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Explicit formulas for effective piezoelectric coefficients
of ferroelectric 0-3 composites
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Explicit formulas have been found for the effective piezoelectric coefficients of a 0-3 composite of
ferroelectric spherical particles in a ferroelectric matrix. Tensile loading and hydrostatic loading
conditions were studied. Assuming that both phases are dielectrically and elastically isotropic,
explicit expressions in simple closed form for the effectived33, d31 anddh coefficients were derived
in terms of the constituents’ piezoelectric coefficients and the dielectric and elastic properties of the
composite and constituents. Prediction of the piezoelectric coefficients for specific composite
systems was compared with experimental values from published works, and good agreement with
data was obtained. Goodness of fit is not limited to low volume fraction of inclusions. ©2001
American Institute of Physics.@DOI: 10.1063/1.1408595#
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I. INTRODUCTION

Piezoelectric material possesses the ability to con
mechanical energy to electrical energy or vice versa. M
transducers, filters and resonators made of piezoelectric
terials have been widely used in sonic and ultrasonic ap
cations, electronic instrumentation, biomedical applicatio
etc. However, most piezoelectric ceramic materials are br
and may exhibit brittle fracture or unexpected malfuncti
under mechanical stresses or electric fields. In addition, m
ern applications desire diverse properties of materials wh
often cannot be obtained in single phase materials. Pie
electric composites have therefore attracted strong inte
for various device applications, especially biphasic co
posites where both constituents are ferroelectric, usu
involving a piezoelectric ceramic and a vinyliden
trifluoroethylene copolymer.

The piezoelectric properties of ferroelectric 0-3 comp
ites have been studied by many workers theoretically
experimentally. The works of Yamada, Ueda, and Kitayam1

Furukawaet al.2,3 and Jayasundere, Smith, and Dunn4 are
examples which give explicit expressions for the effect
piezoelectric coefficients of 0-3 composites. However,
result of Yamadaet al. and co-workers does not seem to
complete since the elastic properties of the constituents
absent from their formulas. They also assume that the pie
electric particles are ellipsoidal with their long axes perp
dicular to the surface of the composite film. In the works
Furukawaet al., the matrix and inclusion particles are take
as incompressible. Also the stress condition under which
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piezoelectric formulas are derived is not specified. One
therefore not completely certain that, e.g., theird coefficient
formula is meant ford33 or d31, or some otherd. A similar
remark applies to Jayasundere’s model. On the other h
Dunn and Taya5 and Jiang, Fang, and Hwang6 have used
more rigorous but quite complicated approaches. Com
cated formulas for the effective piezoelectric coefficients
obtained and difficult numerical computation schemes m
invariably be employed to get predictions of composite pro
erties. In contrast, we aim to obtain simple explicit expre
sions for some effective piezoelectric coefficients of bipha
ferroelectric 0-3 composites.

Assuming inclusion particles are spherical and that b
phases are dielectrically and elastically isotropic, explicit e
pressions for the effectived33, d31 anddh coefficients have
been derived in a previous article7 for ferroelectric 0-3 com-
posites in the dilute suspension limit. In this article, the
lute suspension results are first reviewed and then gen
ized to cover the case of nondilute suspension. It is sho
that these results compare quite well with several sets
experimental data from published works.

II. THEORY

To find the effective piezoelectricd coefficients of a 0-3
composite, we start from the solution of electro-elastic
equations and boundary conditions of a single inclus
problem.

A. Single inclusion problem

As an approximation, we assume that the equations
mechanical equilibrium are not disrupted by the applied
0 © 2001 American Institute of Physics
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stress-generated electric fields, and hence the stress dis
tion can be worked out solely from elasticity theory.

Consider an elastic spherical inclusion situated at
origin of coordinates and embedded in an infinitely lar
matrix. Assume that both inclusion and matrix materials
elastically isotropic and homogeneous, and this assump
is taken to be still valid even when the constituents are
larized. Let there be a uniform tensionT acting in theZ
direction in the matrix far away from the inclusion. Th
problem of finding the stress components in the matrix a
inclusion is already solved in spherical coordinates
Goodier8 ~summarized in Appendix A!.

The volumetric averaging of stresses is defined by

^skl&5
1

V E
V
skldV, ~1!

where subscriptsk,l 5x,y,z refer to the three directions an
V is volume. Thê skli& and ^sklm& will be used to denote
the average over the inclusion volume and the matrix,
spectively; in the latter case, the integration is taken ove
spherical region fromr 5a to r 5R, wherea is the inclusion
radius andR.a. After transforming Goodier’s solution to
Cartesian coordinates, the volumetric average of each C
sian stress component is then found for both inclusion
matrix. The nonvanishing components are^sxxi

Z &, ^syyi
Z &,

^szzi
Z & and ^szzm

Z &, and obey the following relationships:

H ^sxxi
Z &5^syyi

Z &5~ I 2J!^szzm
Z &

^szzi
Z &5~ I 12J!^szzm

Z &
, ~2!

where the superscriptZ denotes the direction of th
asymptotic uniform tension in the matrix, and

I 5
12ym

11ym

~11y i !m i

2~122y i !mm1~11y i !m i
, ~3!

