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ABSTRACT

We present a filter-and-refine method to speed up acous-

tic audio similarity queries which use the Kullback-Leibler

divergence as similarity measure. The proposed method

rescales the divergence and uses a modified FastMap [1]

implementation to accelerate nearest-neighbor queries.

The search for similar music pieces is accelerated by a fac-

tor of 10−30 compared to a linear scan but still offers high

recall values (relative to a linear scan) of 95− 99%.

We show how the proposed method can be used to query

several million songs for their acoustic neighbors very fast

while producing almost the same results that a linear scan

over the whole database would return. We present a work-

ing prototype implementation which is able to process sim-

ilarity queries on a 2.5 million songs collection in about

half a second on a standard CPU.

1. INTRODUCTION

Today an unprecedented amount of music is available on-

line. As of April 2009, the Apple iTunes music store alone

lists more than 10 million downloadable songs in its cata-

log. Other online music stores like Amazon MP3 still offer

a 5 million songs catalog to choose from. With the catalog

numbers constantly reaching new record highs, the need

for intelligent music search algorithms that provide new

ways to discover and navigate music is apparent.

Unfortunately many of the intelligent music processing

algorithms that have been published do not easily scale to

the millions of music pieces available in an online music

store. In particular, this is true for music recommendation

algorithms which compute acoustic music similarity using

a Gaussian timbre representation and the Kullback-Leibler

divergence, as in [2], [3] or [4].

Especially the Kullback-Leibler divergence, as it is used

in the referenced works, poses multiple challenges when

developing a large scale music recommendation system:

(1) the divergence is very expensive to compute, (2) it is

not a metric and thus makes building indexing structures
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around it very hard and (3) in addition, the extracted acous-

tic music similarity features have a very high degree of

freedom, which too is a general problem for indexing so-

lutions (“curse of dimensionality”) [5].

But on the other hand, systems using this technique reg-

ularly rank in the very top places in the yearly MIREX

Automatic Music Recommendation evaluations 1 , which

makes them a tempting but challenging target for broad

usage in real applications.

1.1 Related Work

The idea of using FastMap-related techniques for computa-

tionally heavy non-metric similarity measures and nearest

neighbor retrieval was first demonstrated by Athitsos [6].

They use BoostMap [7] to improve the speed of classify-

ing handwritten digits. Cano et al. [8] use FastMap to map

the high dimensional music timbre similarity space into a

2-dimensional space for visualization purposes.

Roy et al. [9] present a music recommendation sys-

tem which uses a Monte-Carlo approximation of the

Kullback-Leibler (KL) divergence as similarity measure.

The Monte-Carlo approximation of the KL divergence is

far more expensive to compute and less accurate than the

closed form of the KL divergence which is used in our pa-

per and recent music similarity algorithms. To speed up a

similarity query, they narrow the number of nearest neigh-

bor candidates by incrementally increasing the accuracy of

the Monte-Carlo sampled divergence measure.

Another interesting approach, which was pursued by

Garcia [10], is to compute computationally expensive sim-

ilarity measures on modern graphics processors (GPUs).

Modern GPUs offer high floating-point performance and

parallelism. As an example Garcia shows how a lin-

ear brute force nearest neighbor scan using the Kullback-

Leibler divergence can be accelerated on a GPU compared

to computing it on a standard CPU. The idea to use the

GPU to process similarities could be combined with the

methods presented in this paper.

With mufin.com there also exists a commercial music

recommendation service which computes acoustic audio

similarities for a very large database of music (6 million

tracks as of April 2009). However, their website gives no

hint on how their service works 2 .

1 http://www.music-ir.org/mirexwiki/
2 http://www.mufin.com/us/faq.html
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1.2 Contributions of this paper

The contribution of this paper is three-fold:

• First, we present a filter-and-refine method based on

FastMap which allows quick music similarity query

processing. It is designed to work with very large

music databases which use Gaussian timbre models

and the Kullback-Leibler divergence as music simi-

larity measure.

• Second, we show how a rescaling of the divergence

values and a new FastMap pivot object selection

heuristic substantially increase the nearest neighbor

recall of the algorithm.

• Finally, we present an implementation of a music

recommendation system using the proposed tech-

niques which handles a 2.5 million tracks evaluation

collection in a very efficient way.

2. PRELIMINARIES

2.1 Data

Throughout this paper we use a collection of 2.5 million

songs to evaluate the performance and to show the practical

feasibility of our approach. The 2.5 million tracks consist

of 30 second snippets of songs gathered by crawling an

online music store offering free audio preview files.

