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ABSTRACT

We develop a method for discovering the latent structure in

MFCC feature data using the Hierarchical Dirichlet Process

(HDP). Based on this structure, we compute timbral simi-

larity between recorded songs. The HDP is a nonparametric

Bayesian model. Like the Gaussian Mixture Model (GMM),

it represents each song as a mixture of some number of

multivariate Gaussian distributions However, the number of

mixture components is not fixed in the HDP, but is deter-

mined as part of the posterior inference process. Moreover,

in the HDP the same set of Gaussians is used to model all

songs, with only the mixture weights varying from song to

song. We compute the similarity of songs based on these

weights, which is faster than previous approaches that com-

pare single Gaussian distributions directly. Experimental re-

sults on a genre-based retrieval task illustrate that our HDP-

based method is both faster and produces better retrieval

quality than such previous approaches.

1 INTRODUCTION

We develop a new method for estimating the timbral sim-

ilarity between recorded songs. Our technique is based on

the hierarchical Dirichlet process, a flexible Bayesian model

for uncovering latent structure in high-dimensional data.

One approach to computing the timbral similarity of two

songs is to train a single Gaussian or a Gaussian Mixture

Model (GMM) on the Mel-Frequency Cepstral Coefficient

(MFCC) feature vectors for each song and compute (for

the single Gaussian) or approximate (for the GMM) the

Kullback-Leibler (K-L) divergence between the two models

[1]. The basic single Gaussian approach with full covariance

matrix (“G1” [2]) has been successful, forming the core of

the top-ranked entries to the MIREX similarity evaluation

task two years running [3, 4].

Although MFCC data are not normally distributed within

songs, using a richer model such as the GMM to more ac-

curately represent their true distribution provides little or

no improvement in numerous studies [2, 5, 1]. This sug-

gests that a “glass ceiling” has been reached for this type

of representation. Moreover, the computational cost of the

Monte Carlo estimation procedure involved in comparing

two GMMs is orders of magnitude more than that incurred

by computing the K-L divergence between two single Gaus-

sians exactly. This is a very significant issue if we want to

compute similarity matrices for large sets of songs, since the

number of comparisons between models that must be done

grows quadratically with the number of songs.

Another approach [6] produced results statistically indis-

tinguishable from the other top algorithms in MIREX 2007

by using a mid-level semantic feature representation to com-

pute similarity. Using painstakingly human-labeled data,

Barrington et al. trained GMMs to estimate the posterior

likelihood that a song was best characterized by each of 146

words. These models then produced a vector for each test

song defining a multinomial distribution over the 146 se-

mantic concepts. To compute the dissimilarity of two songs,

the K-L divergence between these multinomial distributions

for the songs was computed.

The success of this method suggests that alternative sta-

tistical representations of songs are worth exploring. Rather

than take a supervised approach requiring expensive hand-

labeled data, we make use of the Hierarchical Dirichlet Pro-

cess (HDP), which automatically discovers latent structure

within and across groups of data (songs, in our case). This

latent structure generates a compact alternative representa-

tion of each song, and the model provides a natural and ef-

ficient way of comparing songs using K-L divergence.

2 HDP-BASED SIMILARITY USING LATENT
FEATURES

The hierarchical Dirichlet process (HDP) is an extension of

the Dirichlet process (DP), a nonparametric Bayesian model

of mixtures of an unknown number of simple densities. We

first outline the DP and then describe how we model songs

with an HDP.

2.1 Dirichlet Process Mixture Models

The Gaussian Mixture Model (GMM) is a generative pro-

cess that assumes that each of our feature vectors was gen-

erated by one of K multivariate Gaussian distributions. To
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Figure 1. Four tables and eight customers in a Chinese

Restaurant Process (CRP). In this example, the 1st, 3rd, 4th,

and 7th customers all sat at an empty table, whereas the 2nd,

5th, 6th, and 8th sat at existing tables. The 9th customer will

sit at table 1, 2, 3, or 4 with probabilities 3
8+α , 1

8+α , 3
8+α ,

and 1
8+α respectively, or will sit at a new table with proba-

bility α
8+α

draw a new vector yt, the process first chooses a mixture

component index zt ∈ 1...K with probability πzt (where π
is a vector of mixture probabilities summing to one), then

draws the vector from the ztth Gaussian distribution. Given

K and a set of vectors assumed to have been generated by

a GMM, algorithms such as Expectation-Maximization (E-

M) can find a maximum-likelihood estimate of the mixture

probabilities π1...K , the parameters defining the K Gaus-

sians μ1...K and Σ1...K , and which mixture component zt

generated each vector yt.