J5
5~12ym!m i

~725ym!mm12~425ym!m i
, ~4!

wherem andn denote the shear modulus and Poisson’s ra
respectively.

Similarly, for asymptotic uniform tensions in theX and
the Y directions

H ^syyi
X &5^szzi

X &5~ I 2J!^sxxm
X &

^sxxi
X &5~ I 12J!^sxxm

X &
, ~5!

H ^sxxi
Y &5^szzi

Y &5~ I 2J!^syym
Y &

^syyi
Y &5~ I 12J!^syym

Y &
. ~6!

Now consider a dielectric sphere surrounded by the m
trix medium of permittivityem , with a uniform electric field
applied along theZ direction far away from the inclusion
~i.e., the ‘‘3’’ direction!. The boundary value problem give
the following equation~Appendix B!:

^D3i&12em~^E3i&2^E3m&!5^D3m&. ~7!

The derivation assumes that the electric displacementD var-
ies linearly as the electric fieldE. This is valid for small
electric field.
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B. Composite problem and effective piezoelectric
properties

The results of the single inclusion problem are now e
tended to a composite with a dilute suspension of inclus
particles and then the effective piezoelectric coefficients
solved in terms of the dielectric, elastic and piezoelec
properties of its constituents.

Suppose the composite is subjected to tensile stress
the X, Y and Z directions simultaneously, and the avera
electric field acts only in theZ direction, in which case we
only need to concern ourselves with the volumetric avera
of the electric field and electric displacement in the 3 dire
tion. The following equations can be written for dilute su
pension of inclusion particles:2

5
^sxx&5f$^sxxi

X &1^sxxi
Y &1^sxxi

Z &%1~12f!^sxxm
X &

^syy&5f$^syyi
X &1^syyi

Y &1^syyi
Z &%1~12f!^syym

Y &
^szz&5f$^szzi

X &1^szzi
Y &1^szzi

Z &%1~12f!^szzm
Z &

^D3&5f^D3i&1~12f!^D3m&
^E3&5f^E3i&1~12f!^E3m&

,

~8!

where ^sxx&, ^syy& and ^szz& are the volume-average
stresses in the composite andf is the volume fraction of the
inclusion phase.

The constitutive equation for a linear dielectric with p
ezoelectric effect is, in our case

D35eE31d3klskl , ~9!

where d3kl are the piezoelectric coefficients. Thus th
volume-averaged electric displacement in the inclus
phase is

^D3i&5e i^E3i&1d31i~^sxxi
X &1^sxxi

Y &1^sxxi
Z &!

1d32i~^syyi
X &1^syyi

Y &1^syi
Z &!1d33i~^szzi

X &

1^szzi
Y &1^szzi

Z &! ~10!

and the electric displacement in the matrix phase is

^D3m&5em^E3m&1d31m^sxxm
X &1d32m^syym

Y &

1d33m^szzm
Z &. ~11!

We assume that both constituents are piezoelectric
transversely isotropic and that their polar axes are aligne
the 3 direction. That meansd315d32 for both inclusion and
matrix. The next step is then to solve for^D3& in terms of
^E3&, ^sxx&, ^syy& and ^szz&, using Eqs.~2!–~8!, ~10! and
~11!. The result is, after some manipulation

^D3&5e^E3&1d31̂ sxx&1d32̂ syy&1d33̂ szz&, ~12!

where

e5
e i12em12f~e i2em!

e i12em2f~e i2em!
em , ~13!

d315d325fLE$~LT
'1LT

i
!d31i1LT

'd33i%1~1

2f!L̄E$~ L̄T
'1L̄T

i
!d31m1L̄T

'd33m%, ~14!
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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d335fLE$2LT
'd31i1LT

i d33i%1~12f!L̄E$2L̄T
'd31m

1L̄T
i d33m% ~15!

are the effective permittivity and piezoelectric coefficients
the composite and

LE5
3em

~12f!e i1~21f!em
, ~16!

L̄E5
12fLE

12f
, ~17!

LT
'5

I

12f~123I !
2

J

12f~123J!
, ~18!

LT
i
5

I

12f~123I !
1

2J

12f~123J!
, ~19!

L̄T
'5

2fLT
'

12f
, ~20!

L̄T
i
5

12fLT
i

12f
. ~21!

The effective hydrostatic piezoelectricdh coefficient~defined
by dh5d3312d31, and similarly for inclusion and matrix! is
derived by settinĝsxx&5^syy&5^szz& in Eq. ~12!, thus

dh5fLELT
hdhi1~12f!L̄EL̄T

hdhm, ~22!

where

LT
h52LT

'1LT
i , ~23!

L̄T
h52L̄T

'1L̄T
i
5

12fLT
h

12f
~24!

or

LT
h5

~3km14mm!ki

~3km14mmf!ki14~12f!mmkm
, ~25!

L̄T
h5

~3ki14mm!km

~3km14mmf!ki14~12f!mmkm
, ~26!

whereki and km are bulk moduli for inclusion and matrix
respectively.

