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Abstract

In this paper we pose the study of consistent belief func-
tions (cs.b.f.s) in the framework of the geometric ap-
proach to the theory of evidence. As cs.b.f.s are those
belief functions whose plausibility assignment is a pos-
sibility distribution, their study is a step towards a uni-
fied geometric picture of a wider class of fuzzy mea-
sures. We prove that, analogously to consonant be-
lief functions, cs.b.f.s form a simplicial complex, and
point out the similarity between the consistent complex
and the complex of singular belief functions, i.e. belief
functions whose core is a proper subset of their domain.
Finally, we argue that the notion of complex brings
together the possibilistic and probabilistic approxima-
tion problems by introducing a convex decomposition
of b.f.s in terms of “consistent coordinates” on the com-
plex, closely related to the pignistic transformation.

1 Introduction
The theory of evidence (Shafer 1976) is one the most popular
approaches to uncertainty description. The notion of belief
function (b.f.) was originally introduced by A. Dempster
(Dempster 1968) in terms of multi-valued maps, but equiv-
alent alternative definitions can be given in terms of random
sets (Nguyen & Wang 1997), compatibility relations, inner
measures (Fagin & Halpern 1988), and credal sets. In ro-
bust Bayesian statistics there is a large literature on the study
of convex sets of probability distributions (Cozman 1999;
Berger 1990; Seidenfeld & Wasserman 1993). Melkonyan
et al. (Melkonyan & Chambers 2006), for example, recently
used results from convex geometry to obtain representations
of the prior and posterior degrees of imprecision in terms of
width functions and difference bodies.
Instead of working in the probability simplex, it is possible
to reason on a different level of abstraction by represent-
ing belief measures as points of a Cartesian space (Cuzzolin
2007b). As a b.f. b : 2Θ → [0, 1] is completely specified by
its N − 1, N = 2|Θ| belief values

{b(A) ∀A ⊆ Θ, A 6= ∅}
and can then be seen as a vector

v = [vA = b(A), ∅ ( A ⊆ Θ]′
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of RN−1 (where ′ denotes the transpose of a matrix) which
live in a simplex called ”belief space”.
This ”geometric approach” was originally motivated by the
approximation problem: new probabilistic approximations
of belief functions have been inferred by geometric consid-
erations (Cuzzolin 2007e), and new properties of classical
ones investigated (Cuzzolin 2007a). However, it can also be
seen as the symptom of a strict relationship between com-
binatorics and subjective probability. This link has never
been systematically explored, even though some work has
been recently done in this direction, specially by M. Grabish,
Yao (Yao & Lingras 1998), and Barthelemy (Barthelemy
2000). For instance, new models for the theory of evi-
dence based on the Moebius inverses of plausibility and
commonality functions can be formulated (Cuzzolin 2007d).
In this perspective we have recently started to study the ge-
ometric properties of consonant belief functions (co.b.f.s)
(Cuzzolin 2004b). Consonant and consistent belief func-
tions (cs.b.f.s) (Dubois & Prade 1990; Joslyn & Klir 1992;
Baroni 2004) are the counterparts in the theory of evidence
of possibility measures (Dubois & Prade 1988).

1.1 Contribution and outline

In this paper we move forward to analyze the convex ge-
ometry of consistent belief functions as an additional step
towards a unified geometric picture of a wider class of un-
certainty measures.
After introducing the basic notions of theory of evidence and
possibility theory, and the role of consistent b.f.s as counter-
parts of plausibility distributions in the ToE (Section 2), we
briefly recall in Section 3 the geometric approach to b.f.s.
In Section 4 we prove that, analogous to the case of con-
sonant b.f.s, the space of consistent b.f.s forms a simpli-
cial complex (Dubrovin, Novikov, & Fomenko 1986). The
similarity between consistent complex CS and the complex
of non-combinable belief functions Sing is illustrated and
commented in Section 5. Finally, in Section 6 we consider
the consistent approximation problem in the framework of
the consistent simplex, and show that each b.f. can be given
a set of “consistent” coordinates which are strictly related to
the pignistic transformation (Smets & Kennes 1994).



