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Explicit formulas have been found for the effective piezoelectric coefficients of a 0-3 composite of
ferroelectric spherical particles in a ferroelectric matrix. Tensile loading and hydrostatic loading
conditions were studied. Assuming that both phases are dielectrically and elastically isotropic,
explicit expressions in simple closed form for the effectidg, d;; andd,, coefficients were derived

in terms of the constituents’ piezoelectric coefficients and the dielectric and elastic properties of the
composite and constituents. Prediction of the piezoelectric coefficients for specific composite
systems was compared with experimental values from published works, and good agreement with
data was obtained. Goodness of fit is not limited to low volume fraction of inclusions20@1L
American Institute of Physics[DOI: 10.1063/1.1408595

I. INTRODUCTION piezoelectric formulas are derived is not specified. One is
) ) ] - therefore not completely certain that, e.g., thiezoefficient
Piezoelectric material possesses the ability to convery.muia is meant fordss or dgy, or some othed. A similar
mechanical energy to electrical energy or vice versa. Manyemark applies to Jayasundere's model. On the other hand,
transducers, filters and resonators made of piezoelectric Mgy ,nn and Tayhand Jiang, Fang, and Hwahpave used
terials have been widely used in sonic and ultrasonic appliygre rigorous but quite complicated approaches. Compli-
cations, electronic instrumentation, biomedical applicationsgateq formulas for the effective piezoelectric coefficients are
etc. However, most piezoelectric ceramic materials are brittle :2:nadq and difficult numerical computation schemes must
and may exhibit brittle fracture or unexpected malf“”CtiO”invariably be employed to get predictions of composite prop-
under mechanical stresses or electric fields. In addition, mods ties. In contrast. we aim to obtain simple explicit expres-

ern applications desire diverse properties of materials whickjong for some effective piezoelectric coefficients of biphasic
often cannot be obtained in single phase materials. PiezQg qelectric 0-3 composites.

electric composites have therefore attracted strong interest Assuming inclusion particles are spherical and that both
for various device applications, especially biphasic comyhaqes are dielectrically and elastically isotropic, explicit ex-
posites where both constituents are ferroelectric, usua"%ressions for the effectivess, ds, andd,, coefficients have
involving a piezoelectric ceramic and a vinylidene- heen derived in a previous artiéléor ferroelectric 0-3 com-
trlfluoroethylene copolymer. . . posites in the dilute suspension limit. In this article, the di-

_ The piezoelectric properties of ferroelectric 0-3 COMPOSy,te syspension results are first reviewed and then general-
ites have been studied by many workers theoretically ancbeq 1o cover the case of nondilute suspension. It is shown

experimentally.z'ghe works of Yamada, Ueda, and Kitaydma, ihat these results compare quite well with several sets of
Furukawaet al?® and Jayasundere, Smith, and Dfirame experimental data from published works.

examples which give explicit expressions for the effective
piezoelectric coefficients of 0-3 composites. However, the

result of Yamadaet al. and co-workers does not seem to bell. THEORY
complete since .the elastic properties of the constituent; are 1. find the effective piezoelectrit coefficients of a 0-3
abseqt from. their formu!as. They ?ISO assume that the plezc2:'omposite, we start from the solution of electro-elasticity
e!ectrlc particles are ellipsoidal with 'thel'r long axes perpen'equations and boundary conditions of a single inclusion
dicular to the surface of the composite film. In the works Ofproblem.

Furukawaet al, the matrix and inclusion particles are taken

as incompressible. Also the stress condition under which thé. Single inclusion problem

As an approximation, we assume that the equations for
dElectronic mail: wongck.a@polyu.edu.hk mechanical equilibrium are not disrupted by the applied or
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stress-generated electric fields, and hence the stress distribBi- Composite problem and effective piezoelectric
tion can be worked out solely from elasticity theory. properties

Consider an elastic spherical inclusion situated at the  1he results of the single inclusion problem are now ex-

origin of coordinates and embedded in an infinitely largeienqeq to a composite with a dilute suspension of inclusion
matrix. Assume that both inclusion and matrix materials are,, icles and then the effective piezoelectric coefficients are
elastically isotropic and homogeneous, and this assumptiogy|yeq in terms of the dielectric, elastic and piezoelectric
is taken to be still valid even when the constituents are POproperties of its constituents.
larized. Let there be a uniform tension acting in theZ Suppose the composite is subjected to tensile stresses in
direction in the matrix far away from the inclusion. The 4o X, Y and Z directions simultaneously, and the average
problem of finding the stress components in the matrix anQecyric field acts only in the direction, in which case we
inclusion is already solved in spherical coordinates by,ny need to concern ourselves with the volumetric averages
Goodief (summarized in Appendix A o of the electric field and electric displacement in the 3 direc-
The volumetric averaging of stresses is defined by o The following equations can be written for dilute sus-
pension of inclusion particlés:

