A Fast Way to Produce Near-Optimal Fixed-Depth Decision Trees

Alireza Farhangfar, Russell Greiner and Martin Zinkevich*
Dept of Computing Science
University of Alberta
Edmonton, Alberta T6G 2E8 Canada
{farhang, greiner, maz}@cs.ualberta.ca

Abstract

Decision trees play an essential role in many classification
tasks. In some circumstances, we only want to consider fixed-
depth trees. Unfortunately, finding the optimal depth-d de-
cision tree can require time exponential in d. This paper
presents a fast way to produce a fixed-depth decision tree that
is optimal under the Naive Bayes (NB) assumption. Here,
we prove that the optimal depth-d feature essentially depends
only on the posterior probability of the class label given the
tests previously performed, but not directly on either the iden-
tity nor the outcomes of these tests. We can therefore precom-
pute, in a fast pre-processing step, which features to use at the
final layer. This results in a speedup of O(n/logn), where
n is the number of features. We apply this technique to learn-
ing fixed-depth decision trees from standard UCI repository
datasets, and find this model improves the computational cost
significantly. Surprisingly, this approach still yields relatively
high classification accuracy, despite the NB assumption.

1 Introduction

Many machine learning tasks involve producing a classifi-
cation label for an instance. There is sometimes a fixed cost
that the classifier can spend per instance, before returning a
value; consider for example, per-patient capitation for med-
ical diagnosis. If the tests can be performed sequentially,
then the classifier may want to follow a policy (Sutton &
Barto 1998) — e.g., first perform a blood test, then if its
outcome is positive, perform a liver test; otherwise perform
an eye exam. This process continues until the funds are ex-
hausted, at which point the classifier stops running tests and
returns an outcome; either “healthy” or “sick”.

Such policies correspond naturally to decision trees.
There are many algorithms for learning a decision tree from
a data sample; most systems (Quinlan 1993; Breiman et al.
1984) use some heuristics that greedily seek the decision tree
that best fits the sample, before running a post-processor to
reduce overfitting. This paper focuses on the challenge mo-
tivated above: of finding the best “fixed-cost policy”, which
corresponds to finding the fixed depth decision tree that best
matches the data sample. There are several algorithms for
this task, which typically use dynamic programming to find

*Now at Yahoo Research, Santa Clara
Copyright (©) 2007, authors listed above. All rights reserved.

the “optimal” depth-d decision tree, i.e., the tree that mini-
mizes the 0/1-loss over the training data. These algorithms
are invariably exponential in the depth d, and spend almost
all of their time determining which features to test at final
level, d (Auer, Holte, & Maass 1995). If one is willing to
accept the “Naive Bayes” assumption (Duda & Hart 1973)
— that features are independent of each other given the class
— then there is an efficient way to compute the final layer
of depth-d features. In particular, under this assumption, we
prove that the optimal depth-d feature essentially depends
only on the posterior probability of the class label given the
tests previously performed, but not the outcomes of the in-
dividual tests. We can therefore use a fast pre-processing
step to create a so-called opt-feature list, OFL, that identifies
which feature to use as a function of the posterior distribu-
tion, then use this list to quickly determine the last level of
the tree. This technique results in a speedup of O(n/logn),
where 7 is the number of features, and effectively means we
can compute the optimal depth-d tree in the time typically
required to compute the optimal depth-(d — 1) tree.

Section 2 surveys the relevant literature. Section 3 sum-
marizing our OPTNBDT algorithm and proves the relevant
theories. Section 4 presents empirical results that validates
our approach, by applying it to the standard datasets from the
UCI repository (Newman et al. 1998) and elsewhere. The
webpage (Greiner 2007) provides other information about
this system, and about our experiments. We find that our
approach significantly improves the computational cost of
finding a fixed depth tree, surprising at little or no loss in
accuracy.

