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Abstract 

Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and 

cyber-physical systems (CPS).  One characteristic of CPS is the reciprocal feedback loops between 

physical processes and cyber elements (computation, software and networking), which implies that 

data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the 

insights and the knowledge from the data streams generated by various sensors and other monitoring 

components embedded in the physical systems; (ii) it supports informed decision making; (iii) it 

enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates 

the integration of cyber and physical systems. There have been many successful applications of data 

streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to 

have a survey on the particularities of the application of machine learning techniques to the CPS 

domain. In particular, we explore how machine learning methods should be deployed and integrated 

in cloud and fog architectures for better fulfilment of the requirements, e.g. mission criticality and 

time criticality, arising in CPS domains. To the best of our knowledge, this paper is the first to 

systematically study machine learning techniques for CPS data stream analytics from various 

perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS 

machine learning methods should be deployed in a cloud and fog architecture.  

Keywords: Cyber-physical systems (CPS), Machine learning, Cloud computing, Fog computing, Edge 

computing, Analytics 

I. Introduction and Motivation 

1. Cyber physical systems: 

Definitions and characteristics 

Recent advances in computing, communication  

and sensing technologies have given rise to 

Cyber-Physical Systems (CPS), not only one of the 

most prominent ICT technologies that pervade 

various sectors of the physical world, but also an 

integral part of everyday life [1][2][3][4]. The  

term  cyber-physical  systems  (CPS)  was  coined  

in  the  US  in  2006 [5],  with  the realisation of 

the increasing importance of the interactions 

between interconnected computing systems [6].  

There have been various definitions of CPS, each 

of them throwing some light at some of the 

relevant factors that revolve around CPS systems. 

Next, we will discuss some of the most relevant in 

order to provide the readers with an educated 

vision on what cyber-physical systems are: 



 The National Science Foundation [7] defines 

CPS as “Cyber-physical systems (CPS) are 

engineered systems that are built from, and 

depend upon, the seamless integration of 

computational algorithms and physical 

components. Advances in CPS will enable 

capability, adaptability, scalability, resiliency, 

safety, security, and usability that will far 

exceed the simple embedded systems of 

today. CPS technology will transform the way 

people interact with engineered systems -- 

just as the Internet has transformed the way 

people interact with information. New smart 

CPS will drive innovation and competition in 

sectors such as agriculture, energy, 

transportation, building design and 

automation, healthcare, and manufacturing.” 

 Lee [1] defines CPS as “A cyber-physical 

system (CPS) is an orchestration of computers 

and physical systems. Embedded computers 

monitor and control physical processes, 

usually with feedback loops, where physical 

processes affect computations and vice versa.”  

 The National Institute of Standards and 

Technology [4] defines the subject of CPS as 

“Systems that integrate the cyber world with 

the physical world are often referred to as 

cyber-physical systems (CPS). The 

computational and physical components of 

such systems are tightly interconnected and 

coordinated to work effectively together, 

sometimes with humans in the loop”  

Despite their differences in length, detail and the 

semantics of some terms, there are some 

common characteristics that can be extracted 

from these definitions. More specifically, we 

argue that cyber-physical systems have the 

following inherent characteristics:  

 Integration of cyber elements (computation, 

software and networking), engineered 

elements (physical processes) 

[1][7][8][9][10][11], and human factors [4] 

 Reciprocal feedback loops between physical 

processes and computations, (simulation and 

decision making),  sensing and actuation 

elements, and monitoring and control 

elements [4][1][8][9][12] 

 It also encompasses a new generation of 

embedded control systems (i.e. networked 

embedded systems) consisting of networked 

CPS components and tightly coupled and 

interconnected cyber-physical processes that 

require of cooperation and coordination. 

[2][4][13] 

In  addition to this, the National Institute of 

Standards and Technology also highlights the fact 

that CPS require of the integration and 

cooperation of two technologies for the 

successful deployment of these systems [4]. 

Firstly learning and predictive capabilities are 

necessary to provide the integration of physical 

and digital models and, more importantly, 

provide the ability for the digital world to change 

its autonomous logic based on the state of the 

physical world (e.g., diagnostics and prognostics). 

Secondly, it is stated that CPS require of open 

architectures and standards that provide for 

modularity and composability of systems, thus 

allowing complex and dynamic applications. 

Particularly, CPS is an interconnected twin 

cybernetics digital system (virtual and physical 

worlds). The desired predictive capabilities in CPS 

are the ones that require these systems to 

potentially collect and analyse data from the 

physical and digital world. In the end, the 

predictive capability informs decision makers to 

take appropriate actions or control to change the 

course of physical world.    

Finally it should be highlighted that current 

applications of CPS include automotive systems, 

manufacturing, medical devices, military systems, 

assisted living, traffic control and safety, process 

control, power generation and distribution, 

energy conservation, HVAC (heating, ventilation 

and air conditioning), aircraft, instrumentation, 

water management systems, trains, physical 

security (access control and monitoring), asset 



management and distributed robotics 

(telepresence, telemedicine) [1]. 

2. Data Stream Analytics in CPS 

Mining data streams, acquired from various 

sensors and other monitoring components 

embedded in the physical systems, plays an 

essentially role in CPS, as it extracts the insights 

and the knowledge from the data streams, 

provides learning and predictive capabilities for 

decision support and autonomous behaviour, 

enables the feedback from the physical processes 

to the cyber counterparts, and eventually 

facilitates the integration of cyber and physical 

systems  [14].  

Silva et al. [15] provides a formal definition of a 

data stream as: 

A data stream S is a massive sequence of 

data objects 𝑋1 , 𝑋2 …, 𝑋𝑁 , i.e., 𝑆 =

{𝑋𝑖}𝑖=1
𝑁 , which is potentially unbounded 

(𝑁 → ∞). Each data object is described 

by an n-dimensional attribute vector 

𝑋𝑖 = [𝑥𝑗
𝑖]𝑗=1

𝑛  belonging to an attribute 

space  that can be continuous, 

categorical, or mixed. 

Data streams feature massive, potentially 

unbounded sequences of data objects that are 

continuously generated at rapid rates  [15], which 

leads to the fundamental shift in the data 

analytics (information source) from traditional a 

priori information alone based or off-line batch 

approaches, to stream analytics. The key 

challenge in stream analytics is the extraction of 

valuable knowledge in real time from a massive, 

continuous and dynamic data stream in only a 

single scan [16].  The reader should additionally 

consider that the insights extracted from physical 

devices, such as sensors, feature perishable 

insights, i.e., they have to be provided quickly, as 

otherwise they lose value to feed the logic of the 

CPS software. In a CPS, data streams are most 

beneficial at the time they are produced, as any 

change reported by the data (e.g. a sensor 

anomaly, a fault in the physical process being 

sensed, or a change of system state) should be 

detected as soon as possible, and be acted upon, 

for example, via a change in control policy or an 

output action. Furthermore, as opposed to 

stream analytics for purely software systems, the 

insights being revealed by data streams in CPS are 

often tied to a safety-critical action that must be 

performed to ensure the health of the CPS itself 

[14].  

Analysis of these ever-growing data streams 

becomes a challenging task with traditional 

analytical tools. Innovative and effective analytic 

techniques and technologies are required to 

operate, continuously and in real-time, on the 

data streams and other sources data [17]. 

Machine learning is a discipline that aims to 

enable computers to, without being explicitly 

programmed, automate data-driven model 

building and hidden insights discovery, i.e., to 

automate behaviour or the logic for the 

resolution of a particular problem, via iterative 

learning from example data or past experience 

[18][19][20].  In the past, there have existed many 

successful applications of machine learning, 

including systems that analyse past sales data to 

predict customer behaviour, optimize robot 

behaviour so that a task can be completed using 

minimum resources, and extract knowledge from 

bioinformatics data[20]. In this particular survey, 

we will focus on  

3. Cloud and Fog Computing 

The interconnection of sensor and actuator 

systems with decision making and analytics have 

traditionally been performed by either local static 

controllers or uploaded to the Cloud for analysis. 