1

o == 1 oydV, 1

< kl> va “ ( ) <0'xx>:¢{<Ui<;xi>+<o-£xi>+<o-§zxi>}+(1_¢)<Uz(é(m>
where subscript&,| =x,y,z refer to the three directions and (oyy) = ¢{<‘T)¥yi>+<‘7¥yi>+<‘fzyyi>}+(1_ d’)<‘;yym>
V is volume. The(oy;) and (o, will be used to denote (029 = d(07) T (020 T (o)} (1= ) ozm
the average over the inclusion volume and the matrix, re- (D3)=¢(D3j)+(1— ¢)(D3zm)
spectively; in the latter case, the integration is taken over a (Ez)= ¢{Ez)+(1— ¢){Ezm)
spherical region fromm=a to r =R, wherea is the inclusion (8)

. “a ! o .
radius andR>a. After transforming Goodier’s solution to where (o), (,,) and (o, are the volume-averaged

Cartesian coordinates, the volumetric average of each Carte: ; ; .
. : . . tresses in the composite awds the volume fraction of the
sian stress component is then found for both inclusion angd

matrix. The nonvanishing components gteZ, ), (o) nclusion phase. . . . o
7 7 . XXI71 A Yy The constitutive equation for a linear dielectric with pi-
(o45,» and{o%,, and obey the following relationships: ezoelectric effect is, in our case
<O-)%xi>:<o-§yi>:(| _J)<O§zn‘> (2) D3: 6E3+ dSkIO'kI , (9)
(07d=(1+23) (07,0 ‘
] o where dj,, are the piezoelectric coefficients. Thus the
where the superscripZ denotes the direction of the oyme-averaged electric displacement in the inclusion

asymptotic uniform tension in the matrix, and phase is
= 2t (L+ww , 3 (D)= &(Eqi) + dag ({05 + (o) + (%)
1+ vy 2(1-2v) um+(1+v) « y , «
+dag((oyyi) +(ayy) +(oy)) +daz ({072
J= S~ vt (4) +(aY )+ (o2 (10
(7—5vm) T 2(4=Bvg) 1y (o220 +(05)
whereu andv denote the shear modulus and Poisson’s ratio‘,'Jlnd the electric displacement in the matrix phase is
respectively. Dad=e (E~)+d X vidg Y
Similarly, for asymptotic uniform tensions in théand (D3m) = €m(Egm) + daan( e+ daam( 7yym
the Y directions +dgan( 0L, - (11
(o =(o30 == {0 We assume that both constituents are piezoelectrically
<Ui<(xi>=(| +2\])<0)>(<XF“> ' ®) transversely isotropic and that their polar axes are aligned in
the 3 direction. That meart,=d3, for both inclusion and
(oY y=(or,)y=( —J)<a';(ym> ® matrix. The next step is then to solve fD3) in terms of
oy =0+23) (), ' (Es), (ox0, (oyy) and(oy), using Egqs(2)—(8), (10) and

(11). The result is, after some manipulation
Now consider a dielectric sphere surrounded by the ma-

trix medium of permittivitye,,, with a uniform electric field (D3)=€(E3) +d3x( 0y +dsf ayy) +d3x{027), 12
applied along thez direction far away from the inclusion

(i.e., the “3" direction). The boundary value problem gives where
the following equationfAppendix B): €t2ent2d(e—€m) 13
€= €m,
(D) +2€m((Ea)) — (Esm) =(Dan). ) €it+2en=Ple—em) "
The derivation assumes that the electric displacerDevr- d31=dz= ¢LE{(L#+ Lﬂ)dw + L#d33i}+(1
ies linearly as the electric fiel&. This is valid for small — —
electric field. — ¢)Le{ (L7 +L1)daim+ L1daan}, (14
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Aane ALt 2L dar+ L dast + (1— A Lot 212 d cients given in Egqs(14), (15 and(22). Note that Eq(13) is
39= $Lel2Lrday + Lilaa} (1~ ¢)Le{2Lrdam identical to the well-known Maxwell-Wagner formdla
+EﬂTd33m} (15 which is adopted by Furukawa, Fujino, and Fukada in Ref. 2.

: o . . . In the following section, we will show that tHe:'s andL+'s
are the effective permittivity and piezoelectric coefficients Of[Eqs (16), (18), (19), (25) and (26)] are electric and stress
the composite and field factors, respectively. They essentially represent the frac-
3em 16 tions of applied field distributed to the constituents. This in-
Le= , 1 : . . X
ET(1—d)e+(2+d)en terpretation gllows an extension of the main results to higher
volume fraction of inclusion.