2 Literature Review

As noted above, there are many algorithms for learning de-
cision trees. Many algorithms, including C4.5 (Quinlan
1993) and CART (Breiman et al. 1984), begin with a greedy
method that incrementally identifies an appropriate feature
to test at each point in the tree, based on some heuristic
score. Then these algorithms perform a post-processing step
to reduce overfitting. In our context of “shallow” decision
trees, overfitting is not as big a concern, which explains why
many of the algorithms that seek “fixed depth” decision trees
simply return the tree that best fits the data (Holte 1993;
Dobkin, Gunopoulos, & Kasif 1996; Auer, Holte, & Maass
1995). These algorithms can easily be extended to al-

B/\C
N, 7
4

Q
i ®

Figure 1: Decision Tree 77, as it is being built.

low different tests to have different costs (Turney 2000;
Greiner, Grove, & Roth 2002). In general, these algorithms
require O(n?) time to find the best depth-d decision tree
over n variables. While this is a polynomial-time complex-
ity for fixed d, in practice it is not effective except for small
n and tiny d. The results in this paper show that one can
achieve a more efficient process by imposing a constraint —
here the “Naive Bayes” assumption (Duda & Hart 1973) —
to speedup the process.

There is, of course, a large body of work on building clas-
sifiers based on Naive Bayes systems (Domingos & Paz-
zani 1997; Lewis 1998), and on analyzing and characterizing
their classification performance (Chan & Darwiche 2003).
Those results, however, differ significantly from our task,
which explicitly involves learning a decision tree; we use
only the Naive Bayes assumption in modeling the underly-
ing distribution over instances. (But see the empirical com-
parisons in Section 4.)

Several other systems attempt to learn optimal decision
trees. The GTO system (Bennett & Blue 1996) learns a deci-
sion tree by simultaneously optimizing a set of “disjunctive
linear inequalities” — minimizing a nonlinear error func-
tion over a polyhedral region, whose extreme points contain
the optimum solution. The DL8 system (Nijssen & Fromont
2007) uses a dynamic program to produce a decision tree
that optimizes the “ranking function”, which is based on
constraints that involve various properties of the decision
tree, including its training set error, its expected generaliza-
tion error, its number of nodes, and its depth. By contrast,
our goal is to quickly find a “near-optimal” tree, by seeking
a tree that would have optimal classification performance,
under the naive bayes assumption.

Turney (2000) discusses the general challenge of learning
the best classifier subject to some explicit cost constraint.
Here, our “max depth” requirement corresponds to a con-
straint on the cost that the classifier must pay to see the fea-
tures at performance time.

3 OprTNBDT Algorithm

3.1 Foundations

Assume there are n features 7 = {F() ... F(™} where
each feature F'(9) ranges over the rp;) < 7 values Vpy) =

(9, fﬁi)(j) }, and there are two classes C = {+, —}.!
A “decision tree” T is a directed tree structure, where each
internal node v is labeled with a feature F(v) € F, each
leaf £ € L(T) is labeled with one of the classes c(¢) € C,
and each arc descending from a node labeled F' is labeled
with a value f € Vp. We can evaluate such a tree T on a
specific instance f = {F() = fi(J)}j, to produce a value
VAL(T, f) € C as follows: If the tree is a leaf T' = ¢, return
its label c(¢) € C; that is, VAL(T, f) = c(¢). Otherwise, the
root of the tree is labeled with a feature F' € F. We then find
the associated value within the f (say F' = f), and follow the
f-labeled edge from the root to a new subtree; then recur.
The value of VAL(T, f) will be the value of that subtree.
Hence, given the instance f = {A = +, B = —, ...}
and the tree T in Figure 1, the value of VAL(Ty,f) will
be the value of the subtree rooted in the B-labeled node on
this instance (as we followed the A = + arc from the root),
which in turn will be the value of the subsubtree rooted in the
D-labeled node (corresponding to the subsequent B = —
arc), etc. We say a decision tree T is “correct” for a labeled
instance (f,c¢) if VAL(T,f) = c. A labeled dataset is a set
of labeled instances S = {{f(7), (1))1,

Our goal is to find the depth-d decision tree with the max-
imum expected accuracy, given our posterior beliefs, which
are constructed given a naive bayes prior and the dataset
S. To define expected accuracy, we must first define the
notion of a path 7w (v) to any node v in the tree, which is
the sequence of feature-value pairs leading from the root

to that node; hence, the path to the node in Figure 1 is
w() =((A,+), (B,—), (D,—)). We can use this no-
tion to define the probability” of reaching a node, which here

is P(“reaching’) = P(ﬂ'()) = P(A=+B =
D=-).