Supported by the paradigms of Internet of Things 

(IoT), Cloud computing experts propose the 

virtualization of devices to provide their data-

based capabilities and their connection as a 

service for users within a Sensing and Actuation 

as a Service (SAaaS) [21] or as Things as a Service 

(TaaS) [22]. Another role that Cloud computing 

has played in supporting CPS is focused on the 

analysis of the data received from devices. The 



Cloud can provide a vast amount of processing 

and storage resources which can be used to 

analyse large amounts of data [23] or streams [24]. 

These cloud capabilities are focused in centralized 

and remote datacenters, which has several 

drawbacks. The security aspect of storing, 

analysing and managing data in the Cloud is an 

increasing concern [25], while the remote nature 

of the Cloud also has reliability and latency issues 

[26]. 

The paradigm of Fog computing as proposed 

by [27] extends the Cloud to the edge of the 

network to better utilize resources available on 

gateways and connected devices. This extension 

allows data to be stored and processed locally to 

increase reliability and security, while decreasing 

the latencies between devices and the processing 

elements [28]. Fog computing systems are 

typically characterized by a large number of 

heterogeneous nodes, increased mobility and a 

strong presence of streaming and real-time 

applications [27]. The hosts or gateways used in 

fog systems vary from PC based Computing Nodes 

[29], Mobile Devices [30] and resource 

constrained System on Chip Devices (SoC) [31], 

routers, switches, set top boxes, proxy servers 

and base stations [32]. These hosts all have 

varying storage, processing and networking 

capabilities. While computing nodes have the 

most resources and are most reliable, they usually 

communicate with devices using Ethernet or Wi-

Fi based networks. The mobile devices and SoC 

based devices have fewer resources but provide a 

wider range of wireless communication 

possibilities for polyglot gateways [33], that can 

be used to connect to a wider range of 

heterogeneous devices using low-power Machine 

to Machine (M2M) communication protocols. 

These distinguishing properties of the Fog are 

essential for providing elastic resources and 

services to end users at the edge of networks [28].  

Fog computing is rapidly finding its way into CPS 

and IoT.  

Adopting IoT paradigms into CPS can provide 

several types of services, such as weather 

monitoring, smart grid, sensor and actuator 

network in manufacturing environment, smart 

building control and intelligent transport. These 

services produce a large amount of data that need 

to be processed for the extraction of knowledge 

and system control [34]. 

The platforms deployed in Fog computing 

vary based on hosts and application domains, but 

they can be categorized in a similar way as in 

Cloud computing. Infrastructure based platforms 

allow users to deploy Virtual Machines (VM’s) [35] 

or lightweight virtualization images [36]. Platform 

based solutions as in [37] provide a platform for 

users for application style system deployments. 

The third type of the platforms provides 

networking and analytics capabilities that the 

user can only configure and use without the need 

to program and deploy their own applications. 

From the hosts’ perspective there are a 

number of differences between the Cloud and the 

Fog. The main difference is the resources of these 

hosts, while the Cloud is considered to have a 

virtually unlimited amount of storage and 

processing capabilities, in the Fog these resources 

are a lot more restricted so their optimal 

management is crucial. When we look at inter-

host communication in the Cloud, due to high 

speed networks these delays are uniform and 

negligible. In the Fog, due to wireless 

communication and varying network types these 

delays can vary largely between hosts and their 

value also increases dramatically. When we look 

at device to host communication the Fog is closer 

to these devices while the Cloud adds significant 

networking delays when accessing remote 

devices. When we look at the differences from a 

platform’s perspective we can see that Cloud 

solutions offer full control of resources using 

VM’s, Docker style solutions or other Platform as 

a Service (PaaS) options while Fog solutions tend 

to share more interdependent and constraint 

resources between users. Cloud computing has 



well established business model as compared to 

relatively new concept of Fog computing. 

However, this fact has been recognised by 

researchers and efforts can be seen in literature 

resolving billing, accounting, monitoring and 

pricing for a Fog business model [38]. 

CPS requires large computational capabilities 

to process, analyse, and simulate the collected 

data from sensors to make decisions and to 

instruct controllers, in a limited time, to operate 

the physical devices.  The volume and velocity of 

sensor and visualization data in CPS require large 

storages to accommodate and software 

applications to process them. The division of the 

labour of latency tolerant and deep analytics tasks 

between Fog and Cloud depends upon processing 

power of the edge nodes and application’s 

domain. The edge nodes with limited 

computational power may only focus on 

performance of latency sensitive tasks. On the 

other hand, machine learning algorithms that 

require intensive computing resources should be 

executed in the Cloud. The cloud service model 

with elastic and flexible architecture presents an 

appropriate solution to support the emerging CPS. 

However, the study on how data and applications 

should be distributed between edge devices and 

the cloud has derived little attention from the 

academic and industry research communities. 

This obviously includes the decision on where 

machine learning methods for stream analytics 

should be executed: the edge or the cloud. The 

existing machine learning methods with different 

processing properties have their own strengths 

and weakness, so several methods or their 

variants have been proposed to address diverse 

requirements from different applications. Some 

methods, for example, may cope better than 

others in incomplete data sets or large data sets, 

while some may require more computational 

power than others.    

Given the emerging and promising Cloud and 

Fog computing architecture and the foreseeable 

integration of CPS, more specifically the machine 

learning based data analytics in CPS, to such an 

architecture, it is necessary to investigate what 

machine learning techniques have been 

employed in the context of CPS, and further, how 

they should be adapted and deployed in the 

cloud-fog-edge architecture for better fulfilment 

of the requirements of the application, such as 

mission criticality and time criticality. This 

research aims to identify and analyse the 

properties of current well-known machine 

learning methods employed in the context of CPS 

and the characteristics of stream data in CPS to 

provide a comprehensive study on their relation. 

This will help determine how to map data and 

machine learning methods to the Cloud and Edge 

computing to meet the CPS requirements. More 

specifically, we will focus on the analysis of the 

machine learning models employed in stream 

analytics from the perspective of the time 

complexity. This measure will provide important 

indications to the appropriateness of Edge 

computing to host tasks, as it has limited 

computational powers, RAM and storage 

whereas the cloud has more flexibilities, 

capacities and capabilities to deal with resource-

intensive tasks on demand. The required qualities 

for the outputs and the types of results (e.g. 

precision and accurate rates) have significant 

influence on the resources and response time of 

the selected methods, so the correlation among 

them should be investigated. 

To the best of our knowledge, this paper is 

the first to systematically study the machine 

learning based data stream analysis in CPS and 

how they should be deployed in the emerging 

cloud-fog-edge architecture.  

The remainder of the paper is organized as 

follows. We present the related work in section 2. 

In section 3, the machine learning methods are 

reviewed from the perspective of the functions 

they provided for the typical CPS applications. 

Then, the time complexities of general machine 

learning techniques are provided in section 4, 

based on which discussions on how these 



machine learning methods should be deployed 

are given for the purpose of effective and efficient 

integration to the Cloud and Fog computing 

architecture. We conclude the paper with some 

future research directions.  

II.  Related work 

Traditional CPSs may have limited computation 

and storage capabilities due to the tiny size of the 

devices embedded into the systems. Chaâri et al. 

[2] investigated the integration of CPSs into the 

cloud computing, and presented an overview of 

research efforts on the integration of cyber-

physical systems with cloud computing in three 

areas: (1) remote brain, (2) big data manipulation, 

(3) and virtualization. More specifically, real-time 

processing, enabled by offloading computation 

and big data processing on the cloud systems 

were explored. Nevertheless, Chaâri et al. [2] did 

not include an exhaustive analysis of the 

emerging fog and edge computing technologies, 

and how these technologies should cooperate 

with CPS.  