— 1-¢L
Le= ¢ E' (17) C. Effective piezoelectric coefficients for concentrated
1-¢ suspension

Ll | _ J (18) To generalize the results of the dilute suspension case,
T 1-¢(1-3l) 1-¢(1-3J)° the elastic part and the electrostatic part are separately re-
expressed in terms of the effective dielectric and elastic
LHT: ' + 2J (19) properties. Lef¢’s be the electric field factors as defined in
1-4(1-31) 1-¢(1-3J)° Egs. (27) and (28). They can be expressed in terms of the
permittivities of the constituents and the effective permittiv-

_ 1
E: 1¢:)T , (20) ity of the composite as follow§Appendix O:
Es) 1 e—e€
:|__¢|_H FE< 8/ _ ~ m 2
Lh= 1—¢T' (21) () de—en @7
The effective hydrostatic piezoelectdg coefficient(defined _EE (Esm) __1 e—e (28)

by d,= d3+ 2d5;, and similarly for inclusion and matrixs (E) 1-¢ ey’
derived by setting o) =(o)={(0,, in Eq. (12), thus
Y A =0y =022 q where (E3;), (Esn) and (E) are volume-averaged electric

dh=pLeLNdp+ (1= ) LeLdpm, (22)  fields for the inclusion phase, matrix and the composite, re-
spectively. The electric field factdfg has been given by
where Furukawa, Fuijino, and Fukada.
Similarly, letF¢’s be the stress field factors as defined in
Lh=2L5+LE, (23)  Egs.(29)—(34). They can be expressed in terms of the elastic
properties of the composite and constituents. The stress field
— o 1= ¢>L$ factors associated with the hydrostatic loading condition
Ly=2L7+tLs= 1-4 (24 have been derived d&ppendix O:
or 11
n_ (o) _ 1K Km
Lh= (3km+4umk (25) Fr= (o) o1 1° (29)
T (BkmT4um@)ki+4(1— ) wmkn ' ki Kkm
1 1
(ki +4 )k —_Z
E!ll:(sk +4 I k u T ’ (26) <0’m> 1 ki k
mT4um@)Ki+4(1— ) umknm Fh= = (30
T (o) 1-¢1 1°
wherek; andk, are bulk moduli for inclusion and matrix, ki Ky
respectively.

Equations(13)—(26) are the results based on the forego-where{o;), (o) and{o) are volume-averaged hydrostatic
ing calculation for the dilute suspension regime. The mairstresses for the inclusions, matrix and the composite, respec-
results are equations for the effective piezoeledrwoeffi-  tively. Those associated with tensile loading conditions are

Fr= .: ! — ! ) (31)

Downloaded 27 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



J. Appl. Phys., Vol. 90, No. 9, 1 November 2001 Wong, Poon, and Shin 4693
Sl
Fl— (0729 _ i Y Ym Y Y Yi Ym/\Y Yy 32)
T o, ¢ 1 1\(1-v; 1-v, ) Vi o2 '
Yi Yo/l Yi Yn Yi Ynm
vy w4
o (oen 1Y YallY Y)Y YLV Y -
T o,y 1-¢ (1 1\[1-v 1-v, (Vi V2
Yi Yo/l Yo Yn Yi Ynm
(1—1/I 1—Vm)(l 1) (Vi Vm)(vi v)
o (o 1 LY Yo IV Y)Y YallY Y a0
o) 1m6 (1 1)(1ow Low) (v ovn|?
YI Ym Yi Ym Yi Ym
|
t\_(ar:dvrefer to Young’s modulus and Poisson’s ratio, respec- SFe+(1— d’)EE:l
ively. L _NEL
For low volume fractiong, the effective permittivity is PFr+(1-¢)F7=0 (42)

given by Eq.(13). Formulas for the effective bulk modullis
and effective shear modulysunder the dilute limit arésee
Appendix D:

k—km d’(ki_km)_k ’ (35)
1+ (1= ) —4
km+§ﬂm
Mi
15(1—vm)<m—1)¢
m=pmy 1+ ) _
7—5u,+2(4—5w,) ﬂ—<ﬂ—1)¢}
Mm  \ Mm
(36)

These equations are also reported by Hash®Bubstituting
Egs. (13), (35) and (36) into Egs.(27)—(32) and using the

relations
Y=2u(1+v), 37
9k u

one can obtain Eqg16), (18), (19), (25 and (26) in the
previous section. Therefore, th&:'s are identical toLg’s
and F{'s to Ly’s under dilute conditions. In general, Egs.
(14), (15 and(22) may be rewritten as
dg1=0dgp= pFe{(F+ Fp)day + Frdsg} + (1
— ¢)Fe{ (Fr+Fp)daun+ Frdsan), (39

dsg= pFe{2F1day + Frdaa}+ (1 ¢)Fe{2Frdam

+Fldaant, (40)
dy= ¢FeF1dyi+ (1— ¢)FeFrdnm, (4D)