A nagging issue in mixture modeling is model selection,

i.e., choosing the number of components K with which to

explain the data. Recent work in nonparametric Bayesian

statistics has produced models such as the Dirichlet Process

Mixture Model (DPMM) that sidestep this issue. Where the

GMM assumes the existence of K mixture components, the

DPMM [7] assumes the existence of a countably infinite set

of mixture components, only a finite subset of which are

used to explain the observations.

A traditional metaphor for the way a DP generates data

is called the Chinese Restaurant Process (CRP). In the CRP,

we imagine a Chinese restaurant with an infinite number of

communal tables and a positive scalar hyperparameter α.

The restaurant is initially empty. The first customer sits at

the first table and orders a dish. The second customer en-

ters and decides either to sit at the first table with probabil-

ity 1
1+α or a new table with probability α

1+α . When sitting

at a new table the customer orders a new dish. This pro-

cess continues for each new customer, with the tth customer

choosing either to sit at a new table with probability α
α+t−1

or at the kth existing table with probability nk

α+t−1 , where

nk is the number of other customers already sitting at table

k. Notice that popular tables become more popular, and that

as more customers come in they become less and less likely

to sit down at a new table.

We obtain a DPMM from a CRP as follows. The “dishes”

in the CRP correspond to probability density functions, and

the process of “ordering” a dish k corresponds to drawing

the parameters φk to a PDF from a prior distribution H over

those parameters. (For example, each dish φk can be a Gaus-

sian with parameters {μk, Σk} = φk ∼ H .) The process of

a customer t choosing a table zt corresponds to choosing a

distribution φzt from which to draw an observation yt (in

our case, a feature vector). Since customers in the CRP tend

to sit at tables with many other customers, the DPMM tends

to draw points from the same mixture components again and

again even though it has an infinite number of mixture com-

ponents to choose from.

Analysis under a DPMM involves inferring the poste-

rior distribution over its latent parameters conditioned on

the data. This provides a partition of the data (feature vec-

tors) into an unknown number of clusters (the number of

tables) and the identities of the parameters φ (the means and

covariances of the Gaussian mixture components). The pos-

terior distribution P (φ, z1...T |y1...T ) of the set of mixture

component parameters φ and the cluster labels for each fea-

ture vector z1...T to a DPMM conditioned on the data y1...T

can be inferred using Markov Chain Monte Carlo (MCMC)

methods such as Gibbs sampling [7]. For simple data, there

will be relatively few unique cluster labels in z, but more

clusters will be necessary to explain more complex data.

2.2 The Hierarchical Dirichlet Process

The Hierarchical Dirichlet Process (HDP) [8] is a model of

grouped data, which is more appropriate than the DPMM

for modeling songs represented as a collection of MFCCs.

Rather than associate each song with a single table in the

restaurant, each song is represented as a group of features

which sit at a song-specific “local” restaurant. The dishes

for this restaurant, however, are drawn from a “global” set

of dishes. Thus, each song is represented as a distribution

over latent components, but the population of latent compo-

nents is shared across songs. Similarity between songs can

be defined according to the similarity between their corre-

sponding distributions over components.

The generative process underlying the HDP can be un-

derstood with the Chinese Restaurant Franchise (CRF). The

CRF takes two hyperparameters α and γ. Each song j has

its own CRP, and each feature vector yj,t chooses a table

from CRP(α). If it sits down at a new table, then it chooses

a dish for that table from a global CRP (with hyperparame-

ter γ) shared by all songs – that is, it either chooses a dish

that is already being served at some number of other tables

m with probability proportional to m, or it chooses a new

dish with probability proportional to γ.