The authors in [16] and [15] presented a survey 

on data stream analytics from the perspective of 

clustering algorithms. Apart of summarizing the 

unique characteristics of data stream processing 

by comparison with traditional data processing,  

in [16], data stream clustering algorithms were 

categorized into five methods (i.e., hierarchical 

methods, partitioning methods, grid-based 

methods, density-based methods, and model-

based methods). Similarity, [15] analysed 13 most 

relevant clustering algorithms employed in the 

context of data stream analytics. In addition to 

the categories listed in [15], the authors in  [16] 

identified three commonly-studied window 

models in data streams, i.e., sliding windows, 

damped windows, and landmark windows. 

Differently to [15] and [16], we do not solely focus 

on clustering algorithms, but we also extend 

analytics to other types of machine learning 

algorithms.   

In [20], the authors studied machine learning 

techniques employed in transportation systems, 

and identified various conventional machine 

learning methods such as regression (linear 

regression, polynomial regression and 

multivariate regression), decision tree, artificial 

neural networks (ANNs), support vector machines 

(SVMs) and clustering. Despite the useful insights 

provided by the work, the analysis is exclusively 

carried out in the light of a very particular type of 

CPS application; and further, no advanced 

machine learning methods, e.g. deep learning 

methods, was introduced. 

The survey provided in [39] recognized the 

changes that were needed to move from a 

conventional technology-driven transport system  

into a more powerful multifunctional data-driven 

intelligent transportation system (D2ITS), i.e. a 

system that employed machine learning and 

other intelligent methods to optimize its 

performance to provide a more privacy-aware 

and people-centric intelligent system. The paper 

identified both the data sources that drove 

intelligent transport systems (ITS), (e.g. GPS, Laser 

radar, seismic sensor,  ultrasonic sensor, 

meteorological sensor, etc.), and the learning 

mechanisms for real-time traffic control and 

transportation system analysis, such as online 

learning (e.g., state-space neural network, real-

time Kalman filter, combination of online nearest 

neighbour and fuzzy inference, hidden Markov 

model, etc.), adaptive dynamic programming 

(ADP), reinforcement learning (RL) and ITS-

Oriented Learning. The article offers a thorough 

and sound view on transport systems, but the 

insights are not extrapolated to other CPS 

domains and applications.  

The authors in [40] presented an analysis on a 

number of existing data mining and predictive 

machine learning methods for big data analytics 

with the goal of optimising the dynamic electrical 

market and consumers' expectations in the smart 

grid. Similarity, authors in [41] review the benefits 

and gaps of the combination of artificial neural 



networks, genetic algorithms, support vector 

machines and fuzzy logic for the forecasting of 

power grid. Another similar review is carried out 

in [42] to analyse the big data methods used to 

manage the smart grid. The authors identified 

different predictive tasks that can be carried out 

in the smart grid domain such as power 

generation management, power forecasting, load 

forecasting, operation and control fault diagnosis, 

and so forth. The authors mapped to the 

corresponding statistical or machine learning 

methods with the required data inputs or sources. 

III. Machine Learning Methods 

in CPS Applications 

1. Typical CPS Applications 

Smart Grid: 

Smart grid is a complex system ranging from 

micro grid to national or international networks 

involving different levels of facilities, 

managements and technologies. A smart grid is 

considered as a cyber physical system as it 

monitors and manages the power generation, 

loading, and consumptions through a number of 

sensors. These sensors gather the stream data 

that is fed to analytic methods and control 

systems to balance and distribute power 

generation and consumption [43].  

Due to complexity and dynamics of power market, 

and the nature volatile nature of renewable 

energy, it is important to have a good forecasting 

and prediction on the market trend and energy 

production to correctly estimate the amount of 

power to generate. In addition to this purpose, 

applications of analytics to the smart grid also 

include fault detection in infrastructure,  devices, 

system and application levels [10]. Machine 

learning is a promising tool to analyse the data 

stream and convert them to informed decisions 

and actions.   

Intelligent Transportation Systems (ITS) 

An intelligent transportation system (ITS) is an 

advanced application which aims to provide 

innovative services relating to transport and 

traffic management, and enable users to be 

better informed and make safer, more 

coordinated, and smarter use of transport 

networks.  ITS brings significant improvement in 

transportation system performance, including 

reduced congestion and increased safety and 

traveller convenience [44][45][46].  

ITS is a typical CPS as it meets the core 

characteristics of CPS. Enabled by Information 

and Communication Technologies (ICT), elements 

within the transportation system - vehicles, roads, 

traffic lights, message signs, etc. - are becoming 

intelligent by embedding microchips and sensors 

in them. In return, this allows communications 

with other agents of the transportation network, 

and the application of advanced data analysis and 

recognition techniques (e.g., machine learning 

techniques) to the data acquired from embedded 

sensors such as inductive-loop detectors, Global 

Positioning System (GPS)-based receivers, 

microwave detectors, and so forth. As a result, 

intelligent transportation  systems  empower  

actors  in  the  transportation system—from 

commuters, to highway and transit network 

operators, to the actual devices, such as traffic 

lights, themselves—with actionable information 

(that is,  intelligence)  to  make  better-informed  

decisions, e.g. whether  it’s  choosing  which  

route  to  take;  when  to travel; whether to mode-

shift (take mass transit instead of driving); how to 

optimize traffic signals; where to build new 

roadways; or how to hold providers of 

transportation services accountable for results 

[39][46]. 

Smart Manufacturing/Industrial 4.0:  

Manufacturing applications, such as object 

detection, force and torque sensor based 

assembly operations, require accuracy of object 

detection, pose estimation and assembly to 

within few micrometres. Moreover, this accuracy 

has to pass the test of time and repeatability (i.e., 

the results should be precise). 



Manufacturing in general and automotive 

manufacturing in particular, requires operation 

involving handling, inspection or assembly to be 

completed in few seconds. For example, BMWs 

mini plant in Oxford has a car coming of 

production line every 68 seconds [47]. 

Applications, such as welding, require real time 

data processing, analysis and results. For example, 

to track the position of joining plates on real time 

basis and adjust the movement of weld guns on 

real time basis for precise and accurate welding at 

high speed [48].   

2. Machine Learning in a Nutshell 

Machine learning is the discipline that aims to 

make computers and software learn how to 

program itself and improve with experience/data, 

with the goal of solving particular problems [49]. 

Typically, a machine learning algorithm is a 

specific recipe that tells a computer/software 

how to improve itself from experience. A model is 

the result of training a machine learning 

algorithm with a set of data or experiences of a 

given problem, and it can be employed to solve 

future related problems. 

The problems faced by machine learning 

algorithms fall into one of the following 

categories attending to the nature of the data 

that is employed to improve the learning: 

supervised learning, unsupervised learning, and 

reinforcement learning. Next, we briefly discuss 

each of these categories and describe some of the 

most relevant techniques for each category: 

 In supervised learning, the aim is learning a 

mapping from an input to an expected output 

that is provided by a supervisor or oracle (i.e., 

labelled data) [18]. Depending on the type of 

output, we say that we either have a 

classification or a regression problem. In the 

first case, we aim to produce a discrete and 

finite number of possible outputs, while in the 

second case the range of possible outputs are 

infinite and numeric [18].  

 In unsupervised learning, there is no such 

supervisor and only the input data is present. 

The aim of these algorithms is finding  

regularities in the input [18][20]. 

 Finally, reinforcement learning applies to the 

cases where the learner is a decision-making 

agent that takes actions in an environment 

and receives reward (or penalty) for its 

actions in trying to solve a problem. Thus, the 

learning process is guided by a series of 

feedback/reward cycles [20]. Here, the 

learning algorithm is not based on given 

examples of optimal outputs, in contrast to 

supervised learning, but instead it must 

discover them by a process of trial and error 

[50] 

Next, we describe some of the most usual 

machine learning algorithms employed in the 

context of CPS data stream analytics. 

Decision Trees and random forests:  

A decision tree is a supervised machine learning 

algorithm that is organized in a tree-like 

hierarchical structure composed by decision 

nodes and leaves. Leaves represent expected 

outputs, and decision nodes branch the path to 

one of the expected outputs according to the 

value of a specific input attribute. Decision tree 

algorithms exist in the form of classification and 

regression algorithms [18]. One of the main 

advantages of decision trees is that the model is 

human readable and understandable. 