3

In general, the accuracy of any tree 7' is

> P(w(t)) x Ace((f))

teL(T)

Acc(T) =

over the set of leaf nodes £(7"). Note that this accuracy has
been factored into a sum of the accuracies associated with
each leaf: it is the probability P(7(¢)) of reaching each
leaf node ¢ € L£(T') times the (conditional) accuracy asso-
ciated with that node Accp(¢) = P(C = c(f)|n(£)).
This factoring tells us immediately that we can decide on
the appropriate class label for each leaf node, c* (4|7 (¢)) =
argmax, P(c|m(¢)), with an associated accuracy of

Acc*(m(£)) :rncaXP(c|7r(€)) (1

based only on the single path; i.e., it is independent of the
rest of the tree.

'We use CAPITAL letters for variables and lowercase for val-
ues, and bold for sets of variables.

2All probability values, as well as Accuracy scores, are based
on a posterior generated from a Naive Bayes Prior and the labeled
data S. Note also that we will use various forms of Acc.(-),
for trees, paths and features appended to paths; here, the meaning
should be clear from context.

We are searching for the “best” depth-d tree,
argmaxpepr(q) Acc(T, S), where DT(d) is the set of
decision trees of depth at most d — i.e., each path from
root to any leaf involves at most d variables. An earlier
system (Kapoor & Greiner 2005) precomputed the accuracy
associated with each possible sequence of d tests (requiring
O((7;)r?) time), and then constructed the best tree given
these values, which required O((nr)?) time. Here we
present a different technique that requires less time by
precomputing a data structure that quickly provides the
optimal feature to use for each position in the bottom row.

To understand our approach, consider determining the
feature F(v) to use at the “final internal node” along
a path w(v) — e.g., determine which feature to test at

in Figure 1. As an obvious extension of the above
argument, this decision will depend only on the path 7(v)

to this node. Then for the node, it will depend on

(2) = ((A,4),(B,~),(D,~)). Given our NB
assumption, for any feature F' € F (except the features in 7
— i.e., except for A, B, and D), the component of accuracy
associated with the path that begins with 7 then performs F'
(and then descends to the leaf nodes immediately under this
F),is

Acc(mo F)

_ Zp(mF:f)xAcc*(woF:f)
feve

— ZP(mF:f)xmaxP(C:cMT,F:f)
feve ‘

= ZmaXP(CzqmF:f)
feve

= Z m?xP(C)P(ﬂ'W)P(f‘C) @)
feVr

= P(n)) maxP(C=c|n)P(F=]|C=c)

fEVFE

where Equation 2 is based on the Naive Bayes assumption.
Note that the feature F’ that optimizes Acc(7 o F') will also
optimize

Acer(F) = ﬁACC(ﬂ'OF)
= Z mgXP(C:CMT)P(F:f‘C:C)'
feVr

While our analysis will work for classes that range over
any (finite) number of values, this paper will focus on the
binary case. Letting 2, + = P(C = 4|) and abbreviat-
ing “F'=f”as “f”, we have

B ey P(f]+)
Acc(F) = > maX{ (1—xjr,+)P(f|—) }

fEVFR
P(fl-)

-y T+ P(f]+) if T+ < POFTHFPOT)
(1 —zx4)P(f|—) otherwise.

fEVFE

3)

Acc, (F)

— = max, P(c/z) P(fs;/c)

reen \ / rem
P(f4]-)
\ / o
P(fal-) \\] (f1l+)
i ></ P(f]+)

X3 X4 X2

Figure 2: Computing Acc,(F') (Equation 3).