Although we have defined the CRP as a sequential pro-

cess, in fact data under a CRP are exchangeable – the proba-

bility of a seating plan under the CRP is the same regardless

of the order in which the customers sat down. This allows

us to think of the CRP as defining an implicit prior on infi-

nite multinomial distributions over mixture components. In

the DPMM, the infinite-dimensional vector of probabilities

π̄ defining such an infinite multinomial distribution is analo-
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Figure 2. Chinese Restaurant Franchise (CRF) for three

songs with eight observations. Below are three CRPs (cor-

responding to the three songs), and above is the global CRP

from which the CRPs get their dishes. Each customer j, i
sitting at a table in the global CRP corresponds to table i
in restaurant j, and customer j, i’s table membership in the

global CRP determines the dish that is served at table i in

restaurant j. If a new customer coming into a restaurant j
sits down at a new table, then the dish for that table will

be φ1, φ2, φ3, or φ4 with probability 5
γ+11 , 3

γ+11 , 2
γ+11 , or

1
γ+11 respectively, or a new dish with probability γ

γ+11 .

gous to the K-dimensional vector π in the GMM. The HDP

has J such vectors π̄1...J , each of which defines a different

distribution over the same mixture components.

We use Gibbs sampling to approximate the posterior dis-

tribution over the latent variables conditioned on observed

data. The distribution is over the cluster partition assign-

ing feature vectors to clusters and a truncated vector πj

defining the mixture proportions for each song over the fi-

nite subset of K mixture components that are actually as-

signed to observations. We let πj,1...K = π̄j,1...K , and

πj,K+1 = 1 −∑K
k=1 π̄j,k, where πj,K+1 is the probability

of drawing an observation from a mixture component that

has not been used to explain any feature vector in any song.

For a complete exposition of the HDP, including how to

infer the posteriors for its parameters conditioned on data,

see [8].

2.3 Representing Songs Using the HDP

The mixture components parameterized by φ1...K capture

the latent structure in the feature data, and the mixture pro-

portion vectors π1...J express the feature data for songs 1...J
in terms of that latent structure. φ and πj together can de-

scribe the empirical distribution of feature vectors for a song

j as richly as a GMM can, but the HDP does not require that

we choose a fixed value of K, and represents the songs in a

more compact way.

To compute the distance between two songs i and j, we

can compute the symmetrized KL divergence between the

posterior distributions P (πi|β,m) and P (πj |β,m) which

are of the form

P (πj |β,m) = Dir(β1 + mj,1, ..., βK + mj,K , βK+1) (1)

where mj,k is the number of tables in restaurant j serving

dish k, βk is the likelihood of choosing a dish k from the

global CRP, and βK+1 is 1 −∑K
k=1 βk, the likelihood of

choosing a previously unseen dish in the global CRP.

This allows us to compare two songs in terms of the latent

structure of their feature data, rather than directly comparing

their distributions over the low-level features as the G1 algo-

rithm and GMM-based algorithms do. The KL divergence

between these two posteriors can be efficiently computed.

The KL divergence between two Dirichlet distributions with

parameters v and w each of length K is [9]:

D(Dir(v)||Dir(w)) = log
Γ(
∑

v)
Γ(
∑

w)
+

K∑
s=1

log(Γ(ws))
log(Γ(vs))

+

K∑
s=1

((vs − ws)(Ψ(vs)−Ψ(
∑

v))

where Γ(x) is the gamma function, Ψ(x) is the digamma

function (the first derivative of the log gamma function), and∑
v and

∑
w denote the sum of the K elements of v and w

respectively.

This is less expensive to compute than the KL divergence

between two high-dimensional multivariate Gaussian densi-

ties. It can be sped up further by computing the gamma and

digamma terms offline for each song.

2.4 Generalizing to New Songs

It is important that our approach be scalable to new songs

not seen during training. Once we have inferred the global

dish likelihoods β and the mixture component parameters

φ1...K , we can infer the posterior distribution over the mix-

ture proportions πJ+1 for a new song J + 1 conditioned on

β, φ, and the new data yJ+1 using the same Gibbs sam-

pling techniques originally used to train the model, holding

all other parameters constant.
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3 EVALUATION

In this section we describe the experiments we performed to

evaluate our approach against G1, GK (the analogous algo-

rithm for K-component GMMs), and an approach based on

Vector Quantization (VQ).

3.1 South by Southwest Dataset

We test our approach on a dataset that we compiled from

the South by Southwest (SXSW) 2007 and 2008 festivals’

freely distributed “artist showcase” mp3s [10]. We selected

a set of up to twenty mp3s (all by different artists to avoid bi-

asing the results) for seven genres: country, electronic, hip-

hop, jazz, metal, punk, and rock. Songs that we felt were un-

representative of their genre were removed or replaced prior

to any quantitative evaluations. There were fewer than 20

usable songs available for country (12), jazz (14), and metal

(15), so those genres are slightly underrepresented. There

are a total of 121 songs in the dataset.

