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Abstract

We present an efficient prototype for music information retrieval. The prototype uses bit-
parallel algorithms for locating transposition invariant matches of monophonic query melodies
within monophonic or polyphonic music stored in a database. When dealing with monophonic
music, we employ a fast approximate bit-parallel algorithm with special edit distance metrics.
The fast scanning phase is succeeded by verification where a separate metrics is used for ranking
matches. We also offer the possibility to search for exact occurrences of a ‘distributed’ melody
within polyphonic databases via a bit-parallel filtering technique. In our experiments with a
database of 2 million musical elements (notes in a monophonic and chords in a polyphonic
database) the responses were obtained within one second in both cases. Furthermore, our pro-
totype is capable of using various interval classes in matching, producing more approximation
when it is needed.
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1 Introduction

The origins of music information retrieval (MIR) systems are in manual collections ofincipits, short
melodic fragments obtained from the beginning of pieces of music. The collections were manually
compiled by researchers or librarians, and usually covered one narrow field of music. More recently,
computerized content-based MIR systems have begun to appear. The systems interpret melodies
as strings that can be matched against query patterns using standard methods from general string
matching.

In this paper, we introduce our MIR prototype called SEMEX (Search Engine for Melodic Excerpts),
which is an efficient implementation of various ideas that we have introduced earlier (for a summary
of these ideas, see (Lemström 2000)). The cores of the matching algorithms in SEMEX are based on
so-calledbit parallelism. We claim that the length of an ‘ideal’ MIR query pattern is shorter than the
usual length of the computer word (i.e. 32 bits). Thus, by using the bit-parallel techniques presented
later, we can expect that the cores of the algorithms run in linear time (with respect to the size of the
database). Such fast implementations are of crucial importance since music databases can be very
large. Not only is the extensive use of bit-parallelism something new for a MIR system, but SEMEX
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also differs from the previous systems in other respects, which are discussed below (see Appendix
for a comparison table of current MIR systems).

Some MIR systems, such as the prototype of Ghias, Logan, Chamberlin & Smith (1995) or Pollastri
(1999); MELDEX (Bainbridge, Nevill-Manning, Witten, Smith & McNab 1999); and Melodis-
cov (Rolland, Raskinis & Ganascia 1999), accept digital input which is subsequently converted into
an internal representation for matching. An apparent problem there is that the digital input is likely
to be somewhat distorted. For instance, if a query is given by humming, one cannot expect the in-
tervals to be exactly correct. To overcome this problem, the music is often represented bycontour,
giving only the direction of the intervals (up, down, or repeat). This representation, however, re-
quires long query patterns in order to reach gooddiscriminatory power(Downie 1999). In SEMEX,
we can achieve better discrimination while still maintaining tolerance to errors by using theQPI
classificationintroduced by Lemström & Laine (1998).

The representation of choice for melodies in current MIR systems is a symbolic string of pitches.
Durational information can be used in some systems but the emphasis is usually put on pitch infor-
mation. When dealing with queries on pitches,transposition invarianceis a very important property
that should be considered. An algorithm taking into account transposition invariance usually ig-
nores themusical keyof the pitch sequence by usinginterval representationthat considers only the
semitonic pitch distances between consecutive elements within the musical sequences. However, as
noted by Cambouropoulos, Crawford & Iliopoulos (1999), some problems are involved with that
encoding as well. Lemström & Ukkonen (2000) presented how transposition invariance can be
achieved without using interval representation, and thus, some of those shortcomings are avoidable.
We apply their transposition invariant distance metrics in SEMEX.

A property of real music databases often completely ignored in MIR systems is that the databases are
likely to contain polyphony. Although a few algorithms for locating occurrences of query patterns
in polyphonic databases have been presented recently in literature (see e.g., Uitdenbogerd & Zobel
1998, Dovey 1999, Holub, Iliopoulos, Melichar & Mouchard 1999, Lemström & Tarhio 2000), to
our knowledge, besides SEMEX, only the system by Uitdenbogerd & Zobel (1999) considers this
problem. However, the approaches of these two systems are different. Uitdenbogerd and Zobel
reduce the polyphonic surface to a monophonic melody by a melody extraction algorithm, while in
SEMEX it is possible to locate occurrences that are distributed among several voices by using the
MonoPoly algorithm by Lemström & Tarhio (2000).