OPTNBDT(d: int; P(-): distribution over {C'} U F)

Compute opt-feature list
OFL= {F;(z) |z €[0,1],%=1..d}

Build optimal depth-d — 1 tree
using DynamicProgramming

At each length-d — 1 path 7,
with associated probability .+ = P(C =+ |7)

Let F = (F{ (z4,7),- -, Fg_1(x4.7x)). .
Let¢" = min{F; (z4,~) & 7} be the first in F not in 7
Use feature Fj (x) at level d, after

Figure 3: OPTNBDT algorithm.

For fixed values of P(F = f|C = c¢), this Acc.(F)
value does not depend on the features in w nor their val-
ues, but only on x, ;; we can therefore express Acc,(F')
as Acc(F, z. 1) to make this dependency explicit. For any
value of 2 4 € [0, 1], each summand in Equation 3, corre-
sponding to a single F' = f, is the maximum of two lines.
Over the set of rz values, this function is therefore a se-
quence of at most 1 + r linear segments; see Figure 2.

Before beginning to build the actual decision tree, our
OPTNBDT algorithm will first compute these Acc(F7),)
functions for each F'(4). Tt then uses these functions to com-
pute, for each x € [0, 1], the optimal feature:

Ff(z) = arg;nax{Acc(F, x)}. (€))

It also computes the 2nd-best feature Fj(x) for each x
value, as well as F*(z) fori = 3,4,...,d. We refer to
this {F}*(z) | = € [0,1], ¢ = 1..d} dataset as the OFL (“opt-
feature list”).

The OPTNBDT algorithm then uses a dynamic program
to build the tree, but only to depth d — 1. Whenever it
reaches a depth d — 1 node, at the end of the path 7 =
< <F7'r(1)7 fﬂ'(l) >7 <F7'r(2)7 fﬂ’(2) >7) <F7'r(d71)7 fﬂ(d*l) > >’
with associated conditional probability z. 4, it then indexes
this = 4 into the OFL, which returns an ordered list of d fea-

tures, F (21 ») = (Ff (x4 .r),..., Fi(xy). OPTNBDT
then returns the first F} that is not in the F (x4) list. This

algorithm is shown in Figure 3.
To make this more concrete, imagine that in Figure 1 the

list associated with Tl'() = ({A,+),(B,=),(D,=))

and 2 4 = 0.29 was F(0.29) = (B, A, E, D). While we
would like to use the first value F}*(0.29) = B as it appears
to be the most accurate, we cannot use it as this feature has
already been appeared in this 7 path and therefore Equa-
tion 3 does not apply. OPTNBDT would then consider the
second feature, which here is F5(0.29) = A. Unfortunately,
as that appears in 7 as well, OPTNBDT have to consider the
third feature, F(0.29) = E. Since that does not appear,

OPTNBDT labels the node with this “E” feature.

3.2 Implementation

This section provides the details of our implementation,
which requires recursively computing £ = z, 4, and com-
puting and using the opt-feature list, OFL.

Computing x, : It is easy to obtain z, 4 as we grow the
path 7 in the decision tree. Here, we maintain two quantities,
yi = P(n,C = +4)andy, = P(m,C = —), then for
+
iy Formo = b, =
P(C = c) forc € {+, —}. Now consider adding one more
feature-value pair (F, f) to 7, to form w1 = meo (F, f).
Then thanks to our NB assumption, yz = = yz, X P(F =

F1c=e).

Computing and using the OFL: As noted above, OFL corre-
sponds to a set of piecewise linear functions (see Figure 2),
each of which is the union of a finite number of linear func-
tions. Formally, a piecewise linear function f : [0,1] — R
(with k pieces) can be described by a sequence of real num-
ber triples { (a1, m1,b1), ..., (ar, my,by)) where the a;s
are endpoints such that 0 = a9 < a1 < ... < ax = 1,
and foralli € {1,...,k} we have f(x) = m;x + b; for all
x € [ai_l,ai].