Equations~13!–~26! are the results based on the foreg
ing calculation for the dilute suspension regime. The m
results are equations for the effective piezoelectricd coeffi-
loaded 27 Mar 2011 to 158.132.161.9. Redistribution subject to AIP licens
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cients given in Eqs.~14!, ~15! and~22!. Note that Eq.~13! is
identical to the well-known Maxwell–Wagner formula9

which is adopted by Furukawa, Fujino, and Fukada in Ref
In the following section, we will show that theLE’s andLT’s
@Eqs. ~16!, ~18!, ~19!, ~25! and ~26!# are electric and stres
field factors, respectively. They essentially represent the f
tions of applied field distributed to the constituents. This
terpretation allows an extension of the main results to hig
volume fraction of inclusion.

C. Effective piezoelectric coefficients for concentrated
suspension

To generalize the results of the dilute suspension ca
the elastic part and the electrostatic part are separately
expressed in terms of the effective dielectric and ela
properties. LetFE’s be the electric field factors as defined
Eqs. ~27! and ~28!. They can be expressed in terms of t
permittivities of the constituents and the effective permitt
ity of the composite as follows~Appendix C!:

FE[
^E3i&

^E&
5

1

f

e2em

e i2em
, ~27!

F̄E[
^E3m&

^E&
5

1

12f

e i2e

e i2em
, ~28!

where ^E3i&, ^E3m& and ^E& are volume-averaged electri
fields for the inclusion phase, matrix and the composite,
spectively. The electric field factorFE has been given by
Furukawa, Fujino, and Fukada.2

Similarly, letFT’s be the stress field factors as defined
Eqs.~29!–~34!. They can be expressed in terms of the elas
properties of the composite and constituents. The stress
factors associated with the hydrostatic loading condit
have been derived as~Appendix C!:

FT
h[

^s i&

^s&
5

1

f

1

k
2

1

km

1

ki
2

1

km

, ~29!

F̄T
h[

^sm&

^s&
5

1

12f

1

ki
2

1

k

1

ki
2

1

km

, ~30!

where^s i&, ^sm& and ^s& are volume-averaged hydrostat
stresses for the inclusions, matrix and the composite, res
tively. Those associated with tensile loading conditions a
FT
'[

^sxxi&

^szz&
5

1

f

S n i

Yi
2

nm

Ym
D S 1

Y
2

1

Ym
D2S 1

Yi
2

1

Ym
D S n

Y
2

nm

Ym
D

S 1

Yi
2

1

Ym
D S 12n i

Yi
2

12nm

Ym
D22S n i

Yi
2

nm

Ym
D 2 , ~31!
e or copyright; see http://jap.aip.org/about/rights_and_permissions



FT
i [

^szzi&
5

1 S 12n i

Yi
2

12nm

Ym
D S 1

Y
2

1

Ym
D22S n i

Yi
2

nm

Ym
D S n

Y
2

nm

Ym
D

2 , ~32!
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^szz& f S 1

Yi
2

1

Ym
D S 12n i

Yi
2

12nm

Ym
D22S n i

Yi
2

nm

Ym
D

F̄T
'[

^sxxm&

^szz&
5

1

12f

S n i

Yi
2

nm

Ym
D S 1

Yi
2

1

YD2S 1

Yi
2

1

Ym
D S n i

Yi
2

n

YD
S 1

Yi
2

1

Ym
D S 12n i

Yi
2

12nm

Ym
D22S n i

Yi
2

nm

Ym
D 2 , ~33!

F̄T
i [

^szzm&

^szz&
5

1

12f

S 12n i

Yi
2

12nm

Ym
D S 1

Yi
2

1

YD22S n i

Yi
2

nm

Ym
D S n i

Yi
2

n

YD
S 1

Yi
2

1

Ym
D S 12n i

Yi
2

12nm

Ym
D22S n i

Yi
2

nm

Ym
D 2 . ~34!
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Y andn refer to Young’s modulus and Poisson’s ratio, resp
tively.

For low volume fractionf, the effective permittivity is
given by Eq.~13!. Formulas for the effective bulk modulusk
and effective shear modulusm under the dilute limit are~see
Appendix D!:

k5km1
f~ki2km!

11~12f!
ki2km

km1
4

3
mm

, ~35!

m5mmH 11

15~12nm!S m i

mm
21Df

725nm12~425nm!F m i

mm
2S m i

mm
21DfGJ .

~36!

These equations are also reported by Hashin.10 Substituting
Eqs. ~13!, ~35! and ~36! into Eqs.~27!–~32! and using the
relations

Y52m~11n!, ~37!

Y5
9km

3k1m
, ~38!

one can obtain Eqs.~16!, ~18!, ~19!, ~25! and ~26! in the
previous section. Therefore, theFE’s are identical toLE’s
and FT’s to LT’s under dilute conditions. In general, Eq
~14!, ~15! and ~22! may be rewritten as

d315d325fFE$~FT
'1FT

i
!d31i1FT

'd33i%1~1

2f!F̄E$~ F̄T
'1F̄T

i
!d31m1F̄T

'd33m%, ~39!

d335fFE$2FT
'd31i1FT

i d33i%1~12f!F̄E$2F̄T
'd31m

1F̄T
i d33m%, ~40!

dh5fFEFT
hdhi1~12f!F̄EF̄T

hdhm, ~41!

where theFE’s andFT’s are given by Eqs.~27!–~34!, and it
is noted that
loaded 27 Mar 2011 to 158.132.161.9. Redistribution subject to AIP licens
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fFE1~12f!F̄E51

fFT
'1~12f!F̄T

'50

fFT
i
1~12f!F̄T

i
51

fFT
h1~12f!F̄T

h51

. ~42!

