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ABSTRACT

We propose a new musical audio search method based on
audio signal matching that can cope with key and tempo
variations. The method employs the self-similarity matrix
of an audio signal to represent a key-invariant structure of
musical audio. And, we use dynamic programming (DP)
matching of self-similarity matrices to deal with time vari-
ations. However, conventional DP-based sequence match-
ing methods cannot be directly applied for self-similarity
matrices because they cannot treat gaps independently of
other time frames. We resolve this problem by introduc-
ing “matched element indices,” which reflect the history of
matching, to a DP-based sequence matching method. We
performed experiments using musical audio signals. The
results indicate that the proposed method improves the de-
tection accuracy in comparison to that that obtained by two
conventional methods, namely, DP matching with chroma-
based vector rotations and a simple matching of self-similarity
feature vectors.

1 INTRODUCTION

Musical audio search, that is, identifying the title and corre-
sponding locations in an audio database from a short musi-
cal audio excerpt of a query, has become important with the
rapid expansion of digital content utilization.

A technology known as audio fingerprinting has been
widely used to search for identical audio signals to queries.
Most audio fingerprinting systems can be applied to audio
signals with noises or other signal distortions. However, it is
also demanded to cope with other kinds of variations caused
by different players, keys, tempi, arrangements, and so on.

We focus on a musical audio search task where audio sig-
nals include key and tempo variations. For this task, many
approaches have been reported. An early work using the
chroma-based features was reported by Nagano et al., who
proposed a feature representation named the polyphonic bi-
nary feature vector (PBFV) [1]. Their method deals with
key variations by rotating query vector elements. They used
beat detection and dynamic programming for tempo varia-
tions. Miiller et al. also used chroma-based features for au-
dio matching with different timbres played by various play-
ers [2].
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For similar purposes, cover song detection methods have
been proposed. Typically, they detect the same title as the
query in the database by comparing music tracks. Ellis et
al. proposed a method based on chroma-based features and
a beat tracking technique [3]. Tsai et al. adopted melody ex-
traction and a dynamic programming (DP) based matching
method, known as dynamic time warping (DTW) [4]. For
the audio cover song identification task of MIREX' , sev-
eral methods have been proposed and evaluated using the
same test data.

In the above mentioned methods, chroma-based features
with element rotation and key adjustment are often used to
detect transposed musical pieces. The former needs twelve
matching processes and the latter need schemes for accu-
rate key adjustment, for example, when key changes are in-
cluded in a piece. For tempo variations, DP-based matching
or time adjustment by beat tracking is commonly used.

In contrast, here we deal with key variation in terms of
features invariant to it. We use a self-similarity matrix that
has elements defined by spectral (or other) similarities be-
tween two different time points in an audio signal.

The self-similarity matrix has been used to represents the
global structure of a musical piece. Foote used it for visu-
alization [5] and audio segmentation [6]. Marolt used it to
detect repeated parts within a musical piece for a musical
audio retrieval system [7].

A self-similarity matrix also represents local structures,
such as frame-wise relationships. And, it is insensitive to
key variations because the relationship between two time
points within a musical audio signal tends to be kept even
when the music is played in a different key. In this work, we
constructed a musical audio search system using this prop-
erty.

In our earlier work, self-similarity was applied for mu-
sical audio search with key variations using simple vector
matching [8]. However, the detection accuracy degrades
when tempo variations are significant.

As a solution to this problem, we utilize a DP-based match-
ing scheme. However, conventional DP methods for se-
quential data are not applicable because columns and rows
of self-similarity matrices, which include gaps, have to be
matched simultaneously in each step of the DP calculation.

! http://www.music-ir.org/mirex/2007/index .php/Main_Page
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We propose a method for resolving this problem. The key
idea is the introduction of “matched element indices,” which
reflect the history of the matching process. This reduces the
problem to one that conventional DP-based sequence match-
ing schemes can handle.

2 METHODS

2.1 Audio search framework based on self-similarity ma-
trix

The proposed method searches the database for the same
parts as a query given as a short piece of musical audio sig-
nal based on self-similarity matrices.

Self-similarity matrix A = (a;;) represents audio sim-
ilarity of two time points within an audio signal. Element
a;; is a similarity value between i-th and j-th frame. In this
study, we define a;; using spectral power of i-th and j-th
frame and the radial basis function (RBF) as follows:

ai; = exp (=Clp; — p;[*) . (1

where C'is a constant. Vectors p; and p; indicate spectral
powers of i-th and j-th frame, respectively.