A linear function is a piecewise linear function with one
piece. The sum of two piecewise linear functions with k;
and ko pieces is a piecewise linear function with no more
than k; + ko — 1 pieces. We can compute this sum in O(k; +
ko) time, as each component of the sum f = f; + f3 is
just the sum of the relevant m and b from both f; and fo.
Similarly, the maximum of two piecewise linear functions
with k1 and ko pieces is a piecewise linear function with no
more than (k1 + ko) pieces. This computation is slightly
more involved, but can be done in a similar way.

For each feature F and each value z. € [0, 1], we need to
compute the sum over all |Vg| < r values of F' = f:

Acco(F) = > Accn(F = f)

fEVFE

any path , then set x, ;. =

Acc,(F=f)=

)

we POFD |4) ifon s <

_ PO 14)+P(sD | -)
(1 -z 4)P(fi(J) | —) otherwise.

We compute this total by adding the associated |Vp| <

r piecewise linear functions, {Acc,(F = f)}rev.. We

can do this recursively: Letting r = |Vp| and ¢; =

Acc,(F = f;) be the i*" function, we first define £15 =

{1 + 05 as the sum of ¢; and ¥, f34 = f3 + {4, and so
forth until £, , = €,_1 + ¢,; we nextlet {14 = {12 + C34,
U5 = 56 + {78, etc.; continuing until computing ¢; , which
is the sum over all r functions. By recursion, one can prove
that this resulting piecewise linear function has no more than
r + 1 pieces, and that the time complexity is O(r logr), due
to log r levels of recursion, each of which involves a total of
O(2! x r/2%) = O(r) time.

Note that Equation 4 is the maximum of all of the piece-
wise linear functions {Acc,.(')} pe r that were constructed
in the previous step. We again use a divide and conquer tech-
nique to reduce the problem of maximizing over n piece-
wise linear functions to sequence of log n problems, each of
maximizing over two piecewise linear functions. An analy-
sis similar to mergesort shows that the overall computational
cost of the process is O(nr log nr).

When Fy(-) (Equation 4) involves k = O(nr) lin-
ear pieces at arbitrary points, we can compute F;(x) in
O(logk) = O(Innr) time, using a binary search to find
the appropriate segment and a constant amount of time to
compute the value given this segment. As we are comput-
ing this maximum value, we can also specify which feature
represents this segment.

We can compute F(z) for i = 2,3,...,d in a simi-
lar way. Consequently, when we compute the maximum of
two functions, we also store the d highest functions at ev-
ery point. Note the amount of memory storage required here
increases linearly in d.

Hence, each lookup function can be constructed in
O(nrlog(nr)) time, requires O(nr) memory to store, and
most importantly, can be queried (to find the optimal value
for a specific z) in O(log(nr)) time. Note that a naive imple-
mentation that merely tests all the features in the last level
of the tree to construct the leaves (called “NBDT” below)
will require a time linear in nr, whereas our technique has
complexity logarithmic in nr.

Collectively, these results show
Theorem: Given any labeled dataset S over n r-ary vari-
ables and binary class labels, the OPTNBDT algorithm
(Figure 3) will compute the depth-d decision tree that has
the highest accuracy under the Naive Bayes assumption.
Moreover; it requires O(n|S| + (nr)?~tdlog(nr)) time?
and O(d(nr)?) space.

4 Empirical Results

We performed an extensive set of experiments to compare
the performance of OPTNBDT to various learners, both
state-of-the-art decision tree learners, and Naive Bayes sys-
tems. This section first describes the datasets and experi-
mental setup, then the experimental results and finally our
analyses.

Experimental setup: The experiments are performed using
nine datasets from UCI Machine Learning Repository (New-
man et al. 1998) as well as our own Breast Cancer and
Prostate Cancer “single nucleotide polymorphism” datasets

3The additional n|S| term is the time required to compute the
basic Naive Bayes statistics over the dataset .S.