2 Two uncertainty theories
2.1 Belief functions
In the theory of evidence (Shafer 1976) a basic probability
assignment (b.p.a.) over a finite set (frame of discernment)
Θ is a function m : 2Θ → [0, 1] on its power set 2Θ = {A ⊆
Θ} such that

m(∅) = 0,
∑

A⊆Θ

m(A) = 1, m(A) ≥ 0 ∀A ⊆ Θ.

Subsets of Θ associated with non-zero values of m are called
focal elements (f.e.s), and their intersection core:

Cb
.=

⋂

A⊆Θ : m(A)6=0

A.

The belief function (b.f.) b : 2Θ → [0, 1] associated with a
b.p.a. m on Θ is defined as

b(A) =
∑

B⊆A

m(B).

Conversely, the unique b.p.a. mb associated with a given
belief function b can be recovered by means of the Moebius
inversion formula

mb(A) =
∑

B⊆A

(−1)|A\B|b(B). (1)

A dual mathematical representation of the evidence encoded
by a belief function b is the plausibility function (pl.f.) plb :
2Θ → [0, 1], where

plb(A) .= 1− b(Ac) = 1−
∑

B⊆Ac

mb(B) =
∑

B∩A 6=∅
mb(B).

In the theory of evidence a probability function is simply a
special belief function assigning non-zero masses to single-
tons only (Bayesian b.f.): mb(A) = 0 for |A| > 1. Con-
sonant belief functions, i.e. b.f.s whose focal elements are
nested, are characterized by the following Proposition.
Proposition 1. If b is a b.f. with pl.f. plb, then b is consonant
iff

plb(A) = max
x∈A

plb(x)

for all non-empty A ⊆ Θ.
A b.f. is said to be consistent if its core is non-empty.

Consonant b.f.s are obviously consistent, but the vice-versa
does not hold.

2.2 Possibility measures
Possibility theory (Dubois & Prade 1988) concerns instead
possibility measures, i.e. functions Pos : 2Θ → [0, 1] such
that Pos(∅) = 0, Pos(Θ) = 1 and

Pos(
⋃

i

Ai) = sup
i

Pos(Ai)

for any family of subsets {Ai|Ai ∈ 2Θ, i ∈ I}, where I
is an arbitrary set index. Each possibility measure Pos is
uniquely characterized by a membership function or possi-
bility distribution π : Θ → [0, 1], π(x) .= Pos({x}), via the
formula

Pos(A) = sup
x∈A

π(x).

2.3 A bridge between belief and possibility
Many authors, like Yager (Yager 1999) and Romer (Roemer
& Kandel 1995) among the others, have studied the connec-
tion between fuzzy theory and ToE (Caro & Nadjar 1999).
Klir et al. (Klir, Zhenyuan, & Harmanec 1997) and Heilpern
(Heilpern 1997), for instance, discussed the relations among
fuzzy and belief measures and possibility theory. The points
of contact between evidential formalism and possibility the-
ory have been briefly investigated in (Smets 1990).
Many of the studies cited above have pointed out that possi-
bility measures coincide in the theory of evidence with the
class of consonant belief functions. Let us call plausibility
assignment (pl.ass.) p̄lb (Joslyn 1991) the restriction of the
plausibility function to singletons

p̄lb(x) = plb({x}).
From Proposition 1 it follows immediately that
Proposition 2. The plausibility function plb associated with
a belief function b on a domain Θ is a possibility measure
iff b is consonant, with the pl.ass. playing the role of the
membership function: π = p̄lb.

2.4 Cs.b.f.s and possibility distributions
However, it is not necessary for a belief function to be con-
sonant in order for its plausibility assignment to be an ad-
missible possibility distribution (Joslyn 1991).
Lemma 1. b is consistent iff ∃ x ∈ Θ s.t. p̄lb(x) = 1.

p̄lb(x) = 1 for some x ∈ Θ is equivalent to∑
A3x mb(A) = 1. This is true iff

⋂

mb(A)6=0

A 3 x 6= ∅.

