0) + r, (20)

where r is an upper bound on the truncation error that can be made arbitrary
small for a fixed extension order m using an adaptative step size control (which
is actually performed by VNODE-LP). The functions f [k](x0) correspond to the
Taylor coefficients 1

k!x
(k)(0) expressed with respect to x0. They are evaluated

using automatic differentiation of the recursive definition

f [k](x) =
1

k

∂f [k−1](x)

∂x
f(x), (21)

obtained by differentiating x(k−1)(t) = (k−1)! f [k−1](x(t)) with respect to time.
In the case of a autonomous linear ODE, f(x) = Ax so f [k](x) = 1

k! A
k. This

leads to the enclosure

x0 + tAx0 + t2
(A2

2

)
x0 + · · ·+ tm

(Am

m!

)
x0 + r (22)

of the state, which is to be compared to the state enclosure obtained using the
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Figure 5: Norm of the enclosure of a linear ODE solution using various methods:
Interval scaling and squaring with time step 1 converges (left solid line). Here,
the optimal interval matrix square and the naive product give rise to the same
enclosure. Equation (23) diverges (right solid line; time steps 0.01, 0.001 and
0.0001 from light gray to dark gray). VNODE-LP also diverges, though more
slowly (right dashed line).

interval evaluation of the matrix exponential Taylor series, that is(
I + tA +

1

2
(tA)2 + · · ·+ 1

m!
(tA)m

)
x0 + r̃. (23)

We may suppose that the time step t is small enough and the order m is large
enough so that r and r̃ are both negligible. Although in the case of real arith-
metic both expressions (22) and (23) are equivalent, the interval evaluation (22)
is actually much worse than (23) in the sense that it leads to a much stronger
pessimism. The right hand diagram in Figure 5 shows that the simulation indeed
diverges when computed using Equation (23) for various time steps and using
VNODE-LP (which uses an automatic time step selection), the simulations are
performed for n = 3.

Remark 6.1 Note that the current release of VNODE-LP does not include any
specific treatment for uncertain ODEs. Some techniques have been proposed4,
which can drastically improve the inclusion computed by VNODE-LP.

6.2 General Linear ODE

Gambill and Skeel proposed in [10] a method for simulating non-homogeneous
and non-autonomous linear ODE that can be interpreted as a generalization of
the scaling and squaring process. We summarize their method in the case of
homogeneous linear ODE x′(t) = A(t)x(t). For simplicity, let us consider 2L

constant time steps of size h. Gambill and Skeel use (20) in order to compute

4E.g., [21] based on Taylor model for nonlinear ODES, [14] based on a defect estimate for
nonlinear ODEs, [3] based on a defect estimate and zonotope enclosures for linear ODES.
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interval matrices Gk+1 such that x((k + 1)h) ∈ Gk+1x(kh). Note that in the
case of an autonomous ODE, i.e. A(t) = A, Gk is an enclosure of exp(hA).

They observe that the obvious enclosure of x(2Lh) obtained computing

G2L

(
· · ·
(
G2

(
G1x(0)

))
· · ·
)

(24)

(called the marching reduction in [10]) is useless since it grows exponentially
even for very simple problems. The enclosure

G2L

(
· · ·
(
G2

(
G1

))
· · ·
)
x(0) (25)

of x(2Lh) is already much better than (24), although it requires more compu-
tations since 2L matrix/matrix products are performed in (25) while 2L ma-
trix/vector products are performed in (24). Instead of (25), Gambill and Skeel
propose to evaluate the successive products starting by multiplying pairs of
successive matrices. The operation is repeated L times until the final result is
obtained. For example, the enclosure of x(23h) computed by Gambill and Skeel
is ((

(G8G7)(G6G5)
)(

(G4G3)(G2G1)
))
x(0), (26)

which is much shaper than (25) in most situations. It is worthwhile noting

that (26) reduces to (B)2
L

, where B is a superset of exp(hA), when the system
is autonomous.

Remark 6.2 The enclosure (24) can also be drastically be improved using more
general enclosing sets, like parallelotope [11, 27] or zonotopes [3, 20]. The
hybridization of matrix exponential or (26) and more general enclosing sets
seems promising.
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