A random forest is an ensemble of random trees 

constructed by means of bagging. By this process, 

a training dataset of N samples is divided into k 

different datasets of N’ samples uniformly 

sampled with replacement from the original 

dataset, and consisting of a random selection of 

the input attributes. Then, each dataset is 

employed to train a different decision tree, 

guided by the heuristic that the combination of 

the resulting models should be more robust to 

overfitting. Each tree provides an output that can 

be aggregated by a wide variety of rules [51][52]. 

Artificial Neural Networks (ANNs) and variants: 



ANNs are machine learning algorithms that 

resemble the architecture of the nervous system, 

organized as interconnected networks of neurons 

organized in layers. These versatile algorithms are 

typically employed for supervised, unsupervised, 

and reinforcement learning. The inputs of the 

network (input layer) are transformed by 

weighted (non) linear combinations that generate 

values that can be further transformed in other 

layers of the network until they reach the output 

layer. Due to their ability to represent potentially 

complex relationship between the inputs and the 

expected output, ANNs, such as the multilayer 

perceptron (MLP), have gained popularity in 

machine learning and data analytics realm. The 

multilayer perceptron is a nonparametric 

estimator that can be used for both classification 

and regression. 

Convolutional Neural Networks (CNNs) exploit 

translational invariance within their structures by 

extracting features through receptive fields and 

learning by weight sharing.  CNNs usually include 

two parts. The first part is a feature extractor, 

which learns features from raw data 

automatically and is composed of multiple similar 

stages and layers. The second part is a trainable 

fully-connected MLP or other classifiers such as 

SVM, which performs classification based on the 

learned features from the previous part [53][54]. 

Recurrent Neural Networks (RNNs) are a family of 

neural networks that has gained popularity in the 

last few years [55], and they are of special 

relevance to stream analytics due to this 

characteristic. In addition to this, the surge of 

data and computing power present in the last 

decade have given rise to deep neural networks 

[56] that stack multiple non-linear layers of 

neurons to represent more complex relationships 

between inputs and outputs or more efficient 

representations of the inputs. For various closely 

related definitions of deep learning, please refer 

to [56]. 

Support Vector Machines (SVMs): 

Support vector machines (SVMs) are supervised 

learning methods that classify data patterns by 

identifying a boundary or hyperplane with 

maximum margin between data points of each 

class/category [20][51]. The support vector 

machine is fundamentally a two-class classifier, 

although multiclass classifiers can be built up by 

combining multiple two-class SVMs. Despite the 

fact that they were initially devised for 

classification tasks, SVMs have been further 

extended to regression problems [57]. 

Bayesian networks and variants 

Bayesian networks are probabilistic graphical 

models based on directed acyclic graphs where 

the nodes are random variables and the direct 

arcs indicate the direct influences, specified by 

the conditional probability, between two random 

variables [18][58]. 

Some popular machine learning algorithms such 

as Naïve Bayes, a popular supervised classifier, 

and Hidden Markov models (HMMs) can be 

considered as special cases of Bayesian networks. 

The second specializes at processing sequences of 

outputs by learning implicit states that generate 

outputs  [18] [50]. This paradigm has been used 

for both supervised and unsupervised tasks. 

Evolutionary computation: 

Evolutionary Computing is the collective name for 

a range of problem-solving techniques based on 

the principles of biological evolution, such as 

natural selection and genetic inheritance. The 

fundamental metaphor of evolutionary 

computing relates this powerful natural evolution 

to a particular style of problem solving – that is a 

pseudo trial-and-error guided by the value of a 

given fitness function that measures the 

goodness of the evolved individual/solution [59]. 

Evolutionary computing techniques mostly 

involve metaheuristic optimization algorithms, 

such as genetic algorithms and swarm intelligence. 

Genetic algorithms have been employed in 

supervised[60], unsupervised [61], and 

reinforcement learning problems[62]. 

Clustering: 



Clustering is an unsupervised family of algorithms 

that involve processing data and partitioning the 

samples into subsets known as clusters. The aim 

of this process is to classify similar objects into  

the  same  cluster  while  keeping dissimilar 

objects in different clusters  [16]. The separation 

criteria may include (among others) maximization 

of similarities inside clusters, minimization of 

similarities between different clusters, and 

minimization of the distance between cluster 

elements and cluster centres. One of the most 

popular clustering algorithms is called k-means 

clustering where k denotes the number of 

clusters. 

Self-organizing map (SOM): 

SOM is an automatic data-analysis method widely 

applied to clustering problems. SOM represents a 

distribution of input data items using a finite set 

of models. These models are automatically 

associated with the nodes of a regular grid in an 

orderly fashion such that more similar models 

become automatically associated with nodes that 

are adjacent in the grid, whereas less similar 

models are situated farther away from each other 

in the grid. This organization, a kind of similarity 

diagram of the models, makes it possible to 

obtain an insight into the topographic 

relationships of data, especially of high-

dimensional data items [63]. 

Q-learning: 

Q-learning is a kind of reinforcement learning 

technique that is a simple way for agents to learn 

how to act optimally in controlled Markovian 

domains. It amounts to an incremental method 

for dynamic programming which imposes limited 

computational demands. It works by successively 

improving its evaluations of the quality of 

particular actions at particular states [64]. 

3. Machine Learning Methods in CPS 
Table 1: Overview of machine learning methods in the context of CPS 

ML Method Domain Functional Category Task Reference 

ANN Smart Grid Forecasting/Prediction/Regression Electrical Power prediction,  
load forecasting 

[65][66][67][6

8][69][41] 

Transport Pattern Recognition/ Clustering  Behaviour/Event Recognition [51] 

Forecasting/Prediction/Regression traffic flow features [70] 

road-side CO and NO2 
concentrations estimation 

[71] 

travel time prediction [72][73][74] 

Classification obstacle detection and 
recognition 

[75] 

Image Processing [76] 

Manufacturing Forecasting/Prediction/Regression/op
timization 

Energy Consumption/ Process 
parameters optimisation  

[77] [78] 

Random Forest Smart Grid Forecasting/Prediction/Regression demand side load 
forecasting/Price forecasting 

[65][79] 
 

Anomaly/Fault Detection Power record faults 
 

[80]  

Transport Pattern Recognition/Clustering Behaviour/Event Recognition [51] 

Manufacturing Anomaly/Fault Detection Tooling wear/ Errors detection [81] [82] [83] 

SVM Smart Grid Forecasting/Prediction/Regression Price Prediction [84][85] 

Electrical Power prediction, [86][67][69][8
7] 

Anomaly/Fault Detection Non-Technical Loss detection [69][88][89] 

Blackout Warning [86] [90] 

Power Line Attacks [90] 

Transport Classification Unintentional vehicle lane 
departure prediction 

[91] 

Obstacles classification [92][75] 

Pattern Recognition/ Clustering Behaviour/Event Recognition [51][93] 

Anomaly/Fault Detection Mechanism Failure [94] 



Forecasting/Prediction/Regression Travel time prediction [95][74] 

Manufacturing Forecasting/Prediction/Regression Machine Maintenance  [96] 

Design / Configuration  Feature Design; Production 
Processing  

[97][98]  

Anomaly/Fault Detection Quality Control [99][100]  

Smart Home Pattern Recognition/ Clustering Activity recognition [101][102] 

Decision tree  Smart Grid Anomaly/Fault Detection  
 

fault detection 
predict an energy demand 

[103] [104] 

Forecasting/Prediction/Regression [104] 

Transport Forecasting/Prediction/Regression To predict the  traffic 
congestion level and  pollution 
level;  bus travel time 

[105] [106] 

[106]  

Anomaly/Fault Detection  
 

Cyber Attacks / detect 
stereotypical  motor  
movements   

[107] 

Manufacturing Classification/Diagnosis Quality Control/Fault diagnosis [108][109]  

Bayesian Network Transport Classification Event and behaviour detect [51] 

Smart Grid Anomaly/Fault Detection  
 

Non-technical losses and fault 
detection 

[103] 

