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ABSTRACT

Many if not most audio features used in MIR research are

inspired by work done in speech recognition and are varia-

tions on the spectrogram. Recently, much attention has been

given to new representations of audio that are sparse and

time-relative. These representations are efficient and able to

avoid the time-frequency trade-off of a spectrogram. Yet lit-

tle work with music streams has been conducted and these

features remain mostly unused in the MIR community. In

this paper we further explore the use of these features for

musical signals. In particular, we investigate their use on

realistic music examples (i.e. released commercial music)

and their use as input features for supervised learning. Fur-

thermore, we identify three specific issues related to these

features which will need to be further addressed in order to

obtain the full benefit for MIR applications.

1 INTRODUCTION

The majority of the features used in audio-related MIR re-

search are based on Fourier analysis, which suffers from two

weaknesses. The first is the trade-off in precision between

time and frequency. The second, common to all block based

representations, is a sensitivity to arbitrary alignment of the

blocks with the musical events.

Sparse coding assumes a signal can be represented at a

given point in time by a rather small number of basis func-

tions taken from an overcomplete dictionary [9]. Recent

work [2, 10, 13, 14] applies these ideas to audio streams.

When set in the time domain, the result is a spikegram, an

efficient representation of the signal that avoids both of the

spectrogram’s weaknesses. Figure 1 shows a given signal

(an ascending and descending C-major scale played on a pi-

ano), its spectrogram and its spikegram. As can be seen,

a spikegram is composed of a set of spikes, corresponding

to the placement of a basis function (kernel) at a precise

point in time and with a particular scaling coefficient. The

spikegram encodes audio very efficiently and with arbitrary

resolution along both axes.

Figure 1. Top: original signal (an ascending and descending C-

major scale played on the piano) and its residual (after encoding

the signal to 20 dB SNR using the auditory codes). Middle: spec-

trogram. Bottom: spikegram. The horizontal axis represents time

with the same resolution as that of the signal. The vertical axis

corresponds to the frequencies of the n kernels used (Gammatones

in this case). A dot represents a spike, a kernel placed at a specific

point in time. The size and color of the dot are representative of the

scaling coefficient of the kernel. This spikegram contains 13, 000
values, enough to encode the signal to 20dB SNR.

The organization of the paper is as follows. Section 2

reviews existing work on sparse coding for audio streams.

Section 3 presents the sparse coding algorithm we use. Sec-

tion 4 attempts to bring insight into the resulting codes. To

this end, we encode the Tzanetakis genre dataset using pre-

defined Gammatone kernels. In Section 5 the features are

applied in a naive way to the task of genre recognition and

are shown to work as well as other commonly used audio

features. In section 6 we attempt to learn a set of kernels

better suited to music than the general purpose Gamma-

tones. The learned kernels are qualitatively different from

those learned on other types of sounds. This suggests mu-

sic poses specific coding challenges. Finally, in Section 7,

603



ISMIR 2008 – Session 5b – Feature Representation

we conclude and identify three specific issues with sparse

coding for further research.

2 RELATED WORK

In this section we present existing work on creating a sparse

encoding of audio signals. First, we present work done in

the frequency domain, and secondly, methods in the time

domain.

2.1 Frequency Domain

Plumbley and Abdallah have many publications about sparse

coding using a code book. See [10] for one of their recent

articles. The main idea is to derive a dictionary of power

spectra from a corpus of audio. One assumes that the spectra

of the signal is a weighted sum of the dictionary elements.

Weights can be derived in number of ways. For example

in [10] a method employing non-negative matrix factoriza-

tion and one employing variance estimation are used. In

the same article, the authors apply their coding to the task

of note detection. However, the most sparse representation

they present is from a time domain method, discussed fur-

ther in Section 2.2.

Another recent approach is introduced by Gardner and

Magnesco [5]. The idea is to compute a transformation of

the spectrogram that gives it higher precision. Thus it is

possible to track a single signal efficiently.

2.2 Time Domain

The most used method in the time domain is based on a

dictionary of kernels that are mapped onto a signal using a

MAP estimate [2, 10, 13]. MAP gives the best reconstruc-

tion error, but is very computationally expensive. Thus, an

approximation is developed in [2], and in [13] MAP is used

as an optimization phase using only a subset of selected ker-

nels.

Two other methods of encoding are described by Smith

and Lewicki [13]. The first one uses a threshold on the cor-

relation between the signal and the kernels; the second one

uses matching pursuit. In experiments, matching pursuit

comes out as the best compromise between computational

complexity and Signal to Noise Ratio (SNR).