3.2 Features

All models were trained on the same sets of feature vectors,

which for each frame consisted of 13 MFCCs (extracted us-

ing jAudio [11]) combined with 26 delta features computed

by subtracting the MFCCs for frame t from those at frame

t − 1 and t − 2, for a total of 39 dimensions. Each frame

was approximately 23 ms long, or 512 samples at the files’

sampling rate of 22050 Hz, with a hop size of 512 samples

(no overlap). 1000 feature vectors were extracted from the

middle of each song.

3.3 Models Evaluated

3.3.1 G1

As described above, G1 models each song’s distribution

over feature vectors with a single multivariate Gaussian dis-

tribution with full covariance matrix. Models are compared

using the symmetrized KL divergence.

3.3.2 K-component GMMs

We train K-component GMMs for each song using the E-M

algorithm. The symmetrized KL divergence between mod-

els is approximated by drawing 1000 synthetic feature vec-

tors from the trained models and evaluating their log likeli-

hoods under both models [1]. This approach is evaluated for

K = 5, 10, 20, and 30.

3.3.3 VQ Codebook

This algorithm is meant to be a simple approximation to

the HDP method we outlined above. First, we cluster all

of the feature vectors for all songs into K groups using the

k-means algorithm, renormalizing the data so that all dimen-

sions have unit standard deviation. This defines a codebook

of K cluster centers that identifies every feature vector with

the cluster center to which it is closest in Euclidean space.

For each song j, we compute the vector πj,1...K of the rela-

tive frequencies of each cluster label. Each πj,1...K defines a

multinomial distribution over clusters, and we compute the

distance between songs as the symmetrized KL divergence

between these multinomial distributions (smoothed by a fac-

tor of 10−5 to prevent numerical issues).

This algorithm, like our HDP-based method, represents

each song as a multinomial distribution over latent cluster

identities discovered using an unsupervised algorithm, and

lets us see how a much simpler algorithm that uses similar

ideas performs compared with the HDP.

3.3.4 HDP

We train an HDP on all of the data using the direct assign-

ment method [8], inferring the posterior distributions over

the πj’s for each song j and computing the distance between

two songs i and j as the KL divergence between the posteri-

ors over πi and πj . We place vague gamma priors on α and

γ [8]:

α ∼ gamma(1, 0.1), γ ∼ gamma(1, 0.1) (2)

and learn them during inference. For the prior H over φ,

we use the normal-inverse-Wishart distribution [12] with pa-

rameters κ0 = 2, ν0 = 41 (the number of dimensions plus

two), and μ0 = ȳ (the mean of all feature vectors across

songs). The normal-inverse-Wishart matrix parameter Λ0

was chosen by averaging the covariance matrices from 100

clusters of feature vectors, each of which was obtained by

choosing a feature vector at random and choosing the 24,200

feature vectors closest to it under a Euclidean distance met-

ric. (The number 24,200 was chosen because it was 1/5 of

the total number of points.) The goal of this process is to

choose a matrix Λ0 that resembles the covariance matrix of

fairly large cluster of points, encouraging the model to find

similarly shaped clusters. Using smaller (larger) clusters to

choose Λ0 would result in the model creating more (fewer)

latent topics to explain the data.

3.4 Experiments

Since human-labeled ground truth similarity data is inher-

ently expensive and difficult to acquire, we follow previous

researchers [1, 2] in using genre as a proxy for similarity.

We assume that all songs labeled with the same genre are

“similar,” which allows us to use evaluation metrics from

the information retrieval literature. We first compute a full

121x121 distance matrix between all songs using each al-

gorithm. For each query song sq, each other song si is
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G1 G5 G10 G20 G30 VQ5 VQ10 VQ30 VQ50 VQ100 HDP

13.24 829 1487 2786 4072 0.58 0.59 0.63 0.686 0.85 0.25

Table 1. Time in seconds required to compute a 121x121 distance matrix for G1, GMM-based (K = 5, 10, 20, 30), VQ-based

(K = 5, 10, 30, 50, 100), and HDP-based algorithms.