Theorem 1. The plausibility assignment p̄lb associated with
a b.f. b is a possibility distribution iff the b.f. b is consistent.

Proof. Given Lemma 1 this is equivalent to say that p̄lb is
a possibility distribution iff p̄lb(x) = 1 for some x ∈ Θ.
But by definition of possibility measures Pos(∪iAi) =
supi Pos(Ai) and Pos(Θ) = 1 so that

Pos(Θ) = 1 = Pos(∪x∈Θx) = sup
x

Pos(x) = sup
x

π(x)

for all membership functions: π(x) = 1 for some x ∈ Θ.

2.5 A unified description in terms of complexes
Possibility theory (in the finite case) is then embedded in the
ToE. Two are the elements of this relationship: consonant
b.f.s as representatives of possibility measures, and consis-
tent b.f.s as counterparts of membership functions. As we
will see in Section 5 the notion of consistency is also re-
lated to that of combinability in Dempster’s framework, as
the condition under which belief measures can be merged is
expressed in terms of possibility distributions.
Both semantics of consistent b.f.s can be seen in an unified
fashion by recurring to the language of convex geometry,
and in particular the notion of simplicial complex (Dubrovin,



Novikov, & Fomenko 1986). The formalism of simplicial
complexes is powerful enough to describe both the nexus be-
tween consistency and combinability, and the link between
possibilistic and probabilistic approximation. We first recall
the bases of the geometric approach to uncertainty theory.

3 A geometric approach
3.1 The space of belief functions
Given a frame of discernment Θ, a b.f. b : 2Θ → [0, 1] is
completely specified by its N − 1 belief values

{b(A), A ⊆ Θ, A 6= ∅},
N

.= 2|Θ|, and can then be represented as a point of RN−1.
The belief space associated with Θ is the set of points B of
RN−1 which correspond to b.f.s. Let us call

bA
.= b ∈ B s.t. mb(A) = 1, mb(B) = 0 ∀B 6= A (2)

the unique b.f. assigning all the mass to a single subset A of
Θ (A-th basis belief function).
We proved that (Cuzzolin 2007b), denoting by Eb the list of
focal elements of b,
Proposition 3. The set of all the belief functions with focal
elements in a given collection L is closed and convex in B:

{b : Eb ⊆ L} = Cl(bA : A ∈ L),

where Cl denotes the convex closure operator:

Cl(b1, ..., bk) =
{

b ∈ B : b = α1b1 + · · ·+ αkbk,∑

i

αi = 1, αi ≥ 0 ∀i
}

.

As a consequence, the belief space B is the convex closure
of all the basis belief functions bA,

B = Cl(bA, ∅ ( A ⊆ Θ).

More precisely B is an N − 2-dimensional simplex, i.e. the
convex closure of N − 1 (affinely independent (Dubrovin,
Novikov, & Fomenko 1986)) points of the Euclidean space
RN−1. The faces of a simplex are all the simplices generated
by a subset of its vertices. Each belief function b ∈ B can be
written as a convex sum as

b =
∑

∅(A⊆Θ

mb(A)bA. (3)

Since a probability is a b.f. assigning non zero masses to
singletons only, Proposition 3 implies that the set P of all
Bayesian b.f.s is the simplex

P = Cl(bx, x ∈ Θ).