where theF¢'s andF+'s are given by Eqs(27)—(34), and it
is noted that

¢Fr+(1-p)Fr=1"
SF1+(1-¢)FF=1

For higher volume concentratiogy, the Bruggeman
formula'!
e\ 13
€m

may be used to replace the Maxwell-Wagner formula. It is a
well-known formula in the literature and has been demon-
strated to agree wellup to ¢=~0.5 or 0.6 with measured
effective permittivities of many 0—3 ceramic/polymer com-
posite systems that are investigated for their piezoelectric
and pyroelectric activitie®1*For the effective bulk modu-
lus k, the explicit bounds found by Hasfthcan be used.
There it has been found that the lower bound and upper
bound coincide for the effective bulk modulus, and E2p)
gives a good approximation for a composite with spherical
inclusions. For the effective shear modulys explicit
bounds have been given by HasWinand Hashin and
Shtrikmart® for the cases of spherical inclusion and arbitrary
phase geometry, respectively. Following ChristenSetne
lower boundu, given by Hashin and Shtrikm&hfor arbi-
trary phase geometrjwhich is the same as Eq36)] is
adopted in our prediction for higher volume fractign

€ — €

=(1-¢) (43)

€~ €m

15(1—ym)(%—1)¢
Mi '
m‘(—‘l)‘ﬁ}

Mm
while for the upper boungk,, we adopt the upper bound
formula for spherical inclusion geometry of Hashfhyhich
may be rewritten as
Y

1+

M= Mm
7—5v,+2(4—5v,)

B

i
1+ 1argc (45)