For higher volume concentrationf, the Bruggeman
formula11

e i2e

e i2em
5~12f!S e

em
D 1/3

~43!

may be used to replace the Maxwell–Wagner formula. It i
well-known formula in the literature and has been demo
strated to agree well~up to f'0.5 or 0.6! with measured
effective permittivities of many 0–3 ceramic/polymer com
posite systems that are investigated for their piezoelec
and pyroelectric activities.12–14For the effective bulk modu-
lus k, the explicit bounds found by Hashin10 can be used.
There it has been found that the lower bound and up
bound coincide for the effective bulk modulus, and Eq.~35!
gives a good approximation for a composite with spheri
inclusions. For the effective shear modulusm, explicit
bounds have been given by Hashin10 and Hashin and
Shtrikman15 for the cases of spherical inclusion and arbitra
phase geometry, respectively. Following Christensen,16 the
lower boundm l given by Hashin and Shtrikman15 for arbi-
trary phase geometry@which is the same as Eq.~36!# is
adopted in our prediction for higher volume fractionf

m l5mmH 11

15~12nm!S m i

mm
21Df

725nm12~425nm!F m i

mm
2S m i

mm
21DfGJ ,

~44!

while for the upper boundmu , we adopt the upper boun
formula for spherical inclusion geometry of Hashin,10 which
may be rewritten as

mu5mmF11S m i

mm
21D B

A1BC
fG , ~45!
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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where

A5
42

5mm

mm2m i

12nm
f~f2/321!2q, ~46!

B5@~7210n i !2~7210nm!q#4f7/314~7210nm!q,
~47!

C5
m i

mm
1

725nm

15~12nm! S 12
m i

mm
D1

2~425nm!

15~12nm!

3 S 12
m i

mm
Df, ~48!

q5
~715n i !m i14~7210n i !mm

35~12nm!mm
. ~49!

In summary, Eqs.~14!, ~15! and ~22! are used for pre-
diction of effective piezoelectric coefficientsd31, d33 and
dh , respectively, in the dilute suspension limit, withLE’s
andLT’s given by Eqs.~16!–~21! and~23!–~26!. For higher
ceramic volume fractions, Eqs.~39!, ~40! and ~41! are used
accordingly ford31, d33 anddh . Electric field factorsFE’s
are given by Eqs.~27! and~28! with the effective permittiv-
ity e given by Eq.~43!. Moreover, stress field factorsFT’s
are given by Eqs.~29!–~34! with the effective bulk modulus
k and the effective shear modulusm ~bounded bym l andmu!
given by Eq.~35! and Eqs.~44! and~45!, respectively. Equa-
tions ~37! and ~38! may be used to transform between t
elastic constants.

III. COMPARISON WITH EXPERIMENTAL DATA

The theoretical predictions for both dilute and conce
trated suspensions are compared with experimental dat

FIG. 1. Comparison with experimental data of Furukawa Fujino, a
Fukada~see Ref. 2! for d31 of PZT/epoxy composites.
loaded 27 Mar 2011 to 158.132.161.9. Redistribution subject to AIP licens
-
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Furukawa, Fujino and Fukada2,17 ~Figs. 1 and 2!, Chan,
Chen, and Choy18 ~Fig. 3! and Zouet al.19 ~Figs. 4 and 5! for
d31 of PZT/epoxy composites,d31 of PZT/PVDF composites,
d33 of PZT-P~VDF/TrFE! composites andd33, dh of
PbTiO3-P~VDF/TeFE! composites, respectively. Here, PZ
and PVDF denote lead zirconate titanate and polyvinylide
flouride, respectively. Elastic, dielectric and piezoelect
properties of the constituents of these 0–3 composites
listed in Table I.

Figures 1 and 2 give comparisons of experimental d
of Furukawaet al.with our theory. In addition, the models o
Furukawa2,3 and Jayasundere4 are also included for compari
son. Furukawa’s model is

d5fLELTdi1
1

12f
~12fLE!~12fLT!dm ~50!

with LE the same as Eq.~16! and

LT5
5ci

3cm12ci23f~cm2ci !
, ~51!

whereci andcm are the elastic constants~Young’s moduli or
shear moduli, since the constituents are assumed to be
compressible! for the inclusion and matrix, respectively; an
Jayasundere’s model is

d5di

e

e i
S 11

3fe i

2em1e i
D , ~52!

where the effective permittivitye is given by20

dFIG. 2. Comparison with experimental data of Furukawa~see Ref. 17! for
d31 of PZT/PVDF composites.
e5
em~12f!1e if@3em /~e i12em!#@113f~e i2em!/~e i12em!#

~12f!1f~3em!/~e i12em!@113f~e i2em!/~e i12em!#
. ~53!
e or copyright; see http://jap.aip.org/about/rights_and_permissions



4695J. Appl. Phys., Vol. 90, No. 9, 1 November 2001 Wong, Poon, and Shin

Downloaded 27 Mar 2011
TABLE I. Properties of constituents adopted in our computations for the composites shown in Figs. 1–5.Yi and
Ym are Young’s moduli for the inclusion and matrix, respectively.