Manufacturing Anomaly/Fault Detection  
 

Fault detection in the 
production line 

[110] 

Forecasting/Prediction/Regression Tool wear prediction/Energy 
consumption prediction 

[111][112] 

Self-Organising Map Transport Clustering Obstacle detection and 
recognition 

[75] 

Evolutionary 
Computing 

Smart Grid Optimisation/ Forecasting/Prediction Short Term load forecasting [113] 

Swarm Computing Smart Grid Optimisation economic load 
dispatch/feature Selection  

[114][115] 

Manufacturing Anomaly/Fault Detection/Process  
optimisation 
 

Fault detection, classification 
and location for long 
transmission lines/Process 
optimization 
Automatic  fault diagnosis  of 
bearings 

[116][117][11
8]  

 HMM Smart Grid Optimisation 
Optimal decisions on smart 
home usage 

[119] 

Manufacturing Anomaly/Fault Detection  
Automatic  fault diagnosis  of 
bearings 

[117][120]  

Reinforcement 
learning /Q-
learning-based ADP 
algorithm  

Smart Grid Optimisation Aided Optimal Customer 
Decisions for an Interactive 
Smart Grid 

[119] 

Transport Optimisation the road latent cost [121] 

Deep Learning/ 
Autoencoder 
model/  
convolutional 
neural network 
(CNN)/ Recurrent 
Neural Networks 
(RNNs) 
 

Smart Grid Forecasting/Prediction/classification/
Regression 
 

Building Energy consumption  [122] 

Transport 
 

Traffic flow prediction;  
processing roads images / 
commanding Steering;  
detecting train door anomaly 
and predicting breakdowns 
Anomaly-based detection of 
malicious activity 

[123][124][12
5] [126] [94] 

Other To classify various human 
activities; To detect congestive 
heart failure 

[54]  

Other 

 

 

 

 

Table 1 shows an overview of machine learning 

methods where they have been used in the loose 

context of CPS.  They have been used to carry out 

tasks in three different applications and domains: 

smart grid, transport and manufacturing.  



ANN is one of the most popular methods having 

been used in the various domains and 

applications, as it is capable of doing long term 

forecasting by regressing the stream data 

generated by multiple interdependent factors or 

single variable from time series to predict the 

trend in power generations, consumptions and 

bus travel time estimations. For example, in smart 

grid and manufacturing, ANN is efficient to 

predict the consumption of consumer and 

production line for the demand side management 

and load management power generation 

management.  Only few researchers use ANN in 

the real-time or short-term predication [84][68], 

as it requires considerable time to process and 

tune the parameters before it can be deployed.   

Most applications require large amount of input 

data and training time to produce meaningful 

model with certain degree of accuracy and 

confidence [65][41][70]. Even though ANN can 

work alone and produce acceptable results, but it 

often works with other learning methods such as 

SVM, GA, Bayesian etc. to compliment ANN to 

improve training efficiency or modelling accuracy 

[41]. In the table, term ANN was broadly used, but 

it has a lot of variants with various activation 

functions and structures and form a hybrid model 

to meet the purposes such as forecasting, 

classification, clustering, and regression for 

different applications. Ref [41] has carried out 

detailed analysis of these variations and hybrid 

approaches. Here, we classify applications into 

this category using ANN as the main body for their 

solutions. 

SVM has been widely adopted to address the 

issues in product feature design, fault detection, 

forecasting, clustering and pattern recognition 

across the application domains such as 

manufacturing, smart grid, transportation as well 

as smart home due to its maturity and 

transparency. The method can take different sizes 

of input data to carry out the classification and 

regression, so it has been used in the applications 

that require short response time such as [85][86].  

It also used in conjunction with other machine 

learning methods such as ANN, and Bayesian etc. 

by exploiting its characteristics to provide 

complimentary functions to address complex 

problems [68][96][97]. The authors in [97] used a 

trained SVM classifier from the classified design 

examples such as features and components, 

which are obtained from a hierarchical clustering, 

to recommend different Additive Manufacturing 

design features. In the case study, it only shows 

21 design features from over hundreds that were 

used to train and to build model.  

The faults in products or tools in manufacturing 

can lead to a big loss of time and a serious 

consequence if they are not detected and 

resolved earlier. Authors in [81]and [82] reported 

the use of the Random forest to analyse the big 

data for tooling condition monitoring in milling 

production and silicon in semiconductor 

Manufacturing. It also has been used in predicting 

the short term electricity price from the historical 

data [79] and detecting the false electricity 

records from the sensors [80].  Ref [51] reported 

the use of Random forest to model a driver profile 

effectively. From these reports, they all require a 

reasonable amount of historic data for the 

training and to make the accurate classification 

and time was not considered as a crucial factor in 

these applications.  

Decision tree is a well-known method for 

classification, so it is predicable that the 

researchers have used it to detect the faults in the 

power system and motor movement and for 

quality management in the production. It also has 

been used to predict the energy demand, bus 

travelling time, and to determine the correlation 

between traffic congestion and air pollution.  

The accuracy of fault detection, quality prediction, 

classification and rare events forecasting are 

associated with probabilities, as all the input 

factors cannot be certain due to the dynamic 

environments and complex human behaviour and 

interactions. The Bayesian network is a well-

studied method to model complex probability 

networks as it has been used in different 



applications to explain the possible occurrences 

of outputs with input variables. It does not 

require large amount input data to form the 

network, if the probability of variables is known. 

The network can be large and complex, but its 

processing time is linear.  Ref [51][103][110] 

showed the consistent characteristics in these 

applications. 

Table 1 also shows where the Machine Learning 

(ML) methods have been used across four 

application domains and the tasks have been 

carried out to gain the benefits of analyzing and 

interpreting large volume of data streams 

generated. The most common area for the 

researchers and industry practitioners adopting 

the methods is to increase accuracy of 

predication and forecasting in their CPS 

applications. The authors in 

[41][65][66][67][68][69][79][104] reported 

adoption of ML to predict electrical power 

consumption, demand, supply and load in order 

to improve demand response management in 

smart grid. ML is a well employed tool to predict 

traffic flow, air population emitted by cars, traffic 

congestion and travel time by transport [70][71] 

[72][73][74][105][106][94][123][124][125][126]. 

ML also has been extensively applying in 

manufacturing by predicting energy consumption 

in production line, machine maintenance,  and 

tool wearing [77] [78] [102] [111][112]. Diagnosis 

and Fault detection is another function the ML 

has been widely used in manufacturing to detect 

root cause of power faults in the production, 

tooling wearing and mechanic faults, cause of the 

fault components/products, and quality control 

[51][99][100][110][117][120]. Smart grid also has 

several ML applications to anomaly and fault 

detections such as non-technical loss detection, 

blackout warning, power line and cyber attacks, 

faults in demand management and power line 

faults [69][88][89][86][90][80][103][104]  . 

The utilization of ML for mechanical fault 

diagnosis and prevention of cyber attacks in 

transport system can be more explored, as only 

two  [94][107] reported the benefits of ML in this 

area. ML is also a popular solution to configure 

plant/production, optimize electrical 

load/dispatch, and reduce road latent cost, 

forecast short term in electricity usage and etc. 

[75][97][98][113][119][121]. ML has been 

exploited in other applications such as clustering 

road obstacles, classifying driving behaviours and 

traffic incidents and improving production quality 

[51][75][91][108][109].  

From Table 1, it can be seen that functions of MLs 

have brought various benefits to different 

applications and they have generated different 

levels of impacts in various areas, but the 

potentials of MLs are not fully realized yet, as they  

still evolve and their complexity may hinder the 

popularities.   