Mu= Mm

J
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Dilute suspension [equation(14)]
- - - Furukawa's model [equation(50)]
~~~~~ Jayasundere's model [equation(52)]

B Experimental data [Furukawa et al.z]

Dilute suspension [equation(14)] and

Furukawa's mode! [equation(50)]

~ -~ - Concentrated suspension [ equation(39) with ul

----- Concentrated suspension { equation(39) with u,l

CRie 2 Jayasundere's model [equation(52)] !
®  Experimental data [Furukawa'’]
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FIG. 1. Comparison with experimental data of Furukawa Fujino, andFIG. 2. Comparison with experimental data of Furukasee Ref. 17 for
Fukada(see Ref. 2for ds; of PZT/epoxy composites. ds; of PZT/PVDF composites.

Furukawa, Fujino and Fukafl® (Figs. 1 and 2 Chan,

where Chen, and Chd¥ (Fig. 3) and Zouet al® (Figs. 4 and 5for
2 fm— M o3 ds, of PZT/epoxy compositeslz;, of PZT/PVDF composites,
“5u 1-w, ——— #($?P-1)%0 (46)  di; of PZT-RVDF/TIFE) composites anddss, d, of
PbTiO;-P(VDF/TeFE composites, respectively. Here, PZT
B=[(7—10v) — (7~ 10vy) 9]4¢"*+4(7~ 10v,) 9, and PVDF denote lead zirconate titanate and polyvinylidene
(47 flouride, respectively. Elastic, dielectric and piezoelectric
i 7—5v, i 2(4—5w,,) properties of the constituents of these 0—3 composites are
C: m( ) + m listed in Table I.
m Hm m Figures 1 and 2 give comparisons of experimental data
i of Furukawaet al. with our theory. In addition, the models of
1- o b, (48)  Furukawd?®and Jayasundetare also included for compari-
son. Furukawa’s model is
(7+5V),u|+4(7 10w, ),um 49)
LT V) d=¢Leld 1-¢Le)(1- plp)dp 50
In summary, Eqs(14), (15) and (22) are used for pre- Plebrdit 1= ¢( SLe)(l-ély (50

diction of effective piezoelectric coefficients;;, ds3 and

d,, respectively, in the dilute suspension limit, with’s  with L the same as Eq16) and
andL+'s given by Eqs(16)—(21) and(23)—(26). For higher

ceramic volume fractions, Eq§39), (40) and(41) are used 5¢,
accordingly fordsy, ds3 anddy,. Electric field factors¢’s L= ,
are given by Eqs(27) and(28) with the effective permittiv- 3Cm+26i—34(Cn—Ci)
ity e given by Eq.(43). Moreover, stress field factois;’s
are given by Eqs(29)—(34) with the effective bulk modulus wherec; andc,, are the elastic constanfgoung’s moduli or

k and the effective shear modulps(bounded by, and x,,) shear moduli, since the constituents are assumed to be in-
given by Eq.(35) and Eqs(44) and(45), respectively. Equa- compressiblgfor the inclusion and matrix, respectively; and
tions (37) and (38) may be used to transform between the Jayasundere’s model is

elastic constants.

(51)

3de
ll. COMPARISON WITH EXPERIMENTAL DATA d= d T ete (52)
The theoretical predictions for both dilute and concen-
trated suspensions are compared with experimental data @fhere the effective permittivity is given by°
|
o= €m(1— @)+ € d[3en/(€i+2€m) [ 1+3d(€—€m)/(€i+2€m)] (53)

(1= @)+ ¢(3em)/(€+2em)[ 1+ 3h(€— em)/ (€+2€y) ]

Downloaded 27 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



J. Appl. Phys., Vol. 90, No. 9, 1 November 2001 Wong, Poon, and Shin 4695

TABLE I. Properties of constituents adopted in our computations for the composites shown in Fig¥; ané.
Y, are Young’'s moduli for the inclusion and matrix, respectively.

Yi Ym 7d31i d3:I.m d33 7d33m
Fig. € €m (GPa  (GPa v, vm  (PCIN)  (pCI/N)  (pC/N)  (pCIN)
1 1706 4.2 36* 1.8 03 035 177 e 400
2 1900  14° 58.7 2.52 0.3 0.4 180 .. 450
3 115§ 10.7 16.8 232 035 039 1279 153 314.4 38.4
4,5 156 6° 1267 281 022 04 9.5 94

aReference 2.

PReference 17.

‘Reference 18.

dy. Chen, M. Phil. thesis, The Hong Kong Polytechnic University, 1995.
®Reference 19.

Experimental results of thel;; of the PZT/epoxy system shows good agreement with the experimental data in the
given by Furukawa and co-workérsoncern only low ce- sense that most data points fall within our predicted lines,
ramic volume fractions, so we have used our dilute susperespecially for the low ceramic volume fraction region. Since
sion formulas for the prediction. The comparison shows thaboth Furukawa’s model and Jayasundere’s model are thought
our theory is slightly closer to the experimental data tharto describeds; coefficients, we have not included those pre-
Furukawa’s model. In Furukawa’s model, it was assumedlictions in this figure. In addition, Jayasundere’'s model only
that both constituents were incompressible. Nevertheless, oapplies to composites with a single electro-active phase and
stress field factork for the dilute limit[Egs.(18) and(19)] is therefore not included.