RBF is related to the Euclidean distance between two
vectors and its value ranges from O to 1. There are some
other similarity measures, such as a cosine measure, for the
self-similarity calculation. The reason we adopt the RBF
is that it can control the distribution of similarity values by
constant C'. In the experiments, we used C' = 30, which
yields an average similarity value of around 0.5.

A schematic view of the proposed audio search method
is shown in Fig. 1, where (A) and (B) show self-similarity
matrices of the query and database musical audio signals, re-
spectively. Elements represented by white pixels show sim-
ilar frame pairs within an audio signal.

In Fig. 1, the query is played seven semitones higher
and 20 % faster than the original music in the database. We
can see that general patterns of corresponding regions of the
query and the database are very similar, which shows that
the self-similarity measure affected very little by key vari-
ations. We utilize this nature for our musical audio search
system.

The region corresponding to the query in the database
is larger than the query self-similarity matrix because the
query is played faster. To find such variously sized patterns,
we propose a method based on DP.

2.2 Self-similarity matching based on DP

DP-based methods that consider pixel-wise deletion and in-
sertion have been developed for two-dimensional image match-
ing [9]. However, in our approach, these methods are not
suitable for matching of self-similarity matrices because we
do not treat elements of a self-similarity matrix in the same
row or column independently. For example, when the -
th frame is deleted, the ¢-th row and column of the self-
similarity matrix disappear together. Therefore, it is only
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Figure 1. A schematic view of self-similarity matching.
(A) Self-similarity matrix of the query. The query is played
seven semitones higher and 20 % faster than the original.
(B) Self-similarity matrix of the database with the original
key and speed. The square region within the thick white line
is matched with the query. The part outlined by the dashed
line is the same size as the query self-similarity matrix.
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query — - —
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Figure 2. Alignment of (A) sequences and (B) self-

similarity matrices.

necessary to search the diagonal direction of database self-
similarity matrices because the objective is to find locations
in the time direction. For this purpose, we can utilize an
alignment framework for a one-dimensional sequence.

DP has been commonly used for matching of two vec-
tor or symbol sequences with different lengths. It has been
applied for not only audio signals but also for sequences of
symbols, such as amino or nucleic acids [10]. This method
aligns their elements, including gaps, and yields the align-
ment score.

The alignment of (A) sequences and (B) self-similarity
matrices is illustrated in Fig. 2. When query and database
sequences are aligned, each query element corresponds to
an element in the database. When self-similarity matrices
are aligned, inverted L regions along the diagonal on the
matrices are matched, instead of single elements.

The framework of the proposed method is shown in Fig.
3(A). Self-similarity matrices of a database and a query are
denoted by S = (s;;) and R = (r;;), where s;; and r;; are
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Figure 3. The framework of the proposed method. (A)
An illustration of the alignment procedure for two self-
similarity matrices. (B) The calculation of matching score
M(Qk, D;) ineq. (2).

(i,7) elements of S and R, respectively. Diagonal elements
of S and R are not used because, having a constant value of
1, they are not informative.

As well as conventional sequence alignment methods, we
introduce a m x n DP matrix F'(k, [) where m and n denote
the lengths of the self-similarity matrices of the query and
database, respectively. F'(k,l) means the score of an align-
ment of the initial £ query frames and [ database frames.

F(k,1) is recursively calculated from adjacent elements
F(k—1,1-1),F(k—1,1),and F(k,l—1) in the following
way:

F(k—l,l—l)—F]\/f(Qk,Dl), (a)

F(k,l) =max{ F(k—1,1) — g, ... (b)
F(k,1-1)—g, - ()
)

where ) and D; denote features at the k-th frame of the

query and [-th frame of the database, respectively, M (Q, D;)

is the matching score between Q. and D, and g is a penalty
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for a gap.

The thick line on the DP matrix in Fig. 3(A)(iii) shows
a history of the selections in eq. (2) from (1,1) to (k,1).
The vertical part of the line shows a gap in the query and the
horizontal parts shows gaps in the database.

When we search aligned subsequences in a query and
a database, we can use local alignment technique, where
F(k,0) = 0 and F(0,1) = O are set as initial conditions.
This means that initial gaps in both the query and the database
are omitted from the alignment.

In this study, we assume that the query is a short ex-
cerpt of the database and that the whole query is used for
an alignment. Moreover, we do not use the 0-th row and
column of F(k,1) because self-similarities are not defined
for the first frame of either the query or database. Then,
F(k,1) = —(k — 1) g and F(1,1) = 0 are used for the
initial conditions.