Fig. e i em

Yi

~GPa!
Ym

~GPa! n i nm

2d31i

(pC/N)
d31m

(pC/N)
d33i

(pC/N)
2d33m

(pC/N)

1 1700a 4.2a 36a 1.8a 0.3 0.35 177a ¯ 400 ¯

2 1900b 14b 58.7 2.52 0.3 0.4 180b ¯ 450 ¯

3 1159c 10.7c 16.8 2.32 0.35 0.39 127.9d 15.3d 314.4c 38.4c

4, 5 150e 6e 126.7 2.81 0.22 0.4 9.5 ¯ 94 ¯

aReference 2.
bReference 17.
cReference 18.
dY. Chen, M. Phil. thesis, The Hong Kong Polytechnic University, 1995.
eReference 19.
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Experimental results of thed31 of the PZT/epoxy system
given by Furukawa and co-workers2 concern only low ce-
ramic volume fractions, so we have used our dilute susp
sion formulas for the prediction. The comparison shows t
our theory is slightly closer to the experimental data th
Furukawa’s model. In Furukawa’s model, it was assum
that both constituents were incompressible. Nevertheless
stress field factorsLT for the dilute limit @Eqs.~18! and~19!#
cannot be reduced to that of Furukawa’s@Eq. ~51!# by sub-
stituting v i5vm50.5. It is worth noting that the expressio
for the effective d constant given by Furukawaet al.2,3

@Equation~50!# has the same form as ourdh expression

dh5fLELT
hdhi1

1

12f
~12fLE!~12fLT

h!dhm, ~54!

but not ourd31 expression

d315fLE$~LT
'1LT

i
!d31i1LT

'd33i%1
12fLE

12f
$@1

2f~LT
'1LT

i
!#d31m2fLT

'd33m%, ~55!

while their expressions have been used to predict the ef
tive d31 constant. On the other hand, Jayasundere’s mo
does not seem to give good agreement with Furukawa’s
perimental data, and it does not approach the correct limi
the two extremes. The PZT/PVDF system is another sys
given by Furukawa.17 This work reported experimentald31

values of PZT/PVDF composites up to 63% ceramic volu
fraction. Therefore, we have included both our dilute susp
sion and the concentrated suspension formulas for comp
son. Furukawa’s model, shown to be overlapping with o
predicted line of dilute suspension in Fig. 2, is only suited
low volume fraction and we therefore would not expect
can predict experimental data at higher volume fractio
This remark also applies to our dilute suspension formu
However, Jayasundere’s model was claimed to work
higher volume fraction of inclusions. It seems that it fails
predict this system at this volume fraction range. Our c
centrated suspension formulas look better at higher volu
fractions. Concerning the low volume fraction region, Ja
sundere’s model gives higher2d31 values than the experi
mental results while both Furukawa’s model and our mo
give slightly lower values.

Figure 3 shows thed33 experimental data of PZT
P~VDF/TrFE! of Chan, Chen, and Choy.18 Our prediction
 to 158.132.161.9. Redistribution subject to AIP licens
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r

-
e
-

l

shows good agreement with the experimental data in
sense that most data points fall within our predicted lin
especially for the low ceramic volume fraction region. Sin
both Furukawa’s model and Jayasundere’s model are tho
to described31 coefficients, we have not included those pr
dictions in this figure. In addition, Jayasundere’s model o
applies to composites with a single electro-active phase
is therefore not included.

Figures 4 and 5 compare our theory with experimen
values ofd33 anddh , respectively, of PbTiO3-P~VDF/TeFE!
by Zou et al.19 Both figures show that our predictions are
good agreement with experimental values. As experime
data given for this system are restricted to high ceramic v
ume fractions only, it is not surprising that the dilute suspe
sion predictions fail with both sets of data.

IV. CONCLUSIONS

The effective piezoelectric coefficientsd33, d31 and dh

for ferroelectric 0–3 composites have been derived in te
of the dielectric, elastic and piezoelectric properties of
constituents for dilute suspension of spherical inclusion p
ticles. To generalize the results for higher volume fractio
all field factors were re-expressed to include the effect
dielectric and elastic properties of the composite, which w
then evaluated by the Bruggeman formula and Has
bounds. As the effect of interaction between the random

FIG. 3. Comparison with experimental data of Chan, Chen, and Choy~see
Ref. 18! for d33 of PZT-P~VDF/TrFE! composites.
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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dispersed spherical particles has been to a certain exten
plicitly considered in the latter formulas, the final results a
expected to be applicable to higher volume fractions of
clusions. Comparison with published experimental data in
cates that good agreement has been achieved for various
of data.
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APPENDIX A

A single inclusion is embedded in an infinite matrix m
dium. A uniform tensionT acts in the matrix far away from
the inclusion. The stress components expressed in sphe
coordinates are given by8

s rri 52m iTH 11y i

122y i
A31A12y iA2r 21@3A1

23y iA2r 2#cos 2uJ , ~A1!