2 Problem Setting

In our current prototype, we use a simplified representation for music comprising only the pitch
levels of the notes. The pitch levels are represented as small integers0; : : : ; r which form our
alphabet�. Here, three values ofr are of particular interests;r = 2 (representing musical contour);
r = 10 (representing the QPI classification); andr = 127 (as in MIDI (MID 1996)).

A musicalsourceS = S1S2 � � �Sn is a sequence of sets of integers. EachSi models a chord and
is formally a subset of the alphabet�. Moreover, eachSi corresponds to a chord of notes, and is
comprised of notes having their onsets simultaneously.

A musicalquery patternp = p1p2 � � � pm is a sequence of integers, more precisely,pi 2 �, for
i = 1; : : : m. Obviously, the degenerate case forS (that is, when the source is monophonic), denoted



s, is represented by a similar structure to that of the pattern representation.

The setting for a content-based music information retrieval problem is as follows. Given a long
source stringS = S1 � � �Sn and a relatively short music query patternp = p1 � � � pm, the task is to
find all locations inS wherep occurs as a subsequence. Here an occurrence might mean anexact,
transposed, or evenapproximate occurrence.

We define that there is an exact occurrence ofp at positionj, if pi 2 Sj+i�1 holds fori = 1; : : : ;m,
and there is atransposition invariant occurrenceof p at positionj, if there is an integerd such that
each(pi + d) 2 Sj+i�1. Currently, we do not allow approximate queries to a polyphonic source.

When the sources is monophonic, exact and transposition invariant occurrences ofp within s mean
thatpi = sj+i�1 and(pi + d) = sj+i�1 for eachi, respectively. An approximate occurrence ofp

is found if there is a subsequencep0 of s, such thatp0 can be obtained fromp by usingk or fewer
editing operations(an approximate transposed occurrence is defined accordingly). The conventional
editing operations are:

� replacement: the aligned symbolspi andsj+i�1 are distinct,

� insertion: the symbolsj is missing inp,

� deletion: the symbolpi is missing ins.

3 Approximate Pattern Matching

Approximate string pattern matching is based on the concept ofedit distance(Crochemore &
Rytter 1994, Gusfield 1997). The edit distanceD(A;B) between stringsA = a1; : : : ; am and
B = b1; : : : ; bn; A;B 2 �� (�� denotes the set of all sequences over�), is the minimum number
of editing operations (given above) required to transform stringA into stringB. The special case in
which deletions and insertions are not allowed is called theHamming distance.

A standard way to locate approximate occurrences ofp in s, is to search for subsequencesp0 of s,
such thatD(p; p0) � k (k is a threshold value used to control the accuracy of the pattern matching).
This can be done efficiently by usingdynamic programming. Such a procedure tabulates all distances
dij = (p1 � � � pi; sj0 � � � sj) (wherej0 � j) between theprefix of p and anyfactor (substring) ofs
(Sellers 1980, Ukkonen 1985a). The pattern matching problems associated with edit and Hamming
distances are calledk differencesandk mismatches, respectively.

Bit-Parallelism. The development of dynamic programming methods computing the edit distance
has lead to an algorithm family applying a fast bit-parallel approach. When replacing a conven-
tional implementation where each variable resides in its own memory location or register with a
corresponding implementation where the variables can be manipulated in parallel with bit opera-
tions, a significant speed-up can be achieved. One of the first algorithms of the family was presented
by Baeza-Yates & Gonnet (1992). Their shift-or algorithm was originally designed for the exact
matching. Denoting byW the number of bits in a computer word used, their algorithm runs in
timeO(dm

W
en), i.e., in linear time if the pattern is short enough as compared to the length of the

(used) computer word (ifm � W ). The MonoPoly algorithm, which we will use with polyphonic
databases, is based on the shift-or algorithm.



Recently Myers (1998) presented a fast bit-parallel implementation for thek differences problem.
It also runs in timeO(dm

W
en). The performance of the algorithm rests on a certain property of

the dynamic programming table; the difference between adjacent vertical cells is always -1, 0, or
1 (Ukkonen 1985b). In Myers’ algorithm, the current column in the matrix is represented by two
bit mask variablesP andM that store positive and negative changes (deltas) in the matrix values,
respectively. We apply Myers’ algorithm when dealing with monophonic databases.