3.2 Binary case
As an example let us consider a frame of discernment con-
taining only two elements, Θ2 = {x, y}. In this very sim-
ple case each b.f. b : 2Θ2 → [0, 1] is completely deter-
mined by its belief values b(x), b(y) as it is always true that
b(Θ) = 1, b(∅) = 0 ∀b ∈ B. We can then represent b as the
vector

[b(x) = mb(x), b(y) = mb(y)]′

of RN−2 = R2 (since N = 22 = 4). Since mb(x) ≥
0, mb(y) ≥ 0, and mb(x) + mb(y) ≤ 1 the set B2 of all
the possible belief functions on Θ2 is the triangle of Figure
1, whose vertices are the points bΘ = [0, 0]′, bx = [1, 0]′,
by = [0, 1]′ which correspond respectively to the vacuous
belief function bΘ (mbΘ(Θ) = 1), the Bayesian b.f. bx with
mbx(x) = 1, and the Bayesian b.f. by with mby (y) = 1.
The region P2 of all Bayesian b.f.s on Θ2 is the segment

b =[0,0]'
Θ

b =[0,1]'y

b =[1,0]'
x

b

B

P

m (x)

m (y)
b

b

CO

CO

2

2

x

y

Figure 1: The belief space B for a binary frame is a triangle
in R2 whose vertices are the basis b.f.s focused on {x}, {y}
and Θ, (bx, by, bΘ respectively). The probability region is
the segment Cl(bx, by), while consonant and consistent b.f.s
live in the union of two segments CSx = COx = Cl(bΘ, bx)
and CSy = COy = Cl(bΘ, by).

Cl(bx, by). In the binary case consonant belief functions
can have as sets of focal elements one between {{x}, Θ2}
and {{y},Θ2}. Therefore the space of co.b.f.s CO2 is the
union of two convex components

CO2 = COx ∪ COy = Cl(bΘ, bx) ∪ Cl(bΘ, by)

and coincides with the region CS2 of consistent b.f.s, as the
latter cannot have both {x} and {y} as focal elements.

3.3 The consonant complex
In the general case (Cuzzolin 2004b) the geometry of co.b.f.s
can be described by means of the notion of simplicial com-
plex (Dubrovin, Novikov, & Fomenko 1986).
Definition 1. A simplicial complex is a collection Σ of sim-
plices which satisfies the following properties:
1. if a simplex belongs to Σ, then all its faces of any dimen-
sion belong to Σ;
2. the intersection of any two simplices is a face of both the
intersecting simplices.

Let us consider for instance two triangles (2-dimensional
simplices) in R2. Roughly speaking, the second condition
says that their intersection cannot contain points of their in-
teriors (Figure 2-left) or be an arbitrary subset of their bor-
ders (middle), but has to be a face (right, in this case a single
vertex). It can be proven that (Cuzzolin 2004b)
Proposition 4. The region CO of consonant belief functions
in the belief space is a simplicial complex.



Figure 2: Constraints on the intersection of simplices in a
complex. Only the right-hand pair meets condition 2. of the
definition of simplicial complex.

More precisely, CO is a collection of maximal simplices
Cl(bA1 , ..., bAn), each of them associated with a maximal
chain of subsets in 2Θ: A1 ⊂ · · · ⊂ An, |Ai| = i. In the bi-
nary example COx and COy are the two maximal simplices
forming a simplicial complex (as they intersect in a vertex).

4 Geometry of the consistent subspace
As co.b.f.s and cs.b.f.s are associated with possibility mea-
sures and distributions respectively, it is natural to conjecture
that consistent belief functions may have a similar geometric
behavior. All possible lists of f.e.s associated with consistent
b.f.s obviously correspond to all possible collections of in-
tersecting events:

{A1, ..., Am ⊆ Θ :
m⋂

i=1

Ai 6= ∅}.

Geometrically, Proposition 3 implies that all the b.f.s whose
focal elements belong to such a collection form the sim-
plex Cl(bA1 , ..., bAm). This collection is “maximal” when
it is not possible to add another event Am+1 such that
∩m+1

i=1 Ai 6= ∅. Collections of events with non-empty in-
tersection are maximal iff they have the form

{A ⊆ Θ : A 3 x} (4)

for some singleton x ∈ Θ. By Proposition 3 the region of
cs.b.f.s is the union of a number of simplices, each associ-
ated with a maximal collection of the form (4):

CS =
⋃

x∈Θ

Cl(bA, A 3 x).