cannot be reduced to that of Furukawgsy. (51)] by sub- Figures 4 and 5 compare our theory with experimental
stitutingv;=v,,=0.5. It is worth noting that the expression values ofds; anddy,, respectively, of PbTiQP(VDF/TeFB
for the effectived constant given by Furukawatal?>® by Zouet al!® Both figures show that our predictions are in
[Equation(50)] has the same form as odf, expression good agreement with experimental values. As experimental
1 data given for this system are restricted to high ceramic vol-
dy= pLel M+ ——(1— L) (1— oLMdy,, (54 ume fractions only, it is not surprising that the dilute suspen-
1-¢ sion predictions fail with both sets of data.
but not ourds; expression

1-¢le IV. CONCLUSIONS

dg;= ¢Le{(LT+ L) day+ Lidag}+ ———{[1
3= dlel(Ly L) gy Lrdsa) 1-¢ it The effective piezoelectric coefficiently;, ds; andd,,

Lol L for ferroelectric 0—3 composites have been derived in terms
~ Lyt L) daim— dLrdaanl, (85) of the dielectric, elastic and piezoelectric properties of the
while their expressions have been used to predict the effe@onstituents for dilute suspension of spherical inclusion par-
tive d3; constant. On the other hand, Jayasundere’s modeicles. To generalize the results for higher volume fractions,
does not seem to give good agreement with Furukawa'’s exall field factors were re-expressed to include the effective
perimental data, and it does not approach the correct limits afielectric and elastic properties of the composite, which were
the two extremes. The PZT/PVDF system is another systenthen evaluated by the Bruggeman formula and Hashin
given by Furukawd! This work reported experimental;;  bounds. As the effect of interaction between the randomly
values of PZT/PVDF composites up to 63% ceramic volume
fraction. Therefore, we have included both our dilute suspen-
sion and the concentrated suspension formulas for compari-

350 T T T T
son. Furukawa’s model, shown to be overlapping with our

. . . . . . . . B Dilut i tion(15
predicted line of dilute suspension in Fig. 2, is only suited for 0 ot Suon oo oo mon(40) with w
low volume fraction and we therefore would not expect it asof - Concentrated suspension [equation(40) with ],/
. . . . : 18 ;
can predict experimental data at higher volume fractions. ®  Experimental data [Chan et al."] s

This remark also applies to our dilute suspension formulas.
However, Jayasundere’s model was claimed to work for
higher volume fraction of inclusions. It seems that it fails to
predict this system at this volume fraction range. Our con-
centrated suspension formulas look better at higher volume
fractions. Concerning the low volume fraction region, Jaya-
sundere’s model gives higherds; values than the experi-
mental results while both Furukawa’s model and our model
give slightly lower values.

Figure 3 shows theds; experimental data of PZT- i 3. comparison with experimental data of Chan, Chen, and Chesy
P(VDF/TrFE) of Chan, Chen, and Chdf. Our prediction  Ref. 18 for das of PZT-RVDF/TFFE) composites.

d,, (PCIN)

Ceramic volume fraction ¢
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100 .

Dilute suspension [equation(15)]

. 1+ Vi 2
' ' ! U(}giZZMiT —1—21/ A3+A1—5viA2I’ _[3A1
I

- = - Concentrated suspension [equation(40) with #1 /"
BOF ... Concentrated suspension [equation(40) with s, ] ./ []
®  Experimental data [Zou et al.”’] 57 +7(2—v;)A,r 2] cos 29, (A2)
é 1 + v 2

;’R U¢¢|:2M|T 1_2UiA_2A1_(15_7Ui)A2r _(7
+11v;)A,r? cos 29} , (A3)
Oroi=— 2 T{3A1+ (7 + 2v)) A,r?}sin 26, (A4)

Ceramic volume fraction ¢

O-rqﬁi:a-Bqﬁi:O’ (AS)

FIG. 4. Comparison with experimental data of Zeual. (see Ref. 19for
ds; of PbTiO-P(VDF/TeF ites.

330 105-P( eFE) composites - 2B, 2u, By 128,
Trrm =2 fmT T 1—20 (37 (5
m

dispersed spherical particles has been to a certain extent im- 2(5-v,) B3 36B,
plicitly considered in the latter formulas, the final results are T 12y, BB cos 2
expected to be applicable to higher volume fractions of in-
clusions. Comparison with published experimental data indi- I
cates that good agreement has been achieved for various sets * 2 (1+cos29), (A6)
of data.
Bl va B3 382 Bg
Toom=2umT| =375, 3 5 |
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APPENDIX A
15B,
A single inclusion is embedded in an infinite matrix me- — 5 |cos, (A8)
dium. A uniform tensionT acts in the matrix far away from
the inclusion. The stress components expressed in spherical 2(1+vy) By 24B, 1]
coordinates are given By Trom=2MmT| — 1- 20, 35 3(sin2d,
2 T[ L A= A2+ [3A (A9