Table 1: Datasets used in the experiments

Num. Num. Num. | Abbre-
Dataset features | instances | feature | viation
values
Tic- 10 985 27 Tic
tac-toe
Flare 10 1066 31 Flr
Hepatite 13 80 26 Hep
Crx 13 653 30 Crx
Vote 16 435 48 Vot
Lymph- 18 145 50 Lym
ography
Chess 36 3196 73 Chs
Connect-4 42 5000 126 Con
Prostate- 47 81 126 Prs
cancer
Promoters 58 106 228 Prm
Breast- 98 332 392 Snp
cancer

obtained from our colleagues at the Cross Cancer Institute.
All the selected datasets have binary class labels. Table 1
characterizes these datasets.

The experiments are performed using 5-fold cross valida-
tion, performed 20 times; we report the average error rate
and standard deviation across these trials. We compare the
classification performance and running time of OPTNBDT
with different depths — here 2, 3 and 4 — to the following
fixed-depth decision trees:

e 3-ID3 (Quinlan 1986) is a decision tree learning algorithm
that uses an entropy based measure as its splitting crite-
rion, but stops at depth 3.

e /-NBDT (Holte 1993) is a decision stump that splits the
data with only one feature — i.e., it is a depth-one deci-
sion tree.

Experimental results: Figure 4 shows the average classifi-
cation error rate and standard deviation of each algorithm.*
We see that no algorithm is consistently superior over all the
datasets. While deeper decision trees sometimes improve
classification performance (classification accuracy increases
with the depth of the tree for the Hep, Chs, Con, and Prm
datasets), deeper trees can cause overfitting, which may ex-
plain why shallower trees can be better: Decision stumps,
which only split the data based on one feature, outperform
the other trees for the £1r, crx, and vot datasets.

Figure 4 shows that the classification error of 3-
OPTNBDT is often lower than the errors from 3-ID3, which
shows that the optimal Naive Bayes-based decision trees can
perform better than heuristic, entropy-based trees. In fact, a
paired student’s t-test over these eleven datasets show that
both 3-OPTNBDT and 2-OPTNBDT are statistically better
(more accurate) than 3-ID3 (at p < 0.05). As expected,

“We omit the 4-OPTNBDT result for snp, as that took too long
to run; see Figure 6.

60.0%
0 4-OptNbDt m 3-OptNbDt @ 2-OptNbDt 0O 1-NbDt m 3-ID3 m Naive-Bayes|

50.0% I
S
g 40.0% 1
5
S 30.0% - I
®
2
2 20.0%
L
o

10.0% -

0.0% -

tic fir hep crx vot lym chs con prs prm snp
datasets

Figure 4: Average classification error (with 1 standard de-
viation bars) for 1-NBDT, 2-OPTNBDT, 3-OPTNBDT, 4-
OpPTNBDT, 3-ID3 and Naive Bayes classifiers.

we found that (on average) the error improves for deeper
trees: 4-OPTNBDT (0.197) < 3-OPTNBDT (0.220) < 2-
OPTNBDT (0.238) < 1-NBDT (0.250), although none of
the methods are significantly better than its neighbors. (Re-
call that all of these are better than 3-ID3, whose average is
0.281.)

Figure 4 also includes the results of the Naive Bayes clas-
sifier. While it does works fairly well in many of these
datasets, note that it is not a contender: recall that our goal
is to produce an effective shallow decision tree, which in-
volves only a (small) subset of the features, probed sequen-
tially. However, these Naive Bayes systems will use all of
the feature values, which must all be available.

Running Time: Now consider the running time of these
algorithms, as well as 3-NBDT, which implements the dy-
namic programming algorithm that produces the fixed depth
decision tree that is optimal over the training data, given the
Naive Bayes assumption — i.e., this d-NBDT algorithm ex-
plicitly constructs and tests all possible leaves up to depth d,
whereas d-OPTNBDT uses a pre-computed opt-feature list
(OFL) to efficiently construct the final (depth d) level of the
decision tree. Of course, these two algorithms give exactly
the same answers.