G1 G5 G10 G20 G30 VQ5 VQ10 VQ30 VQ50 VQ100 HDP

RP 0.3254 0.3190 0.3287 0.3144 0.3146 0.2659 0.2997 0.3191 0.340 0.3313 0.3495
AP 0.3850 0.3761 0.3746 0.3721 0.3706 0.3171 0.3546 0.3850 0.3989 0.3910 0.3995
AUC 0.6723 0.6712 0.6687 0.6679 0.6661 0.6513 0.6675 0.6846 0.6893 0.6758 0.7002

Table 2. Three measures of retrieval quality: mean R-Precision (RP), mean Average Precision (AP), and mean Area Under

ROC Curve (AUC) for G1, GMM-based (K = 5, 10, 20, 30), VQ-based (K = 5, 10, 30, 50, 100), and HDP-based algorithms

on the large SXSW dataset.

G1 HDP

RP 0.5486 0.6000
AP 0.6807 0.7154
AUC 0.8419 0.8983

Table 3. Mean R-Precision (RP), mean Average Precision

(AP), and mean Area Under ROC Curve (AUC) for G1 and

our HDP-based algorithm on the smaller dataset.

given a rank rq,i based on its similarity to sq. The qual-

ity of this ranking, i.e. how well it does at ranking songs

of the same genre as sq more similar than songs of differ-

ent genres, is summarized using R-Precision (RP), Average

Precision (AP), and the Area Under the ROC Curve (AUC),

which are standard metrics from the information retrieval

literature [13]. All experiments were conducted on a Mac-

Book Pro with a 2.0 GHz Intel Core Duo processor and 2

GB of RAM. All models were implemented in MATLAB.

3.4.1 Testing on Additional Data

To test our HDP-based method’s ability to generalize to un-

seen data using the method in section 2.4, we use the HDP

trained on the large SXSW set to compute a similarity ma-

trix on a smaller set consisting of 5 artist-filtered songs per

genre (35 in all) by artists not in the training set. The elec-

tronic, punk, rap, and rock songs came from the SXSW artist

showcase collection, and the country, jazz, and metal songs

came from a dataset previously used by George Tzanetakis

[14]. We also compute a similarity matrix on this dataset

using G1, and compare the RP, AP, and AUC metrics for

retrieval quality obtained using both algorithms.

4 RESULTS

Tables 1, 2, and 3 summarize the results of our experiments.

The best results in each row are in bold.

The amount of time required to compute the distance ma-

trices for the GMMs was, as expected, enormous by com-

parison to the other models. The cost of computing the KL

divergence for the VQ-based and HDP-based models was

more than an order of magnitude lower even than the cost of

computing the KL divergence between single Gaussians.

The HDP performed better than the other models for all

three standard information retrieval metrics, although the

VQ model with K = 50 was a very close second. None

of the GMMs outperformed G1.

The results in table 3 show that the HDP-based approach

does generalize well to new songs, showing that the al-

gorithm can be scaled up efficiently to databases of many

songs.

4.1 SIMILARITY HUBS

The G1 and GK approaches are known to produce “hubs”

[1] – an undesirable phenomenon where certain songs are

found to be similar to many other songs. The hub phe-

nomenon is a potentially serious concern, since it can re-

sult in very bad matches being selected as similar to a query

song.

Our HDP-based approach does not suffer from this prob-

lem. Figure 3 shows how often each song is ranked in the top

five of another song’s similarity list for similarity matrices

obtained from G1, the HDP, and choosing distances at ran-

dom. The randomly generated histogram shows the sort of

distribution of hubs one would expect to see due to chance

in a dataset of this size. The HDP’s histogram closely re-

sembles the random one, indicating an absence of abnormal

hubs. G1’s histogram, by contrast, shows more severe and

more numerous hubs than the other two histograms.
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Figure 3. Histograms of how often each song is ranked in

the top five of another song’s similarity list for similarity

matrices obtained using G1 (left), the HDP (center), and by

choosing distances at random (right).

5 CONCLUSION

We developed a new method for assessing the similarity

between songs. Our HDP-based approach outperformed

the G1 algorithm, can compute large distance matrices ef-

ficiently, and does not suffer from the “hub” problem where

some songs are found to be similar to all other songs.

Since our approach does not have access to any informa-

tion about temporal structure beyond that provided by the

MFCC deltas (about 69 ms in total), we expect that com-

bining the distances it provides with fluctuation patterns or

some similar feature set would provide an improvement in

similarity performance, as it does for the G1C algorithm [2].

One area of future work involves relaxing the bag-of-

feature-vectors assumption. For example, we might learn

distributions over texture patches of feature vectors instead

of individual feature vectors. Hidden Markov models can

also be fit into the HDP framework [8], and may yield im-

proved results.
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