The number of such maximal simplices of CS is then obvi-
ously the number of singletons, i.e. the cardinality n

.= |Θ|
of Θ. Each of them has

|{A : A 3 x}| = |{A ⊆ Θ : A = {x} ∪B, B ⊂ {x}c}| =
= 2|{x}

c| = 2n−1 vertices, so that their dimension as sim-
plices of B is 2n−1 − 1 = dimB

2 (as the dimension of the
whole belief space is dimB = 2n − 2).
As bΘ belongs to all maximal simplices CS is connected.

4.1 A ternary example
In the case of a frame of size 3 Θ = {x, y, z} all b.f.s b ∈ B3

are 6-dimensional vectors:

[b(x), b(y), b(z), b({x, y}), b({x, z}), b({y, z})]′.

Let us pick for instance two possible cores C1 = {x, y}
and C2 = {x}. The lists of focal elements associated with
cs.b.f.s with cores C1 and C2 are respectively

Ex
b = {A 3 x} = {{x}, {x, y}, {x, z},Θ}
Ex,y

b = {A ⊇ {x, y}} = {{x, y}, Θ} ( Ex
b

which confirms that all maximal lists of f.e.s for consistent
b.f.s are associated with singletons of Θ (x in this case). In
the ternary case the maximal collections (4) of consistent
f.e.s are then {A 3 x}, {A 3 y}, and {A 3 z}. The number
of simplicial components is 3, and their dimension |{A 3
x}| − 1 = 3:

Cl(bA : A 3 x) = Cl(bx, b{x,y}, b{x,z}, bΘ),
Cl(bA : A 3 y) = Cl(by, b{x,y}, b{y,z}, bΘ),
Cl(bA : A 3 z) = Cl(bz, b{x,z}, b{y,z}, bΘ).

The geometry of consistent belief functions in the ternary
frame can then be represented as in Figure 3.
The consonant subspace CO3, for comparison, is the union

CS

Θ
b

zb

xb yb

{y,z}bb

b

3

{x,y}

{x,z}

Figure 3: The consistent CS3 subspace for Θ = {x, y, z}.

of the six simplices Cl(bx, b{x,z}, bΘ), Cl(bx, b{x,y}, bΘ),
Cl(by, b{x,y}, bΘ), Cl(by, b{y,z}, bΘ), Cl(bz, b{y,z}, bΘ),
and Cl(bz, b{x,z}, bΘ) which are also faces of CS3.

4.2 The consistent complex
The region of consistent b.f.s is indeed also a simplicial com-
plex, i.e. a collection of simplices satisfying Definition 1.
Theorem 2. CS is a simplicial complex.

Proof. Property 1. of Definition 1 is trivially satisfied. As a
matter of fact, if a simplex Cl(bA1 , ..., bAn) corresponds to
focal elements with non-empty intersection, clearly points
of any face of this simplex (obtained by selecting a subset
of vertices) will be b.f.s with non-empty core, and will then
correspond to cs.b.f.s. About property 2., consider the inter-
section of two maximal simplices of CS associated with two
distinct cores C1, C2 ⊂ Θ:

Cl(bA : A ⊇ C1) ∩ Cl(bA : A ⊇ C2).
Now, each convex closure of points b1, ..., bm in a Cartesian
space is included in the affine space they generate:

Cl(b1, ..., bm) ( a(b1, ..., bm) .=
.=

{
b : b = α1b1 + · · ·+ αmbm,

∑

i

αi = 1
}



(since this just means that we relax the positivity constraint
on the coefficients αi). But the basis b.f.s {bA : ∅ (
A ( Θ} are linearly independent (as it is straightforward
to check), so that

a(bA, A ∈ L1) ∩ a(bA, A ∈ L2) 6= ∅ ⇔ L1 ∩ L2 6= ∅
where L1, L2 are lists of subsets of Θ. Here L1 = {A ⊆ Θ :
A ⊇ C1}, L2 = {A ⊆ Θ : A ⊇ C2}, so that the condition is

{A ⊆ Θ : A ⊇ C1} ∩ {A ⊆ Θ : A ⊇ C2} =
= {A ⊆ Θ : A ⊇ C1 ∪ C2} 6= ∅.