FIG. 4. Comparison with experimental data of Zouet al. ~see Ref. 19! for
d33 of PbTiO3-P~VDF/TeFE! composites.

FIG. 5. Comparison with experimental data of Zouet al. ~see Ref. 19! for
dh of PbTiO3-P~VDF/TeFE! composites.
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m-
e
-
i-
ets

cal

suu i52m iTH 11n i

122n i
A31A125y iA2r 22@3A1

17~22y i !A2r 2#cos 2uJ , ~A2!

sff i52m iTH 11y i

122y i
A22A12~1527y i !A2r 22~7

111y i !A2r 2 cos 2uJ , ~A3!

s ru i522m iT$3A11~712y i !A2r 2%sin 2u, ~A4!

s rf i5suf i50, ~A5!

s rrm52mmTH 2B1

r 3 2
2ym

122ym

B3

r 3 1
12B2

r 5

1F2
2~52ym!

122ym

B3

r 3 1
36B2

r 5 Gcos 2uJ
1

T

2
~11cos 2u!, ~A6!

suum52mmTH 2
B1

r 3 2
2ym

122ym

B3

r 3 2
3B2

r 5 1FB3

r 3

2
21B2

r 5 Gcos 2uJ 1
T

2
~12cos 2u!, ~A7!

sffm52mmTH 2
B1

r 3 2
2~12ym!

122ym

B3

r 3 2
9B2

r 5 1F3B3

r 3

2
15B2

r 5 Gcos 2uJ , ~A8!

s rum52mmTH 2
2~11ym!

122ym

B3

r 3 1
24B2

r 5 2
1

2J sin 2u,

~A9!

s rfm5sufm50, ~A10!

whereA1 ,A2 ,A3 ,B1 ,B2 ,B3 are constants

A15
1

4

5~12ym!

~725ym!mm12~425ym!m i
, ~A11!

A250, ~A12!

A35
1

2

12ym

11ym

122y i

2~122y i !mm1~11y i !m i
, ~A13!

B1

a3 52
1

8mm

mm2m i

~725ym!mm12~425ym!m i

3
2~122y i !~625ym!mm~3119y i220ymy i !m i

2~122y i !mm1~11y i !m i

1
1

4mm

F ~12ym!
11y i

11ym
2y i Gm i2~122y i !mm

2~122y i !mm1~11y i !m i
, ~A14!
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B2

a5 5
1

8mm

mm2m i

~725ym!mm12~425ym!m i
, ~A15!

B3

a3 5
1

8mm

5~122ym!~mm2m i !

~725ym!mm12~425ym!m i
. ~A16!

Symbolsm,v denote shear modulus and Poisson’s ra
respectively. Subscriptsi andm are used to distinguish inclu
sion and matrix materials. In the above, Eqs.~A11!–~A13!
are not given in the original reference.8

APPENDIX B

Consider a dielectric sphere of radiusa with permittivity
e i subjected to a uniform electric field̂Em& in the Z direc-
tion far away from the sphere. The sphere is surrounded
medium with permittivity em . The problem is to solve
Laplace equations with azimuthal symmetry

¹2w i50, ~B1!

¹2wm50, ~B2!

wherew i andwm are the electric potential inside and outsi
the sphere, respectively.

With the boundary condition thatw i must not have a
singularity at the center of sphere (r 50), and the boundary
condition at infinity

~wm!r→`52^Em&z52^Em&r cosu. ~B3!

Solutions of Eqs.~B1! and ~B2! give

w i5(
l 50

`

Alr
l Pl~cosu!, ~B4!

wm52^Em&r cosu1(
l 50

`

Clr
2~ l 11!Pl~cosu!. ~B5!

Pl(cosu) are the Legendre polynomials.
The boundary condition of the tangential component of el
tric field is

2
1

r

]w i

]u U
r 5a

52
1

r

]wm

]u U
r 5a

~B6!

and the boundary condition of the normal component of e
tric displacement is

2e i

]w i

]r
1d3kl

~ i ! ^skl
~ i !&cosuU

r 5a

52em

]wm

]r
1d3kl

~m!^skl
~m!&cosuU

r 5a

. ~B7!

The piezoelectric termsd3kl
( i ) ^skl

( i )& andd3kl
(m)^skl

(m)& are the
contributions of polarization due to stresses in the inclus
~i! and matrix~m!, and subscriptk,l 5x,y,z refer to the three
directions. We assume that they are uniform in each of
spherical inclusion and continuous matrix regions, and m
be represented by the average in the respective phases
assumption makes equations~B1! and ~B2! plausible.

Applying the boundary conditions to Eqs.~B4! and~B5!
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F2A12^Em&1
C1

a3 Ga sinu1(
l 52

` S Al2
Cl

a2l 11D
3al

]Pl~cosu!

]u
50, ~B8!

F S e i

em
DA11^Em&12

C1

a32
d3kl

~ i ! ^skl
~ i !&2d3kl

~m!^skl
~m!&

em
Gcosu

1(
l 52

` F S e i

em
D lAl1~ l 11!

Cl

a2l 11Gal 21Pl~cosu!50.

~B9!