2.2 Similarity

We extract timbre features from the snippets and compute

a single Gaussian timbre representation using the method

proposed by Mandel & Ellis [2]. We compute 25 Mel

Frequency Cepstrum Coefficients (MFCCs) for each audio

frame, so that a Gaussian timbre model x finally consists

of a 25-dimensional mean vector μ and covariance matrix

Σ. For performance reasons we also precompute and store

the inverted covariance matrix Σ−1.

To compute acoustic timbre similarity we use the sym-

metrized version (SKL) of the Kullback-Leibler diver-

gence (KL, [11]), defined between two multivariate nor-

mal distributions x1 ∼ N (μ1,Σ1) and x2 ∼ N (μ2,Σ2):

SKL(x1, x2) =
1
2
KL(x1, x2) +

1
2
KL(x2, x1). (1)

A query for similar songs is processed in a linear scan

by computing the SKL between the Gaussian x1 of the

seed song and all other songs in the database. The songs

with the lowest divergence to the seed song are its nearest

neighbors and possible recommendations.

2.3 Nearest neighbor recall

To compare the effectiveness of the nearest neighbor re-

trieval variants evaluated, we used what we call nearest

neighbor (NN) recall. We define it as the ratio of true near-

est neighbors found by some algorithm (NNfound) to the

number of true nearest neighbors (NNtrue). The true near-

est neighbors are found by a full linear scan.

recall =
|NNfound ∩NNtrue|

|NNtrue| (2)

3. THE METHOD

To build our filter-and-refine method for fast similarity

queries we use an adopted version of FastMap [1], a Mul-

tidimensional Scaling (MDS) technique. MDS [12] is a

widely used method for visualizing high-dimensional data.

It takes the distance matrix of a set of items as input and

maps the data to vectors into an arbitrary-dimensional Eu-

clidean space. FastMap is straightforward to use even for

large databases since it only needs a low and constant num-

ber of rows of the similarity matrix to compute the vector

mapping. However, FastMap requires the distances to ad-

here to metric properties.

3.1 Original FastMap

The original FastMap [1] algorithm uses a simple mapping

formula (Equation 3) to compute a k-dimensional projec-

tion of objects into the Euclidean vector space. The dimen-

sion k is arbitrary and can be chosen as required. Usually

higher dimensions yield a more accurate mapping of the

original similarity space.

To project objects into a k-dimensional Euclidean vec-

tor space, first two pivot objects from the feature database

have to be selected for each of the k dimensions. The orig-

inal algorithm uses a simple heuristic to select those pivot

objects: for each dimension (j = 1..k), (1) chose a random

object xr from the database, (2) search for the most distant

object of xr using the original distance measure D() and

select it as the first pivot object xj,1 for the dimension, (3)

the second pivot object xj,2 is the object most distant to

xj,1 in the original space.

After the 2k pivot objects have been selected, the vector

representation of an object x is computed by estimating

Fj(x) for each dimension (j = 1..k):

Fj(x) =
D(x, xj,1)2 + D(xj,1, xj,2)2 −D(x, xj,2)2

2D(xj,1, xj,2)
(3)

This method depends on metric properties of D to pro-

duce meaningful mappings. However, it has been noted

that FastMap works surprisingly well also for non-metric

divergence measures [7].

As FastMap only requires a distance function D and

pivot objects to compute the vector mapping, it can be in-

stantly applied to map the Gaussian timbre models with the

SKL as distance function to Euclidean vectors (ignoring

the fact that the SKL is not metric).

3.2 A Filter-And-Refine Method using FastMap

To use FastMap to quickly process music recommenda-

tion queries, we initially use it to map the Gaussian timbre

models to k-dimensional vectors. In a two step filter-and-

refine process we then use those vectors as a prefilter: first
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we filter the whole collection in the vector space (with the

squared Euclidean distance) to return a number (filter-size)

of possible nearest neighbors, then we refine the result by

computing the exact SKL on the candidate subset to re-

turn the nearest neighbors. By using the SKL to refine
the results, the correct nearest neighbor ranking is ensured.

We set the parameter filter-size to a fraction of the whole

collection.

Since the complexity of a single SKL comparison is

much higher than a simple vector comparison, the use of

the squared Euclidean distance to prefilter the data results

in large speedups compared to a linear scan over the whole

collection using the SKL. Table 1 compares the computa-

tional cost (in floating point operations, flops) of the SKL
to the squared Euclidean distance d2 using different vector

dimensions (k) to prefilter candidate nearest neighbors.