As C1 ∪ C2 ⊇ C1, C2 we have that Cl(bA, A ⊇ C1 ∪ C2) is a
face of both simplices.

5 The twin geometry of consistency and
combinability

The geometric approach to the theory of evidence can be ap-
plied in particular to possibility theory by analyzing the ge-
ometry of consonant and consistent belief functions. Some
sort of duality seems to appear, as the geometric counter-
parts of belief measures are simplices, while the geometric
loci of possibility measures and assignments are simplicial
complexes (see Figure 4-left).
A similar duality appears when considering the relationship

belief measures,
probability measures

conditional
subspace

possibility measures,
assignments

singular
subspace

Figure 4: A pictorial representation of geometric dualities
between notions of uncertainty theory.

between the notion of consistency and that of combinability
in Dempster’s theory.
Definition 2. The orthogonal sum or Dempster’s sum of two
b.f.s b1, b2 on Θ is a new belief function b1 ⊕ b2 on Θ with
b.p.a.

mb1⊕b2(A) =
∑

B∩C=A mb1(B) mb2(C)∑
B∩C 6=∅mb1(B) mb2(C)

where mbi denotes the b.p.a. associated with bi.
When the denominator of the above equation is nil the two

functions are said to be non-combinable. Now, we have seen
(Cuzzolin 2004a) that the conditional subspace

〈b〉 .= {b⊕ b′, ∀b′ ∈ B : ∃b⊕ b′}
obtained by combining through Dempster’s rule a given b.f.
b with all other b.f.s on the same frame (if such a com-
bination exists) is a simplex. Let us focus here on non-
combinable belief functions, and call

Sing
.= {b ∈ B : ∃b′ ∈ B : 6 ∃b⊕ b′}

the class of belief functions on Θ which are not combinable
with each and every other b.f. (singular subspace).
The singular subspace is itself a simplicial complex: The du-
ality between combinable/non-combinable b.f.s is again re-
flected in the dichotomy simplex-complex (Figure 4-right).
This is related to the fact that cs.b.f.s can be constructed from
non-combinable b.f.s, and vice-versa.

B.F.s in Sing are characterized by the property that the
union of their focal elements is a proper subset of Θ:

b ∈ Sing ⇔
⋃

Ai∈Eb

Ai  Θ,

where Eb denotes again the list of focal elements of b. Equiv-
alently, there exists a non-empty subset of Θ which has
empty intersections with each f.e. of b. Any b.f. b′ with
focal elements in this subset will not be combinable with b.
We can then write

b ∈ Sing ⇔
⋃

Ai∈Eb

Ai ⊆ {x}c

for some element x ∈ Θ. By Proposition 3, b.f.s with focal
elements in the list L = {A ⊆ {x}c} form the simplex
Cl(bA : A ⊆ {x}c). As there are n of such subsets (one for
each singleton) the region of “singular” b.f.s is

Sing =
⋃

x∈Θ

Cl(bA : A ⊆ {x}c). (5)

Theorem 3. Sing (5) is a simplicial complex.

Proof. As a matter of fact, following the same line of the
proof of Theorem 2, each pair of simplices in the collection
(5) has a common intersection

Cl(bA : A ⊆ {x}c) ∩ Cl(bA : A ⊆ {y}c) =
= Cl(bA : A ⊆ {x, y}c)

which is a face of both (Property 2 of Definition 1). Be-
sides, their faces correspond to b.f.s whose union of focal
elements is obviously a proper subset of Θ (having less fo-
cal elements), and then belong to Sing (Property 1).