Equations~B8! and~B9! can be satisfied simultaneously on
for Al5Cl50, therefore, they become

A12
C1

a3 52^Em&, ~B10!

S e i

em
DA112

C1

a3 52^Em&1
d3kl

~ i ! ^skl
~ i !&2d3kl

~m!^skl
~m!&

em
.

~B11!

Eliminating C1 from Eqs.~B10! and ~B11! and then substi-
tuting A1 into Eq. ~B4!, the electric field inside the spher
~evaluated from the electric potential! is

^Ei&5
2em^Em&2d3kl

~ i ! ^skl
~ i !&1~em^Em&1d3kl

~m!^skl
~m!& !

e i12em
.

~B12!

We can finally rewrite this equation in terms of the elect
displacementŝDi&5e i^Ei&1d3kl

( i ) ^skl
( i )& and ^Dm&5em^Em&

1d3kl
(m)^skl

(m)& to obtain

^Di&12em~^Ei&2^Em&!5^Dm&. ~B13!

APPENDIX C

1. Derivation of electric field factors FE and F̄E

Consider the following expression in which^D& and^E&
are volume-averaged electric displacement and volu
averaged electric field, respectively, for the composite

^D&2em^E&5
1

V E
V
$D2emE%dV5

1

V E
Vi

$D

2emE%dV, ~C1!

whereV, Vi are the volume of the composite and inclusi
particles, respectively. Equation~C1! then becomes

~e2em!^E&5f~e i2em!^Ei&, ~C2!

wheref is the volume fraction of the inclusion phase ande
is permittivity. From equation~C2!,

^Ei&

^E&
[FE5

1

f

e2em

e i2em
. ~C3!

For the electric field factorF̄E , we follow a similar tech-
nique, but this time consider
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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e i^E&2^D&5
1

V E
V
$e iE2D%dV5~12f!~e i2em!

3^Em&. ~C4!

Therefore

^Em&

^E&
[F̄E5

1

12f

e i2e

e i2em
. ~C5!

2. Derivation of stress field factors FT
h and F̄T

h

The derivation of the stress field factors is similar to t
previous case of electric field factors. Consider

^e&2
^s&
km

5
1

V E
V
H e2

s

km
J dV5

1

V E
Vi
H e2

s

km
J dV,

~C6!

where^s& and^e& are volume-averaged hydrostatic stress a
volume-averaged hydrostatic strain of the composite, res
tively, andk is bulk modulus. Equation~C6! then becomes

S 1

k
2

1

km
D ^s&5fS 1

ki
2

1

km
D ^s i&. ~C7!

Hence,

^s i&

^s&
[FT

h5
1

f

1

k
2

1

ki

1

ki
2

1

km

. ~C8!

The stress field factorF̄T
h is derived from a similar con-

sideration giving the following expression:

^s&
ki

2^e&5~12f!S 1

ki
2

1

km
D ^sm&. ~C9!

Thus,

^sm&

^s&
[F̄T

h5
1

12f

1

ki
2

1

k

1

ki
2

1

km

. ~C10!

3. Derivation of stress field factors FT
� , FT

¸ , F̄T
�

and F̄T
¸

Suppose a composite is subjected to tensile stres
^sxx&, ^syy& and ^szz& simultaneously. The stress field fa
tors FT

' , FT
i , F̄T

' andF̄T
i can be derived following the sam

technique used above
loaded 27 Mar 2011 to 158.132.161.9. Redistribution subject to AIP licens
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^ezz&2H ^szz&
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2
nm

Ym
^sxx&2

nm

Ym
^syy&J 5

1

V E
V
H ezz

2
szz

Ym
1

nm

Ym
sxx1

nm

Ym
syyJ dV5fH ^ezzi&2

^szzi&
Ym

1
nm

Ym
^sxxi&1

nm

Ym
^syyi&J , ~C11!

^exx&2H ^sxx&
Ym

2
nm

Ym
^szz&2

nm

Ym
^syy&J 5fH ^exxi&

2
^sxxi&

Ym
1

nm

Ym
^szzi&1

nm

Ym
^syyi&J , ~C12!

where Y and n are Young’s modulus and Poisson’s rati
respectively. Using the relations

^ezz&5
^szz&

Y
2

n

Y
^sxx&2

n

Y
^syy&, ~C13!

^ezzi&5
^szzi&

Yi
2

n i

Yi
^sxxi&2

n i

Yi
^syyi&, ~C14!

^exx&5
^sxx&

Y
2

n

Y
^szz&2

n

Y
^syy&, ~C15!

^exxi&5
^sxxi&

Yi
2

n i

Yi
^szzi&2

n i

Yi
^syyi& ~C16!

and considering the case^sxx&5^syy&50, equations~C11!
and ~C12! become

S 1

Y
2

1

Ym
D ^szz&5fH S 1

Yi
2

1

Ym
D ^szzi&2S n i

Yi
2

nm

Ym
D

3^sxxi&2S n i

Yi
2

nm

Ym
D ^syyi&J . ~C17!

2S n

Y
2

nm

Ym
D ^szz&5fH S 1

Yi
2

1

Ym
D ^sxxi&2S n i

Yi
2

nm

Ym
D

3^szzi&2S n i

Yi
2

nm

Ym
D ^syyi&J . ~C18!