The previous section proved that OPTNBDT is
O(log(n)/n) times faster than NBDT, where n is the
number of features. To explore this claim empirically, we
extracted eighteen artificial datasets from the Promoters
Prm) dataset, using 3¢ features, for ¢ = 1 : 18. Figure 5
plots log(f(n) x n/logn) versus log(g(n)), where
f(n) (resp., g(n)) is the run-time that 3-NBDT (resp.,
3-OPTNBDT) requires for n features. This confirms that
OPTNBDT is significantly more efficient than NBDT,
especially when there are many features in the dataset.

Figure 6 shows the running time of the various algorithms:
Each line corresponds to one of the algorithms, formed by
joining a set of (z, y) points, whose z value is the total num-
ber of feature values >, 7; = O(nr) of a particular dataset,
and y is the (log of the) run time of the algorithm on that

w o ~
S S =]

log (f(n) * n/log(n))

=)

0.90

0.70

0.010.05 0.11 0.28 0.46 0.70 0.94 1.19 1.42 1.67 1.91 2.16 2.41 2.64 2.86 3.08 3.33 3.71
log(g(n))

Figure 5: Comparing 3-OPTNBDT vs 3-NBDT: ¢g(n) and
f(n) = time that 3-NBDT and 3-OPTNBDT require for n
features, respectively.

dataset. As expected, the 3-ID3 points are fairly indepen-
dent of this number of features. The other lines, however,
appear fairly linear in this log plot, at least for larger values
of 3 ; T4 this is consistent with the Theorem. Finally, to un-
derstand why the 4-OPTNBDT timing numbers are virtually
identical to the 3-NBDT numbers, recall that 4-OPTNBDT
basically runs 3-NBDT to produce a depth-3 decision, then
uses the OFL to compute the 4th level. These numbers show
that the time required to compute OFL, and to use it to pro-
duce the final depth, is extremely small. (The actual timing
numbers appear in (Greiner 2007).)

5 Conclusion

Extensions: (1) While this paper only discusses how to use
the opt-feature list to fill in the features at the last level of the
tree, our techniques are not specific to this final row. These
ideas can be extended to pre-compute an optimal tree list
with the final depth-q subtree at the end of a path given the
label posterior, rather than just the final internal node; i.e.,
so far, we have dealt only with ¢ = 1. While this will sig-
nificantly increase the cost of the precomputational stage, it
should provide a signifiant computational gain when grow-
ing the actual tree. (2) A second extension is to develop
further tricks that allow us to efficiently build and compare
a set of related decision trees — perhaps trees that are based
on slightly different distributions, obtained from slightly dif-
ferent training samples. This might be relevant in the con-
text of some ensemble methods (Dietterich 2000), such as
boosting or bagging, or in the context of budgeted learning
of bounded classifiers (Kapoor & Greiner 2005). (3) Our
approach uses a simple cost model, where every feature has
unit cost. An obvious extension would allow different fea-
tures to have different costs, where the goal is to produce a
decision tree whose “cost depth” is bounded.>

5The “cost depth” of a leaf of a decision tree is the sum of the
costs of the tests of the nodes connecting the root to this leaf; and
the “cost depth” of a tree is the maximal cost depth over the leaves.