Finally, by backtracking the path on the DP matrix from
the peaks of the final (m-th) row of F'(k, 1), we can find the
locations corresponding to the query on the database.

2.3 Calculating matching score from self-similarity ma-
trices

For alignment of symbol or vector sequences, M (Qy, D;)
in eq. (2) is defined using similarity measures of vectors or
symbol substitution matrices.

On the other hand, for alignment of self-similarity ma-
trices, the proposed method matches inverted L regions on
self-similarity matrices. We consider only the left lower re-
gion of self-similarity matrices, i.e., the gray regions within
the thick lines in Fig. 3(A), since they are symmetrical.
Consequently, Q and D; in eq. (2) can be represented as
vectors:

Qk = (Th1s s Thk—1),
Dy = (si1, ..., S1,1-1)-

3

It is not appropriate to use all elements of (), and D; to
calculate M (Qg, D;), since, generally, vectors @y and D;
have different lengths because they may include elements
corresponding to gaps.

To obtain the globally optimum matching score, an ex-
haustive search for the optimum combination of non-gap el-
ements in @y and D; is needed in each eq. (2)(a) calcula-
tion. To reduce the computational cost, we use non-gap ele-
ments that are determined by past DP calculations. Namely,
we chose elements where the case (a) was selected in past
eq. (2) calculations. Rightward diagonal parts of the DP
path in Fig. 3(A)(iii) show these elements.

By this approximation, the order of eq. (2) calculations
comes down to O(m?2n) in the worst case, considering the
order of M (Qy,D;) calculation. In case of conventional

vector sequence alignment, by comparison, the order is O(dmn),

where d is the vector dimension.
Fig. 3(B) shows the correspondence of elements of Q)
and D; when the DP path from (1, 1) to (k, ) is that shown
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in Fig. 3(A)(iii). The s;3 , si6, and s;7 correspond to 71,
T2, and 74, respectively. We call these elements “matched
elements.”

Matched elements of Q. and D; are different at every po-
sition of (k, ) in the DP matrix even if the & or [ is the same.
Then, we introduce “matched element indices” I,(k, !) and
I4(k,1), which indicate sets of indices at each position of
(k,1) for the query and database respectively. In Fig. 3(B),
I1,(k, 1) ={1,2,4} and I4(k,1) = {3,6,7}.

Using I,(k, 1) and I4(k, 1), the same sized vectors q (1)
and d;(k) can be generated at each position of (k,[) on a
DP matrix as follows:

qk(l) = (Tkj) .7 € Iq(kvl)v
dl(k}) = (Slj) ] S Id(kJ).

Using the above vectors, we define the matching score in
eq. (2) as

“)

1 a
M D) =M'(q,d)=0.5— — i —di|, (5
(Qr, Di) = M'(q,d) = 0.5 a;\q L ®

where q and d are simplified descriptions of qx({) and d;(k),
¢; and d; are their elements, and a denotes the number of di-
mensions of q and d. M’(q, d) ranges from —0.5 to 0.5.

Matched element indices I, (k,[) and I;(k,1) can be de-
termined recursively during the DP score calculations in eq.
(2) in the following way.

1. Make temporary indices I} (k, ) and I};(k, ) from I, (k—

1,1 — 1) and I, (k — 1,1 — 1) for the calculation of
M (qr (1), di(k)).

Ik, 1) = {j, k—1|j € I,(k — 1,1 — 1)},
Ih(k,0) = {j, 1= 1|j € La(k — 1,1 — 1)}.

2. If case (a) is chosen in eq. (2),
I(k,1) = I,(k,1) and I4(k,1) = I}(k,1).

3. If case (b) is chosen,
I, (k1) = I,(k —1,1) and I4(k,1) = I4(k — 1,1).

4. If case (c) is chosen,
I,(k,l) = I,(k,1 — 1) and I4(k,1) = I4(k,1 —1).

As initial conditions, I,(k,1) = 0 and I4(1,1) = 0 are
used.

2.4 Reducing memory by splitting databases

To make a self-similarity matrix, memory space of O(n?)
is needed. When we use large databases generated from
long musical audio signals, we can reduce memory space
by splitting a large self-similarity matrix into multiple sub-
matrices with comparatively small size along the diagonal
(Fig. 4). This causes few problems because the left lower
and right upper parts of the matrix rarely match with a query
matrix. To avoid degradation around the boundaries of the
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Figure 4. Splitting a self-similarity matrix into overlapping
submatrices.

submatrices, we allocate the submatrices so that they over-
lap each other. In experiments, we used 4,000 frames (200
sec.) for the submatrix size with 2,000 (100 sec.) overlap-
ping frames.