Figure 5 shows the singular complex for a ternary frame,
and its relationship with CO3 (CS3 is not shown for sake of
simplicity). Examining Figures 5 and 3 we can see that each
maximal component Singx

.= Cl(bA : A ⊆ {x}c, A 6= ∅)
of Sing corresponds to a component CSx of CS:

Singx = Cl(bA : ∅ ( A ⊂ {x}c)
l

CSx = Cl(bA : A 3 x) = Cl(bx, bA : A ) {x}) =
= Cl(bx, Cl(bA : A = B ∪ {x}, ∅ ( B ⊂ {x}c)).

(6)

The interpretation is straightforward: each consistent b.f. is
obtained by a singular b.f. by adding to each of its f.e.s a
subset of Θ \ ∪iAi, Ai ∈ Eb. In fact, each maximal simplex
Singx of the singular complex is nothing but a replica of
the belief space B{x}c for the frame {x}c: for instance, in
the above ternary example the triangle Cl(bx, by, b{x,y}) is
isomorphic to the binary belief space B2 (see Figure 1).
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Θ
b
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yb
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{x,z}b
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b
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{y,z}

{x,y}

CO
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Sing y

Sing x

Sing z

Figure 5: The singular subspace for a ternary frame, and
the related consonant subspace. Each maximal component
Singx of Sing is isomorphic to the belief space B2 =
Cl(by, bz, b{y,z}) for the binary frame ({x}c = {y, z}).

6 A decomposition in consistent components

A natural application of the geometric approach is the prob-
lem of finding approximations of belief functions belonging
a given class of measures. We then close this paper by point-
ing out an interesting decomposition (closely related to the
pignistic transformation (Smets & Kennes 1994)) of any be-
lief function b into consistent components, which be inter-
preted as the natural projections of b on the maximal com-
ponents of the consistent simplicial complex.
Let us then consider again the binary case. As a matter of
fact, any b.f. b ∈ B2 b = mb(x)bx + mb(y)by + mb(Θ)bΘ

can be written as the following combination (Figure 6)

b =
(
m(x) + m(Θ)

2

)(
m(x)

m(x)+
m(Θ)

2

bx +
m(Θ)

2

m(x)+
m(Θ)

2

bΘ

)
+

+
(
m(y)+ m(Θ)

2

)(
m(y)

m(y)+
m(Θ)

2

)by+
m(Θ)

2

m(y)+
m(Θ)

2

bΘ

)
, which

is convex, as (mb(x)+mb(Θ)/2)+(mb(y)+mb(Θ)/2) =
mb(x) + mb(y) + mb(Θ) = 1 and mb(x) + mb(Θ)/2 ≥ 0,
mb(y) + mb(Θ)/2 ≥ 0.
In fact, this is the only way each belief function b ∈ B2 can
be consistently decomposed as a convex combination of two
points of CSx, CSy:

bx =
m(x)

m(x) + m(Θ)
2

bx +
m(Θ)

2

m(x) + m(Θ)
2

bΘ,

by =
m(y)

m(y) + m(Θ)
2

)by +
m(Θ)

2

m(y) + m(Θ)
2

bΘ.

Now, we can notice that m(x) + m(Θ)
2 = BetP [b](x) and

m(y) + m(Θ)
2 = BetP [b](y), where BetP [b] denotes the
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Figure 6: A belief function b as convex combination of its
consistent coordinates in the binary belief space.

pignistic probability associated with b:

BetP [b](x) .=
∑

A3x

m(A)
|A| .

In other words, any b.f. b ∈ B2 can be written as a convex
combination of two consistent belief functions

b = BetP [b](x)bx + BetP [b](y)by

bx ∈ CSx and by ∈ CSy , whose coefficients are the values
of the pignistic function.
In the general case, the consistent belief functions

bx .=
1

BetP [b](x)

∑

A3x

m(A)
|A| bA, x ∈ Θ

can be considered as “consistent projections” of b onto the
maximal components CSx, x ∈ Θ of the consistent sub-
space. As a matter of fact we can write

b =
∑

A⊆Θ

m(A)bA =
∑

x∈Θ

∑

A3x

m(A)
|A| bA =

=
∑

x∈Θ

BetP [b](x)

∑
A3x

m(A)
|A| bA

BetP [b](x)
=

∑

x∈Θ

BetP [b](x)bx.