Divergence flops flops/flopsSKL

SKL 3552 1
d2, k = 20 60 0.017
d2, k = 40 120 0.034
d2, k = 60 180 0.051

Table 1. The computational complexity (in flops) of com-

puting the squared Euclidean distance (d2) is, even for high

mapping dimensions like k = 60, much lower than the

costs of computing a single SKL comparison. Note: We

already use an optimized implementation of the SKL ex-

ploiting matrix symmetry and the sequence of matrix op-

erations [13].

Unfortunately, as we show in the next section (3.3), ap-

plying FastMap to the problem without any modifications

yields very poor results.

3.3 Modifications

In our implementation we have included two important

modifications which improve the quality of FastMap map-

pings for nearest neighbor retrieval. The modifications

are centered around two thoughts: (1) a metric divergence

measure would produce better vector mappings, and (2) a

more specialized heuristic for pivot object selection could

produce better mappings especially for the near neighbors,

which are the center of our interest.

3.3.1 Rescaling

Before mapping the objects xi ∈ X to a k-dimensional

vector (Equation 3), we propose to rescale the original

symmetric Kullback-Leibler divergences (SKL) by taking

the square-root:

D(x1, x2) =
√

SKL(x1, x2). (4)

This rescaling has the effect of making the SKL behave

more like a metric. As the SKL already has the important

properties of being symmetric and non-negative, it only

fails to fulfill the triangle inequality. Taking the square root

has the effect to partly fix the divergence, making it more
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Figure 1. Nearest neighbor (NN) recall of two pivot object

selection methods (median: the proposed pivot object se-

lection heuristic, basic: the original FastMap heuristic) in

combination with three divergence rescaling methods (no-
rescaling, eλx,

√
x). NN recall is averaged over five in-

dependent evaluation runs (10.000 queries per run), each

time using a new random collection. Parameters: k = 40,

filter-size=10%, collection size=100.000.

metric [14]. Another more common way is to rescale the

SKL with eλSKL() (see [3] or [2]).

We have experimentally verified the effect of rescaling

on a collection of 100.000 randomly drawn Gaussian tim-

bre models (Table 2), by checking the triangle inequality.

The table clearly shows that exponentiating indeed reduces

the number of cases where the triangle inequality is vio-

lated, but it does not work as well as taking the square

root, which makes the SKL obey the triangle inequality

in more than 99% of the cases in our experimental setup.

Divergence % triangle inequality

SKL() 91.57%

1− eλSKL(), λ = − 1
100 93.71%

1− eλSKL(), λ = − 1
50 95.60%√

SKL() 99.32%

Table 2. Percentage of Gaussian object triples fulfilling

the triangle inequality (D(x, z) ≤ D(x, y)+D(y, z)) with

and without rescaling. The triangle inequality was checked

for all possible triples in a collection of 100.000 randomly

selected Gaussian timbre models.

3.3.2 Pivot Object Selection

To select the pivot objects which are needed to map an ob-

ject x to a vector space, the original algorithm uses two ob-

jects for each dimension which lie as far away from each

other as possible (see Section 3.1). In contrast to the orig-

inal heuristic we propose to select the pivot objects using

an adapted strategy: (1) first we randomly select an object

xr and compute the distance to all other objects; (2) we
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then select the first pivot object x1 to be the object lying at

the distance median, i.e. the object at the index i = �N/2�
on the sorted list of divergences; (3) likewise, the second

pivot object x2 is selected to be the object with the distance

median of all divergences from x1 to all other objects.

By using pivot objects at the median distance we avoid

using objects with extremely high divergence values which

often occur in the divergence tails when using the SKL.

Since we are also particularly interested in optimally map-

ping the near neighbors and not the whole divergence

space, this strategy should also help in preserving the

neighborhoods.

3.3.3 Improvements

Finally, we measure how these modifications improve the

filter-and-refine method by experimentally computing the

nearest neighbor (NN) recall of each change on a 100.000
songs collection. Figure 1 shows the result of the exper-

iment. A huge improvement in the nearest neighbor re-

call can be seen for all strategies which use the median

pivot object selection heuristic (A, C, D, E) compared to

the original FastMap heuristic (B). The figure also shows

that rescaling the SKL values helps to further increase the

NN recall. The suggested strategy (C) using the median

pivot object selection strategy together with square-root-

rescaling gives the best results.

4. IMPLEMENTATION

The implementation of the filter-and-refine music recom-

mendation engine is straightforward: in an initial step the

whole collection is preprocessed with the proposed map-

ping method, transforming the database objects into a k-

dimensional vector space. This is a linear process since

only 2k pivot objects have to be selected and each object in

the database is mapped to a vector using Equation 3 once.