3 EXPERIMENTS

We evaluated the proposed method in a musical audio signal
retrieval task with key and tempo variations.

To evaluate the method in a systematic way, we used per-
formances controlled by MIDI data. That is, we used ten
pieces of MIDI data in the RWC Music Database (RWC-
MDB-C-2001) [11] to generate queries in various keys and
tempi and a database.

For the database, we generated audio signals by playing
ten MIDI files using Winamp™ 2. For queries, we ran-
domly extracted ten twelve-second-long excerpts.

For the query, we generated three variations of key and
tempi: the original key and tempo, the original key with 20
% faster tempo, and the key seven semitones higher than
the original with 20 % faster tempo. These variations were
made by modifying the original MIDI files.

Each audio signal was sampled at 11,025 Hz and a spec-
trogram was generated by 144 second-order-IIR bandpass
filters with a frame rate of 20 Hz. Central frequencies of
these filters were set between 55 and 3,520 Hz with half
semitone intervals. Spectral powers were represented in a
log scale and normalized to be |p;| = 1.

The ground truth was determined from the original MIDI
files by comparing the constitution of twelve chromatic notes
at each frame between the query and database. In total, 15
locations in the database were extracted as the ground truth
for ten queries. For five queries, two parts were found in
the database and two of them were played seven semitones
higher than the original parts.

Accuracies were measured by the percentage of correct
identification in top IV; candidate locations, where NV, is the
number of correct locations in the database corresponding
to the -th query.

We also examined two existing methods for accuracy com-
parisons. One is a variant of Nagano et al.’s method [1]

2 http://www.winamp.com
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based on alignment of chroma vector sequences and that
also employs the same DP calculation as the proposed method
[eq. (2)]. A chroma vector represents the constitution of
twelve chromatic note at each frame. Then, we can deal
with key variation by applying DP alignment calculations
twelve times, rotating the elements of the vector one by one.
We call this method “chroma+DP” in this study.

As was done by Nagano et al., we represented a chroma
vector as a binary vector. We used a threshold i + o, where
1 and o are the average and the standard deviation of the
original chroma vector elements at each frame. For simplic-
ity, we did not apply harmonics elimination or other conver-
sions, which is the same as for the proposed method.

To calculate matching scores in eq. (2) for each frame,
we used a measure based on the Dice’s coefficient and de-
fined as

2n4q/(ng +na) — 0.5, (6)

where n, and ny are the numbers of elements of chroma
vectors that exceed the threshold for the query and database,
respectively. The n,q denotes the number of elements that
exceed the threshold for both the query and database. It is
equivalent to the similarity measure used in [1] except that
our measure is made by subtracting 0.5.

The other previous method we examined is the one we
have proposed [8], which also uses self-similarity of au-
dio signals. The method simply matches two vector se-
quences without considering gaps. Instead, it weights vec-
tors according to time distance from start points. We call
this method “self-similarity vector matching.”

We tested three variations of gap penalty, namely, g =0.1,
0.3, and 0.5, for the proposed method and for chroma+DP.
Neither method was sensitive to g, and g=0.1 for the pro-
posed method and g=0.5 for chroma+DP yielded the lowest
error rate in total.

Fig. 5 shows the search accuracy for each method using
the best g values as described above. The proposed method
yield high accuracy for all three key and tempo patterns.
Noteworthy is that it outperforms the other methods when
both key and tempo variations are large.

The accuracy for original key and the original tempo are
a little lower than in other cases using the proposed method.
This is because the proposed method using queries with the
original keys and tempi failed to identify the two positions
in the database played in the key seven semitones higher.

Totally, the results indicate that the self-similarity fea-
tures are robust to key variations and that the alignment
method based on DP works effectively for the self-similarity
matrix matching.

4 CONCLUSION

We have proposed a musical audio signal search method
based on DP matching of self-similarity matrices. By in-
troducing indices that represents the history of the DP path,
the problem is reduced to the one that a sequence alignment
scheme can be applied. The experimental results show that a

[10]
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Figure 5. Search accuracy of (A) chroma + DP, (B) self-
similarity vector matching, and (C) the proposed method.
The “+7 (key)” and “20 % (tempo)” mean the queries are
played in a key seven semitones higher at a 20 % faster
tempo, respectively.

self-similarity matrix can represent a key-invariant structure
of musical audio signal and that the DP framework works
very effectively for dealing with tempo variations. We will
evaluate the method using larger data sets, including sets
containing acoustically played musical signals and improve
it to deal with other musical variations, such as variations of
instruments and arrangements.
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