IV. Temporal Complexity 

Analysis 
Machine learning algorithms are able to learn 

from selected samples to derive rules, trends, 

patterns or properties of a true population. The 

concept or hypothesis space, however, can be 

large and complex that cannot be learned or 

modelled in polynomial time learning 

algorithms, but exponential time.  In these cases, 

learning to achieve highly accurate results by 

exhaustively exploring parameter values may 

not be possible in computational term, but 

approximation to the true value.  As it is natural, 

the goal of all machine learning applications is to 

minimise the differences between the target 

concept and the output produced by the trained 

models. The representation, quality and quantity 

of the selected samples, which are input 

parameters, to the learning algorithms are 

important attributes to increase the possibility of 

the successful learning. The probability of 

reaching successful learning by increasing 

accuracy of approximating to the target concept 

also depends on the complexity of learning and 

time. Learning is a trade-off between time and 

accuracy. In principle, the higher accuracy, the 

more time is required for training. Information 



and computation are two main dimensions to 

measure the complexity of learning algorithms. 

The sample complexity is concerned with 

number of training samples, distribution and 

sufficiency leading to accuracy of prediction, 

classification or etc. The computational 

complexity of a solution method is to measure 

the computational resources required to derive 

the concepts from the training data.  This can be 

further classified into time and space complexity. 

Space complexity denotes the memory required 

for the computational model being selected to 

store the solution. The time complexity is 

measured by the number of computational 

executions in the model to reach or approximate 

to the target concept. In this paper, we are more 

interested in time complexity with 

computational complexity than others. We 

intend to show theoretical complexity rather 

than the actual runtime of the algorithms which 

will be various depending on its operating 

computational environment including hardware 

and software. 

Table 2 shows a list of machine learning methods 

used by the applications illustrated in Table 1 

and their corresponding time complexities, 

represented in big O, and the factors 

contributing to the complexities. Since there are 

many different variants to each machine 

learning method, it is not feasible to list them 

exhaustively, but some examples to illustrate 

measurement of complexity. For example, 

varieties of Bayesian Network models derived 

from various approximate and exact inference 

algorithms to infer unobserved variables, at least 

ten common ones, can lead to different 

computational complexities. Several hybrid 

learning methods including at least two existing 

learning methods have been proposed to resolve 

or improve the insufficiency of one individual 

method that complicate the measurement of the 

runtime due to the interdependency, as one 

method may reduce the complexity for the other 

in the model, but the overall complexity 

calculation still need to consider all the methods 

involved. More algorithms and their time 

complexity can be found in [127]. 

 

Table 2: Time complexity of some of the most common machine learning algorithms 

Machine learning method 
Theoretical Time 

complexity 
Factors  

Decision Tree Learning[128] O(M⋅N2 ) 
M: size of the training samples   

N: number of attributes 

Hidden Markov model 

Forward-backward pass [52] 
O(N2⋅M) 

N: number of states 

M: number of observations 

Multilayer Perceptrons [127]  O(n⋅M⋅P⋅N⋅e) 

n: input variables 

M: number hidden neurons 

P: number outputs 

N: number of observations 

e: Number of epochs 

Deep Learning (Convolutional Neural 

Networks) [129] 
O(D⋅N⋅L⋅S2⋅M2⋅e) 

L: number of input variables  

N:number of filters (width)  

S: spatial size (length) of the filter 

M:size of the output. 



D:number of convolutional layers 

(depth) 

e: number of epochs 

Support vector machine [130] O(N3) or O(N2) 

N: vectors  

C: upper bound of samples 

N2 when C is small; N3 when C is big 

Genetic algorithms [127]  O(P⋅logP⋅I⋅C) 

C: number of genes/chromosome 

P: population size 

I: Number of iterations 

Radom forest [52][131] (K⋅N⋅ log N) 
N:number of samples 

K:input variables  

Self-organizing Map [132]  O(N⋅C) 
N: input vector size 

C: cycle size 

Reinforcement learning [133] O(N3) 
N:number of steps to reach the 

goal 

Particle swarm optimization (PSO) [134] 

 
O(P+Gen⋅P⋅D) 

P: number of particles 

D: number of dimensions 

Gen: number of generations 

Bayesian Network (exact learning 

models of bounded tree-width)[135] 
O(3N⋅N(w+1)) 

N:size of nodes 

W: width of tree. 

For example, [119] used Q-learning algorithms to 

model the interaction with users in smart home 

with maximum 20 steps to interact with users 

before it can propose appropriate 

recommendation. Its theoretical time complexity 

is up to 203 and the authors have concluded that 

Q-learning algorithm outperformed greedy or 

random decision strategies [119] in their 

simulated cases.  Figure 1 shows the complexity 

level in big O when the number of steps decreases 

in the simulation. The authors did not report the 

actual runtime, so it cannot be correlated the 

theoretical complexity to experimental one. 

 
Figure 1: Complexity level and number of steps in Q-
learning 

Ref [66]  used three machine learning methods, 
SVM, LS-SVM and BPNN, for energy usage 
forecasting over 283 households with 500 point 
data (hours) for each. The total number of data 
points for training in the experiments is 141,500 
(283*500). In their empirical study, the 
computational times of these methods are 335.39, 
26.22, and 29.28 seconds respectively over a 
laptop to produce reasonable accurate results.  
The authors recommend running these 
approaches in cloud and distributed computing to 
improve the performance. SVM has better 
accuracy in reducing errors, but it took more time 



than others due to the overhead of using GA to 
find key parameters for SVM. The BPNN has more 
errors than the other two and it requires a bit 
more runtime than LS-SVM. The authors, 
however, did not include key parameter values 
such as generations and input points etc. for GA 
and BPNN, so to derive their time complexity in 
relation to actual runtime cannot be fulfilled. The 
time complexity of LS-SVM is O(1415002). Figure 
2 shows the time complexity of LM-SVM by 
applying the data from [66] with simulation 
output and the actual runtimes in seconds. 

This shows actual runtimes against the complexity 
level and the correlation between them without 
carrying out the actual experiments, the 
researchers can estimate its actual runtime by 
giving the number of samples when the 
underlying machine or environment has the same 
characteristics. 

 
Figure 2: Time complexity of LM-SVM 

The authors in [136] report the applications of 

Particle swarm optimization method to balance 

different loads by considering price to dispatch 

them. The test case one includes 6 factors 

(dimensions), 6 generators (particles)  and 100 

generations to evolve, and its time complexity in 

theory is 3606 (6+6*100*6) before it has a 

satisfactory convergent result.  In their test case 

two, it increases to 7 factors, 40 generators and 

400 generations, so 40+40*400*7 (is the 

theoretical time complexity is 112,040. In another 

test case it has 5 factors, 20 generators, and 400 

generations (40,020 in O) and its actual 

computational runtime is 0.29282 second that is 

around 10 and 200 times slower than the other 

approaches [136] in the simulation. Figure 3 shows 

the relationship between complexity and actual 

runtime by extending the figures given in the 

paper. The line is the time complexity in log and 

the solid line is actual runtime.  The researchers 

can refer this to approximate the actual runtime 

of an application with the same computational 

resources by giving key parameter values of the 

learning method.  The approximation is not rigid, 

as we assume that the space complexity is 

changing linearly. 

Figure 3: relationship between complexity and actual 

runtime of particle swarm optimization method 

For deep NN learning methods such as CNN, the 

weights in the convolutional layers are trained 

and updated in a similar way as traditional 

ANNs/MLPs (Multilayer Perceptrons) except that 

the number of filters and layers are orders of 

magnitude higher than those in traditional MLPs. 

The authors in [129] report their experimental 

results on computational time complexity of a 

CNN model by varying different key parameters 

such as depth, filter size and number, width and 

pooling layer etc. of the network to find their 

trade-offs between two parameters to investigate 

the overall performance in terms of time 

complexity and output accuracy. We share the 

same view with the authors [129] that introducing 

computational time and memory constraints can 

give better understanding the value of machine 

learning methods in realistic business 

applications.  

The training of these deep NN models needs 

massive resources (e.g. to accommodate the 

training data) and time, they should be carried 

out on the Cloud. However, the operation time of 

these models is only proportional to the number 

of neurons no matter how large the training data 



is, the on-line analysis tasks can be deployed on 

the Edge/Fog.  

As it has been observed in this analysis, only a few 

works report the empirical time complexity of 

their approaches. Therefore, the estimation on 

the empirical time complexity of a training 

algorithm still has rooms for more extensive study. 