Oni =20 T 75— —yAyr
rri Mi 1—2u, 3 17 ViR 1 Ur¢m209¢m:0, (A10)

—3uAr2lcos 2!, (A1) whereA;,A,,A;,B,,B,,B3 are constants
1 5(1—vpy)
A== , A1l
"4 (7 Supunt 24 Supu (A
80| .
Dilute suspension [equation(22)] A2= 0, (AlZ)
70F - -~ Concentrated suspension [equation(41)] ’
6 ®  Experimental data [Zou et al.”] ! 11-vpy, 1-2v,
As=— , (A13)
_sof 2 1+tv,2(1-2v) upt+ (1+v))
z
3wl
e N B, 1 Mom™— Wi
“°r a® 8im (7—5vm) um+2(4—5up) 1
20|
ol 2(1—2v;)(6—5vm) um(3+ 19 — 20vmv;) i
, 2(1=2v) pm+ (1+v)) pg
0.0 0.2 04 06 08 10 14
I ) v
| | Ceram.lc volume fraction ¢ L (1 _ Um) o vr'n_ v lpi— (1 _ 2Ui),um
FIG. 5. Comparison with experimental data of Zewal. (see Ref. 19for + , (Al14)

dj, of PbTiOy;-P(VDF/TeFE) composites. Apm 2(1=2v) pm+ (1 +v) i
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B, 1 Mom ™ M C
@ B (7— 5y it 24— 5upps (A15) { ~(E+ as‘”‘”E gz
Bs 1 S(1—2vm) (m— 1) dP,(cosb)
= . Al16 | TSR
@~ Bitm (7= Svm) fim+ 24— vt (A16) xal— =0, (B8)

Symbolsu,v denote shear modulus and Poisson’s ratio,
respectively. Subscripisandm are used to distinguish inclu-
sion and matrix materials. In the above, E¢&811)—(A13)
are not given in the original referenge.

(:_I)Al+<Em>+2% Gy —dSi (o >} 086

€m

C
IA+(1+1) ZIja '=1p,(cosh) =0.

oIl

APPENDIX B (B9)

EquationdB8) and(B9) can be satisfied simultaneously only
for Aj=C,=0, therefore, they become

Consider a dielectric sphere of radiaisvith permittivity
€; subjected to a uniform electric fiekE,) in the Z direc-

tion far away from the sphere. The sphere is surrounded by a C,
medium with permittivity €,,. The problem is to solve Ai— Pi —(Ew, (B10)
Laplace equations with azimuthal symmetry
2pi= C, oy —d{M{ o
Ve, =0, (B1) (6 Agt2 3__<Em> k< kl>€ 3ki€ kl>
2 — m m
Vepn=0, (B2) (B11)

whereg; and ¢, are the electric potential inside and outside
the sphere, respectively.

With the boundary condition thap; must not have a
singularity at the center of sphere=0), and the boundary
condition at infinity 2€m(Em) — A5 (o) + (€m( Em) + d5e (o )>)

__ _ (Ep)= 5
(em)r—==—(Enz=—(Eq)r cosé. (B3) €+ 2en
Solutions of Egs(B1) and (B2) give

Eliminating C; from Egs.(B10) and (B11) and then substi-
tuting A, into Eq. (B4), the electric field inside the sphere
(evaluated from the electric poteniias

(B12)

We can finally rewrite this equation in terms of the electric

©

_ | displacement$D;) = e;(E;) +d4) (o)) and(D )= em(Em)
2}0 Ar'P(cosé), ®4 4 (o™ 1o obtain 3Kl
- D))+ 2em((E))—(E))=(Dp). (B13)
gom=—<Em>rCOSt9+|20 C,r " YP,(cosh). (B5) (Di)+ 20} = (Em) =D

) APPENDIX C
P,(cos#) are the Legendre polynomials.

The boundary condition of the tangential component of elecd. Derivation of electric field factors ~ Fg and Fg

tric field is Consider the following expression in whi¢B) and(E)
1d¢; 1depn are volume-averaged electric displacement and volume-
Y0 Tt a0 (B6) averaged electric field, respectively, for the composite
r=a r=a

and the boundary condition of the normal component of elec- (D)~ ex(E)= L f {D— e, EldV= EJ {D
tric displacement is \

~ S &ar d5u (o) cose ~ e b
r=a whereV, V; are the volume of the composite and inclusion
P particles, respectively. Equatidl) then becomes
=—€m ;m diki (o) coso (B7)
r=a (e~ em)(E)= d(€i— em)(Ei), (C2

The piezoelectric termg{), (o)) andd{(o{") are the
contributions of polarization due to stresses in the inclusio
(i) and matrix(m), and subscripk,| =x,y,z refer to the three

where ¢ is the volume fraction of the inclusion phase and
s permittivity. From equatioiC2),

directions. We assume that they are uniform in each of the (E;) 1l e—en

spherical inclusion and continuous matrix regions, and may EE EZE ﬁ (C3
be represented by the average in the respective phases. This o

assumption makes equatio(®1) and (B2) plausible. For the electric field factof g, we follow a similar tech-

Applying the boundary conditions to Eq®4) and(B5)  nique, but this time consider
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1 <0'zz> Vm Ym 1
&(E)=(D)= fv{eiE—D}dV=<1—¢><ei—em> S e v v_m<"w>] Y ”e
X{Enmy- (C4 Ozz Vm <0'22|>
Therefore VYn " Yin T Ym Uyy] V= (4 (€20
<Em>_ 1 €—€ +m<0xxi>+h<a i>]a (C1)
ﬁ= E” 1-¢ €i—€m (€9 Ym Y
2. Derivation of stress field factors ~ F and F () — {o XX>— :;—:sz)_ :;_:<‘Tyy>] = ¢[ (exxi)

The derivation of the stress field factors is similar to the

revious case of electric field factors. Consider (o '> 4 4
p B YXXI + Y—m<azzi>+ Y—m<ayyi>] (C12
m m

(o) 1
<e>—k—=vj e—k— dV:vJ e—k— dv,
m v m Vi m where Y and v are Young's modulus and Poisson’s ratio,

respectively. Using the relations