The kernels used can be either predefined or learned us-

ing a gradient ascent method. The first option is used by

Smith and Lewicki in [13]. They use Gammatones, which

are known to approximate the cochlear filters. The second

option requires a corpus on which to learn the kernels. In

[10], 57 kernels are learned on a recording of Beethoven’s

Bagatelle containing 57 played notes. Thus they expect each

kernel to model a particular note. In [14], learning is done

on environmental sounds (ambient and transient), mammalian

vocalizations, speech and reversed speech.
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Figure 2. Example of a Gammatone kernel.

3 SPARSE TIME-RELATIVE CODING

In this section we describe the model we use for signal rep-

resentation as well as the encoding algorithm. The model is

the same as Smith and Lewicki’s [13] and is used in conjunc-

tion with the matching pursuit encoding, as done in [13, 14].

3.1 Model for signal representation

We represent a signal using a sparse representation based on

shiftable kernels [13]. This models the signal x as a linear

superposition of kernels φ that are placed at precise time

locations τ with a given scaling coefficient s. Formally:

x(t) =
M∑

m=1

nm∑
i=1

sm
i φm(t− τm

i ) + ε(t),

where m runs over the different kernels, i over the different

instances of a given kernel and ε represents additive noise.

The length of the kernels is variable.

3.2 Choice of encoding algorithm

Encoding a signal amounts to determining the placement

and scaling of kernels. This is a non-linear process and find-

ing the optimal sparse representation using a generic dictio-

nary of functions is NP-hard [3]. We choose to use matching

pursuit [7], an iterative greedy algorithm, which is shown to

offer a very good trade-off between computational resources

and efficiency of representation [13]. The algorithm works

iteratively in three steps. First, the signal is cross-correlated

with the kernels. The best fitting projection is then selected

and the corresponding kernel identity, placement and scal-

ing are recorded. The projection is then subtracted from the

signal and the procedure is repeated over the residual.

4 ENCODING USING GAMMATONE KERNELS

In this section, we attempt to bring insight into the encoding.

Basic characteristics and properties are illustrated through
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Figure 3. Top: original signal (close-up of a piano sounding an

A4). Bottom: spikegram (using kernel shapes).

the encoding of the Tzanetakis genre dataset. We use Gam-

matone kernels (see Figure 2), which are motivated as bio-

logical general purpose kernels used in the cochlea. Their

characteristic sharp rise and slow decay also intuitively fit

many real phenomenons. The Gammatones are set accord-

ing to an equivalent rectangular band (ERB) filter bank cochlear

model using Slaney’s auditory toolbox for Matlab [12], as

done in [13]. Unless otherwise stated, we use 64 variable

length normalized Gammatone kernels, with frequencies rang-

ing from 20Hz to the Nyquist frequency.

An important characteristic of the coding is that kernels

are placed at precise time locations. This characteristic al-

lows for precise localisation of events. This is illustrated in

Figure 3, which shows the encoding of a note played on a

piano. The onset clearly stands out.

Another important property of the coding is the fact that

spikes are only used on a per-need basis. In Figure 4 we

see that most of the spikes are placed in the middle of the

song where the energy is. This contrasts with the uniform

distribution of encoding resources in the spectrogram and

illustrates a characteristic of sparse coding: it is adaptive in

the number of spikes for a given encoding ratio. Figure 5

shows the encoding of a metal song. Though the code is

still sparse, more spikes are needed than for the jazz exam-

ple, perhaps due to the constant presence of high-frequency

guitar with heavy distortion.

We further investigate the previous result, i.e. that jazz

seems easier to encode than metal. For this purpose we used

Tzanetakis’ genre dataset later presented in Section 5. In

top of Figure 6 we show the average number of spikes per

song needed to encode songs from different musical genres

to a given SNR. Some genres seem to require more spikes,

metal being the most needy. We placed an upper limit on the

Figure 4. Top: original signal (30 seconds from a jazz song)

and its residual (after encoding the signal to 20dB SNR using the

auditory codes). Middle: spectrogram. Bottom: spikegram.

# of kernels 103 104 2.5 × 104 5 × 104

32 2.82 (0.97) 8.57 (2.17) 12.69 (2.87) 16.60 (2.88)

64 3.02 (1.03) 9.07 (2.29) 13.44 (2.98) 17.43 (2,70)

128 3.08 (1.04) 9.24 (2.31) 13.76 (2.99) 17.76 (2.52)

Table 1. Mean (standard deviation) of the SNR (dB) obtained

over 100 songs (ten from each genre), as a function of the number

of Gammatones in the codebook and of the maximum number of

spikes allowed to reach a maximal value of 20 dB SNR.

number of spikes computed (105), which is why the metal

box is compressed. To make sure the difficulty lies in the

high frequencies, we divide the 64 kernels in eight bins and

count them separately. The results are at the bottom of Fig-

ure 6. The highest frequencies are on the leftt, the lowest on

the right. As expected, many high frequency Gammatones

were used for metal songs, whereas classical or jazz songs

required few.