This information may be vital for decision making 

on-the-fly if a learning task can be deployed in the 

edge devices.  

V. Online Learning Methods 

If we take a look at Table 2 we will observe that 

the theoretical complexity of the classic learning 

algorithms reported in the literature review 

normally takes into consideration many terms 

(e.g., number of samples, iterations, structure 

parameters, etc.). In theory, this could result in 

high order polynomial behaviour, which would 

deter the deployment of the learning phase in 

edge devices. This is because firstly over time, 

more and more streaming data will be 

accumulated and it is impractical and often 

infeasible to accommodate large volumes of 

streaming data in the machine’s main memory; 

secondly, it is also infeasible to regularly 

reconstruct new models from the scratch with 

accumulated streaming data in real-time; further 

CPS data streams feature the perishable insights, 

i.e., information that must be acted upon fast, as 

insights obtained from streaming data, such as 

from sensors, quickly lose their value if they were 

to be processed in ‘batch mode’) [16]. As a result, 

a new paradigm of learning, i.e. incremental and 

On-line learning algorithms should be adopted. 

Losing et al. [137] gives the definition of 

incremental learning for supervised learning as 

below (we change the notations/symbols for 

consistency reasons). 

An incremental learning algorithm 

generates, on a given stream of training 

data 𝑆1, 𝑆2…, 𝑆𝑁, a sequence of models 

𝐻1 , 𝐻2 …, 𝐻𝑁 , where 𝑆𝑖  is labeled 

training data 𝑆𝑖  = ( 𝑋𝑖  , 𝑌𝑖 ) ∈ 𝑅𝑛  × 

{1, . . . , C} and 𝐻𝑖  : 𝑅𝑛 {1, . . . , C} is a 

model function solely depending on 

𝐻𝑖−1  and the recent p examples 

𝑆𝑖  ,. . . ,  𝑆𝑖−𝑝  , with p being strictly 

limited. 

Losing et al. [137] further  specify on-line learning 

algorithms as incremental learning algorithms 

which are additionally bounded in model 

complexity and run-time, capable of 

endless/lifelong learning on a device with 

restricted resources. 

Incremental and on-line learning algorithms aim 

for minimal processing time and space; and thus 

fit in CPS data processing environments. 

Losing et al. [137] evaluate eight popular 

incremental methods representing different 

algorithm classes such as Bayesian, linear, and 

instance-based models as well as tree-ensembles 

and neural networks. Experiments are carried out 

to evaluate these algorithms with respect to 

accuracy, convergence speed as well as model 

complexity, aiming at facilitating the choice of the 

best method for a given application. However, it 

primarily covers supervised incremental learning 

algorithms with stationary datasets, although 

robustness of the methods to different types of 

real concept drift are also investigated. 

Gama et al. [138] considers dynamically changing 

and non-stationary environments where the data 

distribution can change over time yielding the 

phenomenon of concept drift, which applies to 

most of the real world CPS applications. Adaptive 

learning algorithms, defined as advanced 

incremental learning algorithms that are able to 

update predictive models online during their 

operation to react to concept drifts, are explored. 

Taxonomy for adaptive algorithms, presented in 

four modules as memory, change detection, 

learning, and loss estimation, is proposed; and 

the methods within each module are also listed. 

Gama et al. [138] focuses on online supervised 

learning. 

Ade et al. [139] includes some unsupervised 

incremental learning approaches that learn from 



unlabelled data samples to adjust pre-learned 

concepts to environmental changes. Most of the 

incremental clustering algorithms for pattern 

discovery rely on similarity measure between the 

data points. An exemplary approach is called 

Concept Follower (CF) that includes CF1 and CF2 

[140]. CF1 and CF2 learn from unlabelled data 

samples to adjust pre-learned concepts to 

environmental changes. Initially, a supervised 

learner is used to learn and label a set of concepts. 

When a new sample is collected, CF1 calculates 

the distance of the sample to all concepts and the 

concept with the minimal distance to the sample 

is identified. If the distance is smaller than the 

predefined threshold, CF1 considers the concept 

a match and then slightly shifts, by a learning rate 

parameter, towards the classified sample to 

adjust to the concept drift; otherwise CF1 detects 

the abrupt change and repeats the initial 

supervised learning stage. Compared to CF1, CF2 

supports problems areas with unbalanced sample 

ratio between concepts. This is done by CF2 

adjusting all concepts in the proximity of the 

sample instead of, as does CF1, adjusting only the 

concept closest to the sample. 

Next, we discuss on some of the most relevant 

online approaches to the machine learning 

algorithms identified in this article. 

Artificial Neural Networks 

Classically, artificial neural networks are trained 

using a training set and optimization methods 

such as gradient descent and backpropagation to 

minimize a cost function correlated to the error 

derived from the current state of the network.  

The online version can adapt to the arrival of new 

data consists of pre-training the network with all 

the available training set, and then adapt the pre-

trained network by using stochastic gradient 

descent over the new series of available data. This 

type of setting would benefit from a combination 

of both cloud technologies (i.e., for pre-training 

the network), and edge computing (i.e. for 

adapting the network). 

While the use of stochastic gradient descent 

allows adopting a batch algorithm like 

backpropagation in a non-batch setting, there are 

specialized learning algorithms, called online 

sequential learning methods, for training neural 

networks in an online setting in which data 

becomes available with time 

[141][142][143][144]. They can be efficient and 

more adequate for being deployed in an edge 

device as they do not require to store past 

training samples. The online sequential learning 

methods tend to be ad-hoc for networks with 

specific activation functions, or with specific 

architectures (e.g., single hidden layer). Therefore, 

the complexity of problems represented by these 

networks may not be as vast as the one 

represented by classic neural networks or deep 

learning approaches. 

Decision trees 

The classic learning decision trees require that all 

of the training samples are considered when 

computing information gain [145]. This is hardly 

applicable in a stream analytics context, as 

training samples arrive constantly. Therefore, it 

requires different learning mechanisms to 

properly learn decision trees in a stream analytics 

context, which the trees can evolve from a stream 

of data. Some approaches with a default tree 

structure provide a series of greedy steps to adapt 

to the new training samples. These includes ID5R 

algorithm [146], an adaptation of the popular ID3 

learning algorithm for stream data, and ITI [147]. 

Nevertheless, these greedy changes were in some 

cases suboptimal and ended up in inappropriate 

adaptations to change. 

The other approach to learning decision trees 

from streams is to maintain a set of statistics at 

nodes and only split a node when sufficient and 

statistically significant information is available to 

make the split. Hoeffding inequality 

[148][149][150] are the backbones to these 

approaches, which provide bounds for the 

number of observations that are necessary to 

obtain an estimated mean that does not differ 



from the mean of the underlying random variable. 

Some researchers [REF] have recently argued that 

the assumptions underlying the Hoeffding 

inequality are not appropriate when constructing 

online trees. Some methods split at nodes of the 

decision tree base on other modeling paradigms 

such as McMiarmid’s bound [151], or Gaussian 

processes [152]. 

Random forests 

The general idea behind online random forests 

consists of providing both a method to carry out 

online bagging, and a method to carry out online 

learning of random trees. Abdulsalam et al. [153] 

take an approach that carries out online bagging 

by dividing the incoming samples of data into 

blocks with a certain size. Then, blocks of data 

randomly selected are employed for either 

training or testing a tree in the model. The 

training block is redirected to a chosen tree, and 

an online learning algorithm for trees is employed 

to update the current tree. Later on, the learning 

model is enhanced to adapt to the random arrival 

of labeled examples in the stream, with blocks of 

different sizes and frequency [154]. 

Another alternative to the online bagging process 

described above is employed by Saffari et al. [155]. 

In this case, each new sample is presented in a 

number of times that is controlled by a Poisson 

distribution, to each random tree in the model. 

Then, the random trees gradually grow by 

creating random tests and thresholds at decision 

nodes and choosing the best one after a number 

of statistics have been gathered that guarantee 

that the test is the best from the ones randomly 

created at the decision node. 