Under this uniaxial tension condition, we may set^sxxi&
5^syyi&, thus
H fS 1

Yi
2

1

Ym
D ^szzi&

^szz&
22fS n i

Yi
2

nm

Ym
D ^sxxi&

^szz&
5

1

Y
2

1

Ym

fS n i

Yi
2

nm

Ym
D ^szzi&

^szz&
2fS 12n i

Yi
2

12nm

Ym
D ^sxxi&

^szz&
5

n

Y
2

nm

Ym

. ~C19!

Solving these two equations gives
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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Ym
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D22Sni
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For the stress field factorsF̄T
' and F̄T

i , an analogous derivation gives

H ^szz&
Yi

2
n i

Yi
^sxx&2

n i

Yi
^syy&J 2^ezz&5~12f!H ^szzm&

Yi
1

n i
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n i
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and
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Yi

2
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n i
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^syy&J 2^exx&5~12f!H ^sxxm&

Yi
2

n i
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n i

Yi
^syym&2^exxm&J . ~C23!

Equation~C13! and the relation

^ezzm&5
^szzm&

Ym
2

nm

Ym
^sxxm&2

nm

Ym
^syym& ~C24!

are then substituted into Eq.~C22!. Also, Eq.~C15! and the relation

^exxm&5
^sxxm&

Ym
2

nm

Ym
^szzm&2

nm

Ym
^syym& ~C25!

are substituted into Eq.~C23!. When specializing to the condition that^sxx& and^syy& vanish, and̂ sxxm& is equal tô syym&,
we obtain

^sxxm&

^szz&
[F̄T

'5
1

12f

S n i
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2
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2
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D 2 . ~C27!
d

s

APPENDIX D

The relations between stresses in the matrix phase an
the composite may be written as follows using Eqs.~2!, ~5!,
~6! and the first three equations in Eq.~8!

S ^sxxm
X &

^syym
Y &

^szzm
Z &

D 5
1

3 S Gi G' G'

G' Gi G'

G' G' Gi
D S ^sxx&

^syy&
^szz&

D , ~D1!

where

G'5
1

12f~123I !
2

1

12f~123J!
, ~D2!

Gi5
1

12f~123I !
1

2

12f~123J!
~D3!
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and I, J are given by Eqs.~3! and ~4!. The superposition of
Eqs.~2!, ~5!, and~6! gives

S ^sxxi
X &1^sxxi

Y &1^sxxi
Z &

^syyi
X &1^syyi

Y &1^syyi
Z &

^szzi
X &1^szzi

Y &1^szzi
Z &

D5SI12J I2J I2J

I2J I12J I2J

I2J I2J I12J
DS^sxxm

X &
^syym

Y &
^szzm

Z &
D.

~D4!

Equation~35! can be obtained by settinĝsxx&5^syy&
5^szz&[^sk&. The superscriptk is used here to indicate thi
hydrostatic loading condition. By Eq.~D1!, this condition
implies ^sxxm

X &5^syym
Y &5^szzm

Z &[^sm
k & and

^sm
k &5

2G'1Gi

3
^sk&. ~D5!

Similarly, Eq. ~D4! implies
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^sxxi
X &1^sxxi

Y &1^sxxi
Z &5^syyi

X &1^syyi
Y &1^syyi

Z &

5^szzi
X &1^szzi

Y &1^szzi
Z &[^s i

k&

53I ^sm
k &. ~D6!

Hooke’s law gives

H ^sk&5k^ek&
^s i

k&5ki^ei
k&

^sm
k &5km^em

k &
, ~D7!

wherek, ki andkm are bulk moduli,̂ ek&, ^ei
k& and^em

k & are
volume-averaged strains. These strains can also be relate
an equation similar to Eq.~8!

^ek&5f^ei
k&1~12f!^em

k &. ~D8!
n-
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Using Eqs.~D5!–~D8!, k can be expressed, after some m
nipulation, as

k5km1
f~ki2km!

11~12f!
ki2km

km1
4

3
mm

, ~D9!

wheremm is the shear modulus of the matrix phase.
Equation~36! can be derived using a similar techniqu

We can follow the same procedures as above but this time
^sxx&52^syy&[^sm& and ^szz&50. The superscriptm is
employed to indicate this shear loading condition. The f
lowing equations can be written:
5
^sxxm

X &52^syym
Y &[^sm

m&5
Gi2G'

3
^sm&

^sxxi
X &1^sxxi

Y &1^sxxi
Z &52~^syyi

X &1^syyi
Y &1^syyi

Z &![^s i
m&53J^sm

m&

^sm&52m^em&

^s i
m&52m i^ei

m&

^sm
m&52mm^em

m&

^em&5f^ei
m&1~12f!^em

m&

, ~D10!
s.

o-

the
cs,
where^em&, ^ei
m& and^em

m& are volume-averaged strains u
der this condition. After some manipulation, the result is

m5mmH 11

15~12nm!S m i

mm
21Df

725nm12~425nm!F m i

mm
2S m i

mm
21DfGJ ,

~D11!

wherenm is Poisson’s ratio of the matrix phase.
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