(7)
According to Equation (7), each b.f. b lives in the n − 1
dimensional simplex Pb .= Cl(bx, x ∈ Θ) (see Figure 7)
and its convex coordinates in Pb (“consistent” coordinates)
coincide with the coordinates of the pignistic probability in
the probability simplex P .

This argument in a sense mirrors another well known re-
sult which states that a belief function is a convex sum of a
probability measure and a possibility measure. This is clear
from Figure 1, where the reader can easily appreciate that b
lies on a manifold of segments joining COx (COy) and P .



CS

Θ
b

yb
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z
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Figure 7: Pictorial representation of the role of the pignis-
tic values BetP [b](x) for a belief function and the related
pignistic function. Both b and BetP [b] live in a simplex (re-
spectively P = Cl(bx, x ∈ Θ) and Pb = Cl(bx, x ∈ Θ))
on which they possess the same convex coordinates. The
vertices bx, x ∈ Θ of the simplex Pb can be interpreted as
consistent projections of the belief function b on the simpli-
cial complex of consistent belief functions CS .

6.1 Consistent coordinates and inner
approximations

Equation (7) draws a connection between the notions of be-
lief, probability, and possibility as it relates each belief func-
tion to its “natural” probabilistic (the pignistic function) and
consistent (the quantities bx) proxy. It remains to understand
whether those functions bx can be interpreted as some sort of
consistent approximations of b, i.e. the cs.b.f.s which min-
imize some sort of distance between b and the consistent
subspace.

As a matter of fact, consistent belief functions can be eas-
ily approximated in terms of possibility measures or con-
sonant belief functions. Inner consonant approximations
(Dubois & Prade 1990) of a b.f. b are those co.b.f.s such
that

c(A) ≥ b(A) ∀A ⊆ Θ

(or equivalently plc(A) ≤ plb(A) ∀A). Such an approxi-
mation exists indeed iff b is consistent. In the binary case
this means that inner approximations of b exist iff b is al-
ready consonant: b ∈ COx or b ∈ COy . The optimal inner
approximation is the co.b.f. ĉ such that plĉ(x) = plb(x)
∀xinΘ. It is rather interesting to wonder what are the rela-
tionships between the consistent coordinates obtained above
and Dubois and Prade’s inner approximations: We are going
to investigate this issue in the near future (Cuzzolin 2007c).

7 Comments
In this paper we completed the analysis of the geometry of
finite possibility measures by focusing on consistent belief
functions, in virtue of their relationships with possibility as-
signments, on one side, and singular belief functions on the

other. On a wider perspective, this study places a new ele-
ment in the geometric semantics of the theory of evidence.
As belief functions are points of a simplex, possibility mea-
sures form a simplicial complex, and Dempster’s rule it-
self is nothing but an intersection of linear spaces (Cuzzolin
2004a), the Dempster-Shafer formalism can be in fact seen
as some form of geometric calculus.
The full potential of the geometric approach can be appreci-
ated though in the approximation problem: in the near fu-
ture we will develop the preliminary results of (Cuzzolin
2004b) and Section 6 into a complete description of the con-
sonant and consistent approximation problems by geometric
methods, and relate them to inner and outer approximations
(Dubois & Prade 1990).

The natural evolution of the belief space formalism is pos-
sibly the confluence with the field of geometric probability
or continuous combinatorics (Klain & Rota 1997), which
studies invariant measures on sets of geometric objects and
relates them to additive probability measures. Belief func-
tions can be indeed seen as iso-volumes of a convex body
in R2n−1, i.e. the vector of the volumes of all its orthog-
onal projections onto the space spanned by a subset of the
reference axes.
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