Other approaches opt for avoiding online bagging 

at the forest level, and the subsampling is carried 

out at the tree level [156]. When a new sample 

arrives to the random forest, this sample is 

presented to all of the trees. Then, the individual 

tree decides if the sample will be used to 

influence the structure of the tree or used to 

estimate class membership probabilities in the 

leaf they are assigned to. 

Support vector machines 

Classification in support vector machines are 

based on the idea of finding the maximum margin 

hyperplane that separates elements from 

different categories. By definition, one should 

have access to the entire training dataset in order 

to build such maximum margin hyperplanes. 

Otherwise, there would be no guarantee that 

estimated hyperplanes are optimal. This 

assumption limits the applicability of classic 

support vector learning algorithms to an online 

setting, and it forces scholars to devise new 

methods that are adapted to the online setting. 

The incremental approach to support vector 

learning typically requires to determine if a new 

sample should become a support vector that 

modifies the current hyperplane. The algorithm 

also needs to determine if previously calculated 

support vectors still yield as relevant after the 

observation of the new sample, and remove 

those that are no longer relevant. Otherwise, 

online approaches to support vector learning 

incur in the risk of growing linearly with the 

infinite number of samples [157]. To tackle this 

problem, there have been a number of proposals 

that aim to build a support vector model with 

adequate predictive performance while also 

minimizing the number of support vectors in the 

resulting model [157][158][159][160]. 

VI. Discussions 
So far machine learning methods of various 

categories, including some deep learning ones) 

have been employed for various data streams 

analysis purposes. Little literature has studied the 

integration of these methods to the Cloud and 

Fog computing architecture. 

The very nature of CPS requires a computing 

paradigm that offers latency sensitive monitoring, 

intelligent control and data analytics for 

intelligent decision making. In contrast to the 

Cloud, the Fog performs latency-sensitive 



applications at the edge of network, however 

latency tolerant tasks are efficiently performed in 

the Cloud for deep analytics [161]. 

Cloud computing provide on demand and scalable 

storage and processing services that can scale up 

to requirements of IoT based CPS. However, for 

healthcare applications, manufacturing control 

applications, connected vehicle applications, 

emergency response, and other latency sensitive 

applications, the delay caused by transferring 

data to the cloud and back to the application 

becomes unacceptable [162][163][164]. The 

latency sensitive applications rely on the Fog for 

their time critical functionality. The adoption of 

Fog computing not only greatly improves the 

response time of time sensitive application but 

also brings some new challenges such as business 

model, security privacy and scalability etc.  It is 

perceived that in time critical services fog 

computing is cost effective as compared to cloud 

computing due to its less latency and in some 

cases due to spare capacity of locally available 

resources. The view is endorsed by study carried 

out in [163], which shows that with high number 

of latency sensitive applications Fog computing 

outperforms Cloud computing in term of power 

consumption service latency and cost. 

As generally the data stream analytics processes 

the data in one scan due to the perishable insights. 

Some algorithms, such as  the cluster removal 

approach in CURE and ROCK based HAC 

(Hierarchical  Agglomerative  Clustering ) 

algorithms, are infeasible for streaming data as 

they requires multiple scans of data [165]. In 

addition, for memory-based methods such as 

Parzen probability density model and nearest-

neighbour methods, as the entire training set 

needs to be stored in order to make predictions 

for future data points and a metric is required to 

be defined to measures the similarity of any two 

vectors in input space, they are both memory 

consuming and generally slow at making 

predictions for test data points, they also should 

not be employed for data stream analysis, even 

though the Fog computing is introduced. 

ANN (MLP), DT and SVM are the most commonly 

used machine learning methods in surveyed CPS. 

In terms of accuracy, it is observed that the 

performance of these machine learning methods 

is task dependent. For example, ref [75] pointed 

out that the best classifier differs according to the 

weather conditions. The classifier based on MLP 

behaves better than SVM (and SOM) for sunny 

and foggy conditions, whereas for rainy 

conditions, the SVM-based model is the most 

appropriate. Ref [166] concluded that in 

automatic Stereotypical Motor Movements 

(SMM) recognition, SVM appears  to  outperform  

DT  on  overall accuracy by ~6 percentage points 

(although at times  DT  did  outperform  SVM), 

regardless of feature set used. In terms of the 

operation (classification or regression) time, ref 

[107] discovered the noticeably lower detection 

latency provided by DT while ref [76] ascertained 

that SVM was not fast enough for real-time 

classification (classification time being around 2.2 

seconds) compared to ANN with seven hidden 

nodes  (classification time being around 100 

milliseconds).  

For those machine learning methods that need 

massive training data and take iterations to 

converge, such as ANN, HMM and reinforcement 

learning methods, it is recommended to deploy 

the training tasks onto the Cloud while deploy the 

on-line analysis tasks on the Edge/Fog.  

For deep NN learning methods such as CNN, the 

weights in the convolutional layers are trained 

and updated in the similar way as traditional 

MLPs (Multilayer Perceptrons) except that the 

number of weights and layers are orders of 

magnitude higher than MLPs. As the training of 

these deep NN models needs massive resources 

(e.g. to accommodate the training data) and time, 

they should be carried out on the Cloud. However, 

the operation latency of these models is only 

proportional to the number of neurons no matter 



how large the training data is, the on-line analysis 

tasks can be deployed on the Edge/Fog. 

When machine learning methods are deployed on 

the Edges, trade-offs are needed among accuracy, 

operation time, and the parameters of these 

methods such as sliding window sizes, number of 

iterations and prediction/forecast time lags 

[51][71].   

Applications dependent data pre-processing 

proved effective in improving the performance of 

the data analysis. For example, in ref [76], before 

employing  an ANN classifier, a simple gradient 

detector and an intensity-bump detector with 

loose (low) threshold values are applied to quickly 

filter out non-lane markings. As the remaining 

samples are much smaller in number, the 

classification time was significantly reduced. Due 

to space limitations, this paper doesn’t 

investigate the data pre-processing techniques 

for machine learning methods in CPS. 

The distributed and parallel environment 

provided by Cloud and Fog computing may 

facilitate the execution of machine learning 

methods (such as random forest) to further 

reduce the classification time as the sets of sub-

tasks (such as the decision trees involved in 

random forest) can be run in parallel. 

The data stream properties also could affect the 

choice of the methods. For example, fuzzy logic is 

more capable of dealing with the fuzzy 

information without requiring large volume of 

samples, the existing deep learning methods will 

require substantial number of samples in the 

training process, and Rough set is good at dealing 

with incomplete information.  In addition, ANN is 

likely more appropriate to deal with multiple 

variants data sets than reinforce learning 

methods.. 

Conclusion and Future Research 

Directions 
Data stream analytics is one of the core 

components in CPS and machine learning 

methods have proved to be effective techniques 

of data analytics. The rise of Cloud and Fog 

computing paradigm calls for the study of how 

the machine learning based CPS data stream 

analytics should be integrated to such a paradigm 

in order to better meet the requirements, such as 

mission criticality and time criticality, of the cyber 

physical systems. This paper investigated and 

summarized the existing machine learning 

methods for CPS data stream analytics from 

various perspectives, especially from the time 

complexity’s point of view. The investigation led 

to the discussion and guidance of how the CPS 

machine learning methods should be integrated 

to the Cloud and Fog architecture. In the future, 

more effective and efficient machine learning 

methods should be studied for analysing ever 

growing data streams in CPS, such as taking 

advantages of distributed and parallel 

environment provided by the Cloud and Fog 

computing [167], developing hierarchical and 

composable machine learning methods that are 

well suited to partitioned execution across the 

Cloud and the Edge, studying transfer learning 

and continual learning techniques to deal with 

the non-stationarity of data streams. In the 

meanwhile, studies should be carried out on the 

development of Cloud and Edge systems that 

facilitate the CPS data stream analytics by 

accommodating the discrepancy and the 

heterogeneity between the capabilities of edge 

devices and datacenter servers and among the 

edge devices themselves; providing uniformed 

APIs [168] and services [169][170], and etc. 
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