10000.0

1000.0

100.0

=
o
o

©

Average running time (log seconds)
o
o

=3
|

—a—4-OptNbDt
—a—3-OptNbDt
—e— 2-OptNbDt
——1-NbDt
—k—3-D3
—o—3-NbDt

%

150 200 250 300 350 400
total number of feature values
dataset ordering: hep, tic, crx, flr, vot, lym, chs, con, prs, prm, snp

100 450

o

50

Figure 6: Run-time (log of seconds) of 4-OPTNBDT, 3-
OPTNBDT, 2-OPTNBDT, 1-NBDT, 3-ID3, and 3-NBDT al-
gorithms

Contributions: There are many situations where we need
to produce a fixed-depth decision tree — i.e., the bounded
policy associated with per-patient capitation. This paper has
presented OPTNBDT, an algorithm that efficiently produces
the optimal such fixed-depth decision tree, given the Naive
Bayes assumption — i.e., assuming that the features are in-
dependent given the class. We proved that this assumption
implies that the optimal feature at the last level of the tree es-
sentially depends only on z, € [0, 1], the posterior proba-
bility of the class label given the tests previously performed.
We then describe a way to efficiently pre-compute which
feature is best, as a function of this probability value, and
then, when building the tree itself, to use this information to
quickly assign the final feature on each path. We prove the-
oretically that this results in a speedup of O(n/logn) com-
pared to the naive method of testing all the features in the last
level, then provide empirical evidence, over a benchmark of
eleven datasets, supporting this claim. We also found that
OPTNBDT is not just efficient, but (surprisingly, given its
NB assumption) is often more accurate than entropy based
decision tree learner like ID3.

6 Acknowledgements

All authors gratefully acknowledge the support from the
Alberta Ingenuity Centre for Machine Learning (AICML),
NSERC, and iCORE. We also appreciate the many insight-
ful comments from the anonymous referees.

References

Auer, P.; Holte, R. C.; and Maass, W. 1995. Theory and
applications of agnostic PAC-learning with small decision
trees. In ICML.

Bennett, K., and Blue, J. A. 1996. Optimal decision trees.
Rensselaer Polytechnic Institute Math Report (214).

Breiman, L.; Friedman, J.; Olshen, J.; and Stone, C.
1984. Classification and Regression Trees. Monterey, CA:
Wadsworth and Brooks.

Note “cost depth” equals “depth” if all features have unit cost.

Chan, H., and Darwiche, A. 2003. Reasoning about
bayesian network classifiers. In UAI, 107-116.

Dietterich, T. G. 2000. Ensemble methods in machine
learning. In First International Workshop on Multiple Clas-
sifier Systems.

Dobkin, D.; Gunopoulos, D.; and Kasif, S. 1996. Comput-
ing optimal shallow decision trees. In International Sym-
posium on Artificial Intelligence and Mathematics.

Domingos, P., and Pazzani, M. 1997. On the optimality of
the simple bayesian classifier under zero-one loss. Machine
Learning 29:103-130.

Duda, R. O., and Hart, P. E. 1973. Pattern Classification
and Scence Analysis. Wiley.

Greiner, R.; Grove, A.; and Roth, D. 2002. Learning cost-
sensitive active classifiers. Artificial Intelligence 139:137—
174.

Greiner. 2007. http://www.cs.ualberta.ca/
“greiner/RESEARCH/DT-NB.

Holte, R. C. 1993. Very simple classification rules perform
well on most commonly used datasets. Machine Learning
11:63-91.

Kapoor, A., and Greiner, R. 2005. Learning and classi-
fying under hard budgets. In Proceedings of the Sixteenth
European Conference on Machine Learning (ECML-05),
170-181. Springer.

Lewis, D. D. 1998. Naive Bayes at forty: The indepen-
dence assumption in information retrieval. In ECML.

Newman, D. J.; Hettich, S.; Blake, C. L.; and Merz,
C. J. 1998. UCI Repository of Machine Learning
Databases. University of California, Irvine, Dept. of In-
formation and Computer Sciences: http://www.ics.
uci.edu/ mlearn/MLRepository.html.
Nijssen, S., and Fromont, E. 2007. Mining optimal de-
cision trees from itemset lattices. In The 13th Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD2007).

Quinlan, J. R. 1986. Induction of decision trees. Machine
Learning 1:81-106.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing. MIT Press.

Turney, P. D. 2000. Types of cost in inductive concept
learning. In Workshop on Cost-Sensitive Learning (ICML-
2000).