It is also interesting to determine the effect on the signal

to noise ratio of using different numbers of kernels in the

ERB and different numbers of spikes in the spikegram. The

results are presented in Table 1. Surprisingly, the number

of kernels has relatively little impact for the tested range of

values.

5 GENRE RECOGNITION

In order to explore the discriminative ability of the spikegram

representation, we apply it to the classification task of genre

recognition. As classifier, we use the AdaBoost meta-learning

algorithm. This choice is motivated by the fact that source

code [8] is available as well as published results for a set

of genre recognition experiments [1]. Those experiments
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Figure 5. Top: original signal (30 seconds from a metal song)

and its residual (after encoding the signal to 20dB SNR using the

auditory codes). Middle: spectrogram. Bottom: spikegram.

were performed on a freely available dataset from Tzane-

takis. (Similar datasets were used for previous MIREX con-

tests. However those datasets are not available for down-

load.)

The Tzanetakis genre dataset contains one thousand 30-

second songs evenly distributed among 10 genres and is

used in several papers [1, 16, 15, 6]. The dataset is very

small and is annotated with only a single winner-take-all

genre label. Though we believe the dataset is suitable for

exploring the predictive power of the spikegram, it is clearly

too small to reflect the challenges faced in finding structure

in large datasets of audio.

5.1 Algorithm

AdaBoost [4] is a meta-learning method that constructs a

strong classifier from a set of simpler classifiers, called weak
learners in an iterative way. Originally intended for bi-

nary classification, there exist several ways to extend it to

multiclass classification. We use AdaBoost.MH [11] which

treats multiclass classification as a set of one-versus-all bi-

nary classification problems. In each iteration t, the algo-

rithm selects the best classifier, called h(t) from a pool of

weak learners, based on its performance on the training set,

and assigns it a coefficient α(t). The input of the weak
learner is a d-dimensional observation vector x ∈ �d con-

taining audio features for one segment of data (5 seconds

in our experiments). The output of h(t) is a binary vector

y ∈ {−1, 1}k over the k classes. h
(t)
l = 1 means a vote for

class l by a weak learner while h(t), −1 is a vote against.

After T iterations, the algorithm output is a vector-valued
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Figure 6. Top: box-and-whisker plot of the number of spikes (out

of a maximum of 105) required to encode songs from various gen-

res up to a SNR of 20dB. The red line represents the median and

the box extends from the lower quartile to the upper one. Bottom:
Bar plot of the mean number of kernels used per song depending

on the genre. The 64 kernels are split into eight bins going from

the highest frequency Gammatones (left) to the lowest ones (right).

discriminant function:

g(x) =
T∑

t=1

α(t)h(y)(x) (1)

We obtain a single label by taking the class with the “most

votes” i.e f(x) = arg maxl gl(x). As weak learner we use

single stumps, a simple threshold on one element of the fea-

ture vector.

We use an AdaBoost method for genre recognition based

on a method detailed in Bergstra et al. [1].

5.2 Features from the spikegram

The input of the classifier needs to be a feature vector of

fixed size for every segment of a song (5 seconds segments

here). Of course, a sparse code is designed to adapt to

specific audio signals. The number of spikes per segment

changes, and the spikes can be positioned at any given mu-

sic frame. Thus we have encode the information about the

spikes differently in order to use it as input to a typical clas-

sifier.

Here we try two types of features based on the spikes.

First, we simply count the number of times each spike is

used in every segment, and we also sum their scaling coeffi-

cients s. We also give the same information, but normalized

by the number of spikes in the segment. Finally, we give the

classifier the total number of spikes in this segment. For 64
kernels, this yields an input vector of size 257 per segment.
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feat. SC feat. SC + MFCC MFCC (B.)

63.0% 68.2% 63%

Table 2. Genre recognition results on Tzanetakis dataset with 5-

fold cross-validation using the sparse code features (SC), the sparse

code features and our implementation of MFCC (SC + MFCC) and

result using MFCC from Bergstra et al. [1] (B.). Result from [1] is

approximate (taken from a graph).

5.3 Results

Results are reported using a 5-fold cross-validation. For

more details about reported results on this dataset in the lit-

erature, see Bergstra et al. [1].

Using AdaBoost.MH with single stumps as weak learn-

ers, and 5-second segments, Bergstra et al. [1] report an er-

ror per song of about 63% using MFCCs. Our results using

the features derived from the spikegrams are presented in

Table 2. We see that even with a naive use of the spikegram,

results are comparable with commonly used audio features.