where(o) and({e) are volume-averaged hydrostatic stress and

volume-averaged hydrostatic strain of the composite, respec- <gu) v v
tively, andk is bulk modulus. EquationCé) then becomes €0 = EASE ARVACAE (C13
b =dl - o )
K ko 7Tk kT (U ) v vi
" I " <eZZI>_ i 7|_<O'><xi>_ ¢<Uyyi>’ (C14
Hence, i i
i1 () ¥ v
<0'i>_ h_l k Kk cs ( xx>___7<0'zz>_7<0'yy>v (C19
@ T g1 1 (9
ki Kny <0’ D Vi
< XXI>_ = ¢<Uzzi>_ 7{<0'yyi> (C1o
I I

The stress field factdf" is derived from a similar con-

sideration giving the following expression:
and considering the case,)=(oy,)=0, equationgC11)

Q_<e> (1— ¢)< l)<gm>_ (C9) and(C12 become
Thus, (l__)w) [( ) ( i Vm)
z ¢ <O'ZZ|>
1 1 Yi Y
(om) 1k k (¥ vm
T)ZE'%:F 1 1 (C10 X{oyxi) (Yi ><0yy|>J (C17
ki Kny
A el of [ g5
3. Derivation of stress field factors ~ F+, AL, F+ Y Yy (o22=9 Y Y (@) = Yi Y
and IEHT
Suppose a composite is subjected to tensile stress of X( 0229~ ( m)<(’yyi>]' (C18

(oxx)r (Tyy) and(azz) simultaneously. The stress field fac-
torsF1, FI, FL andFT can be derived following the same Under this uniaxial tension condition, we may geft,;)
technique used above =(0oyyi), thus

(1 1)<Uzzi> 2¢( Vi Vm) (o) 1 1

Yi Ym/ (029 Yi (02 Y Yn

Solving these two equations gives

Downloaded 27 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



J. Appl. Phys., Vol. 90, No. 9, 1 November 2001 Wong, Poon, and Shin 4699

v vp|(l 1 1 1\v vy
(o _ . 1Y YullY Yol Vi Ya/lY Yy
(0,9 T ¢(1 1\[1-y 1-u, Z(Vi U |2 (€20
Yo Yull Yo Ye )WY Yo
1-vy 1-wp,\(1 1 ) Vi Um\[V  Vnm
() _ o 1V Y Yu IY Yol Y YlY Yy
(022 =FT_T¢S (1 1 (1—14 l—Vm) ) v vm)z €2y
Yi Ym Yi Ym Yi Ym
For the stress field factos+ andF!, an analogous derivation gives
(072 Vi (O2zm Vi Vi
{ Y _?i<0'xx>_?i<o'yy> —(e=(1-¢) Y, "_?i<0'Xxm>+Vi<0-yyfﬂ>_<(:“2m> (C22
and
(oxy) Vi Vi (Owxm) Vi 12
{ YXiX _7:<Uzz>_7:<a'yy> _<exx>:(1_¢) $|( _7:<Uzzm>_7|i<0'yym>_<exxm> . (C23
Equation(C13 and the relation
<0'zzn> Vm Vm
<zzn> Yo Ym<0xxn1> Ym<0'yym> ( )
are then substituted into EC22). Also, Eq.(C15 and the relation
<Uxxn1> Vm Vm
o V= _Vm _Vm c2
<xxm> Yo Ym<0'zzm> Ym<0'yym> (C2H
are sgbstituted into EGC23). When specializing to the condition thaty,) and(o,) vanish, and o,y is equal to{ oy,
we obtain
(Vi Vm)(l 1) (1 1)(14 v)
<0'X)(m> _T1 _ 1 Yi Ym Yi Y Yi Ym Yi Y (C26)
(0,0 T 1-¢(1 1\[1-v 1-v, S Vm 2
Yi Yol Yo Yo ) WY Yn
el el
(022m) —Fl— 1 Yi Yim Yi Y Yi Ym i Y c27)
T I T
Yi Ym/\ Y Ym Yi Ym
|
APPENDIX D andl, J are given by Eqgs(3) and(4). The superposition of
Egs.(2), (5), and(6) gives
The relations between stresses in the matrix phase and inq @.® ©9
the composite may be written as follows using E@, (5), ()oY )+ (o2 1423 1=3 =3\ (X )
(6) and the first three equations in E®) O)XZ(' ¥ aféx' ¥
( i>+<cr¥(yi)+( Wit =1 1= 1423 1=0 || (o |.
(@S| 1[G G G (e (o o) | \1-3 1= 1423 (0%
<O-;y - Gt G“ Gt <0.yy> , (Dl) (D4)
(2, 3 Gt gt g/ \ (o Equation(35) can be obtained by settingry,) =(oyy)
=(0,,={(c%). The superscripk is used here to indicate this
where hydrostatic loading condition. By EqD1), this condition
implies (o) =(oyym =(07,m=(op) and
1 1
G'= - (D2) Lol
1-¢(1-3lI 1-¢(1-3J)° 2G-+G
TS Ao (om=—3—(" (D5)
1 2
G'= (D3)

C1-¢(1-31) * 1-¢(1-3J) Similarly, Eq.(D4) implies
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<0>)(<xi> + <0-Ixi> + <0-fxi> = <0-§/<yi> + <0-;/(yi> + <0-)Z/yi>

= <0-;<zi>+ <0-Zzi> +<0'§zi>5<0'ik>

=3l (0’#}. (D6)
Hooke’s law gives
(0%)=k(e")

(o) =ki(el) (D7)

(o) = k(e

wherek, k; andk., are bulk moduli{e), (ek) and(ek) are

Wong, Poon, and Shin

Using Egs.(D5)—(D8), k can be expressed, after some ma-
nipulation, as

B(Ki—Km)
k=kn,+ kK. (D9)
1+(1-¢)
K+ §Mm

where i, is the shear modulus of the matrix phase.
Equation(36) can be derived using a similar technique.

volume-averaged strains. These strains can also be related ¥{¢ can follow the same procedures as above but this time set

an equation similar to Eq8)

(€)= (el +(1— p)(ek). (DY)

| (o")=2u(e")
(1) =2pi(el)
(o) =2punel)

[ (&)= e+ (1- p)(et)

(o4 =—(oyy=(c*) and (o, =0. The superscripy is
employed to indicate this shear loading condition. The fol-
lowing equations can be written:

( G
<0¥xn>=—<0§yn>f<o‘n§>=T<o">

(%) +{oa) +{o%a) = = oy + oy +(ayy)) =(al") = 33(oh)

: (D10)

where(e*), (e/*) and(ek,) are volume-averaged strains un- ’C. K. Wong, Y. M. Poon, and F. G. Shin, Ferroelectriirs press.

der this condition. After some manipulation, the result is

i
15(1 Vm)(m 1|¢

ST
Mm  \ Mm
(D11

Mm=pmy 1+
7—5v,+2(4—5v)

wherev,, is Poisson’s ratio of the matrix phase.
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