4 Semex Prototype

4.1 Supported Formats

SEMEX supports three file formats: the Standard MIDI File (SMF) format (MID 1996), which is
a common interchange format for symbolically encoded music; the IRP (Inner RePresentation) for-
mat (Lemström & Laine 1998), which is a straightforward ASCII file format for encoding symbolic
music; and MDB (Melody DataBase), which is a simple flat-file database format used in the proto-
type. MDB files contain a single string of pitch values encoding all the music in the database and a
track list for mapping indices in the pitch string to tracks in source files. The mapping is needed as
otherwise the Query Engine component would have no way of telling in which source file a match
originated; neither would it be able to discern matches straddling a track boundary.

Recall that, though there is more information available in the formats, we are currently considering
only the pitch levels of notes.

4.2 System Architecture

The components of the SEMEX prototype system are shown in Fig. 1. The User Interface component
makes use of the other components in order to present the user with a single interface. A separate
Pitch Estimator component (Tolonen & Karjalainen 2000) facilitates conversion of digital audio data
into symbolic form. The core of the system, consisting of the components Song Manager, Database
and Query Engine, performs queries and allows the user to compile MIDI files into a database.

Engine
Query

User
Interface

Song
Manager

Database

COMPONENTS

CORE

Estimator
Pitch

Figure 1:Components of the SEMEX Prototype.

The core of the prototype is written in C++ with a careful object-oriented design, allowing different



software components to interact nearly orthogonally. For instance, all matching algorithms can use
any interval reduction scheme and can be applied on any type of source data. The latter property is
due to the algorithms being implemented as template functions.

4.3 User Interface

Currently, the prototype has a simple Unix-like user interface: it is invoked from the command line
and different options are selected with ‘switches’. A sample invocation of the prototype is shown in
Fig. 2. In the example, the 10 best matches of a query pattern are shown frommidi.mdb , which is
a database file containing monophonic reductions from a hand-picked collection of classical MIDI
files. In addition to textual output, the prototype can extract the parts corresponding to matches
from the actual MIDI source files referred to in the database and play them back using an external
program, with appropriate volume fading.

Figure 2:A sample invocation of the SEMEX prototype.

4.4 Retrieving from Monophonic Sources

In the special case when the database is monophonic, we apply Myers’ algorithm (Myers 1998).
Bit-parallel string matching algorithms have proven themselves to be very flexible; it is rather
straightforward to apply the transposition invariant distance measures by Lemström & Ukkonen
(2000) and different classifications of pitches (such as contour and QPI classifications (Lemström &
Laine 1998)), while still preserving the linear time complexity.

In Fig. 3, we illustrate the performance of the adapted Myers’ algorithm (including the pruning but
excluding the verification phase of the following paragraphs) by comparing it to the standard dy-
namic programming algorithm and Ukkonen’s cutoff algorithm (Ukkonen 1985b). The comparison
was run in a 700 MHz Pentium III with 768 MB of RAM under the Linux operating system. The
length of a machine word was 32 bits. The database consisted of 208 classical MIDI files, which
were reduced in this comparison to a monophonic form by including only the highest notes from the
polyphonic texture. The reported scanning time is the average of the scanning times of 100 patterns



of length 12 selected randomly from the database. The approximation parameterk (which mainly
affects Ukkonen’s cutoff algorithm) was set to 3 during the runs.
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Figure 3:A comparison of the running times of the basic dynamic programming algorithm, Ukko-
nen’s cutoff algorithm, and Myers’ bit-parallel algorithm.

Pruning. It is useful to eliminate some matches instead of reporting all of them. Specifically,
matches which are super- or substrings of a better match should be pruned. One source of such
matches is that, as for columns, the difference in edit distance between two successive entries on a
row of the dynamic programming matrix is at most one. This results in an undesirable proliferation
of matches on both sides of a center match with an edit distance belowk.

In order to combat such ‘pollution’, the matching algorithms are modified to report only positions
where the edit distance does not grow and which are not followed by a better match. Further pruning
is done during verification.

Verification. In the scanning phase the exact substring ofs corresponding to a match is not known
- Myers’ algorithm computes only edit distances. Therefore, to verify a matching positionj, it is
fed to the basic dynamic programming algorithm, which resolves the corresponding match. The
verification algorithm also computes the final distanceDv

mj of the match, employing a variant of the
edit distance metrics. The sole purpose of this metrics is to fine-tune the sorting of matches with
equal edit distances. We use a metrics that, in addition to the usual edit distance, includes as a term
the total modulationrequired to convertp to s. The modulation imposed by a single edit operation
is the absolute difference between the intervals being compared (in the case of replacement) or the
absolute value of the interval being inserted or deleted (in the case of insertion or deletion). The
total modulation is simply the sum of these:

Dv
i;j = min

8><
>:

Dv
i�1;j�1 + (if pi=sj then0else1 + j0:001(pi�sj)j);

Dv
i�1;j + 1 + j0:001pij;

Dv
i;j�1 + 1 + j0:001sj j:

(1)

When the exact substring ofs is known, matches are pruned so that only the best match is retained
out of matches beginning from the same position ins. Together with the initial pruning performed
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Figure 4: Running MonoPoly algorithm on the test database. On the left, the numbers of candi-
dates and proper occurrences (note the logarithmic scale). On the right, the times for a first query
(preprocessing+marking+checking) and re-queries (marking+checking) of MonoPoly Algorithm, as
compared to a ‘stand-alone’ version of the checking phase (referred to as Algorithm C).

by the scanning algorithm, these measures suffice to filter out matches which are super- or substrings
of a better match.

4.5 Retrieving from Polyphonic Sources

In SEMEX, we can deal with databases containing polyphony in two ways. First, the database can
be reduced in a monophonic form by considering only the highest notes of chords (as suggested
by Uitdenbogerd & Zobel (1999)), and then applying the techniques described in the previous sub-
section (thus, the performance of this approach in SEMEX relies on Myers’ algorithm). Second, we
can search transposed exact occurrences by using the MonoPoly algorithm.

The MonoPoly algorithm runs in two phases, out of which the latter comprises two subphases. In
the first phase, the algorithm preprocesses the source in timeO(nq) (q denotes the maximum size
of the chords). The second phase applies afiltering technique. First amarking phaseapplying bit
parallelism searches possible occurrences (calledcandidates) of the given query pattern. Ifm �
W , this is done in linear time. Then achecking phasescans through the candidates to find the
proper occurrencesamong them. For this phase, we use a somewhat slower algorithm with a time
complexityO(nq(q + m)) (Lemström & Tarhio 2000). Therefore, the speed of the MonoPoly
algorithm depends rather heavily on the filtration ability of the marking phase.

In Figs. 4 one can see how the MonoPoly algorithm performs with the test database. We illustrate
both the efficiency of the filtration (number of proper occurrences / candidate occurrences), and
compare the running times of the MonoPoly algorithm (for a first query to a database, and for ‘re-
queries’ to the same database) to the straightforward algorithm which is also used in the checking
phase of the MonoPoly algorithm. The settings for this comparison were as in the previous com-
parison, but in this case the polyphony was preserved. The average polyphony degree (within MIDI
tracks) varied usually between 1 and 3, but the maximal degree was as high as 41. As can be seen
in the figures, though the number of candidates grows faster than the number of proper occurrences,
the MonoPoly algorithm clearly outperforms the comparison algorithm. When using the MonoPoly
algorithm, even the first queries to the database were completed within one second in all the cases.



5 Conclusion

We have presented a prototype of an efficient music information retrieval system. It is the first of
its kind to utilize extensively fast bit-parallel algorithms in matching. These algorithms have other
advantages besides speed over the traditional algorithms: any character in the pattern can match
an arbitrary set of source characters at no additional cost, making, e.g., different interval reduction
schemes easy to implement. Our prototype is also the first MIR software system to provide for
matching monophonic patterns against sources containing true polyphony.
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Pitch Rhythm AP TI PT OR Other Matching Type of Time
representation representation factors algorithm matching complexity

Ghias et al.(95) contour - - + + - Baeza-Yates & k mism O(mn)
Perleberg(92)

MELDEX intervals durations - + + + dpy augmented O(mn)

Bainbridge et al.(99) & contour k diff
THEMEFINDER several - - + - - ? exact ?
Kornstädt(98)
Uitdenbogerd & intervals - + + - - dp k diff O(mn)

Zobel(99)
Pollastri(99) abs. pitches durations & - + + - Ukkonen(85b) & k diff O(kn)

& intervals duration ratios
MELODISCOV several durations & - + + - takes into FlExPat, Rolland(99) augmented O(mn)

Rolland et al.(99) (incl. intervals duration ratios account metric k diff
& contour) positions

SEMEX abs. pitches, - + + + - various bp, Myers(98) exact & O(n)z

contour & distances augmented
QPI k diff

AP Allows polyphony
TI Transposition invariant
PT Pitch tracking
OR Optical music recognition
dp Dynamic programming (conventional)
bp Bit parallelism

y A straightforward implementation of Wu & Manber’s (92)O(kn) bit parallel algorithm is available; dp is preferred

z Cores of the algorithms (assuming thatm �W )