The spikegrams also add information to the MFCC as can

be seen in Column 2 of Table 2.

6 LEARNING KERNELS

The spikegrams used in the previous sections were based

on the use of kernels of a specific predefined form (Gam-

matones). It is also possible to learn the kernels as done

in [10, 14] over different audio corpora. Here we investigate

the learning of kernels for western commercial music. There

are at least three motivations for this. First, we hope to better

encode music with learned kernels than with Gammatones.

Secondly, these kernels should be more efficient as input for

MIR tasks. Thirdly, perhaps these learned kernels can form

meaningful blocks representing concepts like compression,

note onsets or timber. This was the case in Plumbley et al.

[10] where the authors could relate the learned kernels to pi-

ano notes. The difference here is that we train on more com-

plex music and we put less constraint on the kernel lengths.

6.1 Algorithm

The learning is done by gradient ascent. The approximate

gradient of a signal x, given a kernel φ, is (from [14]):

∂

∂φ
p(x|φ) =

1
σε

∑
i

ŝi[x− x̂]τi (2)

We can then perform gradient ascent on every dimension

of the kernels using the residual signal at corresponding po-

sitions. The σε is constant and can be ignored as we set the

learning rate empirically.

In our experiments, 32 kernels are initialized using ran-

dom values drawn from a Gaussian distribution. Through-

out the learning, the kernels are kept normalized. We use
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Figure 7. Examples of learned kernels

kernel 103 104 2.5 × 104 5 × 104

gammatones 2.82 (0.97) 8.57 (2.17) 12.69 (2.87) 16.60 (2.88)

learned 1.86 (0.57) 6.06 (1.49) 8.86 (2.00) 11.53 (2,37)

Table 3. Mean (standard deviation) of the SNR (dB) obtained

over 100 songs (ten from each genre) with either 32 Gammatones

or 32 learned kernels in the codebook.

a database containing tens of thousands of MP3s. Learn-

ing proceeds by iteratively randomly choosing a song from

the database, encoding it using 1000 spikes, computing the

residual signal and performing gradient ascent on the ker-

nels. The learning rate was set to 0.01 and we did approx-

imately 2000 iterations. Figure 7 shows samples from the

32 kernels we learned. The learned kernels are qualitatively

different from Gammatones. They closely resemble those

learned by [10]. However, our kernels are of variable length

which may be better suited to encoding music with varying

note durations.

6.2 Learned Kernels versus Gammatones

As a first experiment, we evaluate how well the learned ker-

nels encode songs compared to the Gammatones. Results

are shown in Table 3. Unfortunately, Gammatones perform

significantly better at this task. This is a surprising result, as

the learned kernels are trained to optimize this specific cost,

suggesting that learning kernels for complex music poses

specific challenges.

As a second experiment, we use the 32 learned kernels as

input for genre recognition, and we compare the results with

those obtained using 32 Gammatones. Results are shown in

Table 4. We compare the results when encoding using 103
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gamma (1K) learn (1K) gamma(10K) learn (10K)

47.5 % 46.3 % 52.5 % 54.3 %

Table 4. Genre recognition results on Tzanetakis dataset

with 5-fold cross-validation. Number in parentheses is the

maximum number of spikes used to encode each song.

and 104 spikes for computational reasons. Learned kernels

seem to perform similarly as Gammatones. This shows that

the encoding capacity of kernels is different from their pre-

dictive property for a particular task.

7 DISCUSSION AND FUTURE WORK

Our goal with this work is to draw further attention to time-

relative sparse codings. These codes manage to avoid the

weaknesses of the spectrogram and encode an audio signal

very efficiently. Yet there are three issues related to their

use that will need to be addressed. The first is how to prop-

erly use them as input to MIR tasks. Indeed, in our genre

recognition experiments, we summarize spike counts and

scaling coefficients over a block. This destroys the useful

time-relative configurations of the spikes and reintroduces

a sensitivity to arbitrary block alignment. The fact that we

are still able to get results comparable to MFCCs shows the

potential of the features. The second issue relates to learn-

ing in the case of complex music. Our work seems to reveal

specific difficulties. In particular, kernels trained over mu-

sic tended to continually grow, and thus we had to enforce

some length constraints. The disappointing results are also

indicative that the learning problem becomes difficult with

complex music. Solutions might lie in using weight decays,

and starting from kernels trained on less complex signals.

Finally, there is an issue with the computational complex-

ity of the technique. Even with the use of matching pur-

suit, the computational requirements of encoding are above

real time, which may not suit all applications. Answers may

rely in performing approximate matching pursuit, or learn-

ing a function to do an approximate encoding using machine

learning.
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