Our implementation saves the pivot objects for each di-

mension and the vector mappings of processed objects to

disk. This allows fast restarting of the system and easy

processing of new objects.

To query for similar objects we use the previously de-

scribed filter-and-refine method, filtering out a predefined

number (filter-size, a percentage of the collection size) of

nearest neighbor candidates using the vector representation

and refining the result with the exact SKL.

This outlines the general method we propose, but obvi-

ously two parameters which have a huge impact on the re-

trieval quality (nearest neighbor (NN) recall) and the query

speed have not been discussed yet: the number of vector

dimensions k and the filter-size.

4.1 Recall and Speed

It is obvious that a larger filter-size results in better NN

recall values but higher computational costs. Likewise, a

higher k used for the vector mapping results in a more ac-

curate mapping of the divergence space, but with each di-

mension the computational costs to compute the squared

Euclidean distance in the prefilter steps are increased.
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Figure 2. Plot relating the nearest neighbor recall and

the floating point operations resulting from different filter-

and-refine parameter combinations, to a full linear scan

(flops/flopsSKL). Recall is computed for the 10 nearest

neighbors for different parameter combinations of k and

filter-size in a collection of 100.000 songs. A good com-

bination (good recall, low computational cost) would be

mapped to the upper left corner of the plot.

Figure 2 evaluates different parameter combinations of

k and filter-size and their impact on nearest neighbor re-

call and computational cost (and thus query speed). The

diagram was compiled using a collection of 100.000 Gaus-

sian timbre models. It shows the 10-NN retrieval recall and

query speed (computational cost in terms of flops).

The figure shows that a parameter combination of k =
20 and filter-size= 5% can be selected to achieve about

95% 10-NN recall. That combination would take only 7%

of the query time required by a linear scan with the SKL.

If a 10-NN recall of 85% is acceptable a parameter com-

bination requiring only 3.5% the computational cost of a

linear scan is possible (k = 20 and filter-size= 2%). Al-

most perfect 10-NN recall values (> 98 − 99%) can be

reached when setting filter-size to about 10% of the collec-

tion size, which still requires only 10% of the time a linear

scan would need.

This evaluation shows how a good parameter combina-

tion for a collection should be selected. In Section 5 we

plot a similar diagram (Figure 3) to select the best parame-

ters for a 2.5 million song collection achieving 99% 1-NN,

98% 10-NN and 95% 100-NN recall on the collection.

4.2 Errors

Another aspect which is of interest is how falsely reported

nearest neighbors (false positives) affect the average qual-

ity of music recommendations. We have done a 1-NN

genre evaluation (with artist filter, see [3]). This is a stan-

dard evaluation to test the quality of a music recommenda-

tion algorithm.

We tested four different collections (three in-house col-

lections and the Ismir 2004 Magnatune music collection
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which is freely available for testing purposes 3 ). Table 3

summarizes the results. It appears that the errors which

are being made do not affect the classification accuracy

in an adverse way. Classification accuracy decreases only

by about 0.1% for the two larger collections and by about

0.5% for the two small collections.

Collection, size Genres F&R Full Scan

#1, N = 16781 21 30.17% 30.28%
#2, N = 9369 16 28.55% 28.66%
#3, N = 2527 22 28.27% 28.78%
Ismir 2004, N = 729 6 64.47% 64.88%

Table 3. 1-NN genre evaluation results (with artist filter)

on four different collections. The table compares the genre

classification accuracy of the filter-and-refine (F&R) ap-

proach presented in this paper with a full exact linear scan.

Parameters: k = 40, filter-size=5%

5. PROTOTYPE PERFORMANCE

To show the practical feasibility of using this filter-and-

refine method with large music databases we use the

method on the 2.5 million song collection and build a pro-

totype music recommendation system. The system should

be able to answer queries for the 100 nearest neighbors

with high speed and recall.
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Figure 3. NN recall with different filter-sizes evaluated on

1% (= 25.000) of the 2.5 million songs collection. With a

filter-size of 5% one can achieve 95% 100-NN recall and

98% 10-NN and 99% 1-NN recall. k = 40.

To select the optimal parameter we ran an experiment

to determine the best filter-size, k was set to 40. Figure 3

shows the recall values for different NN and filter-sizes. It

can be seen that the true 1-NN and 10-NN are retrieved

almost always if the filter-size is set to 5%, 8% or 10% of

the collection size.

3 http://ismir2004.ismir.net/genre contest/index.htm

In a second experiment (Figure 4) we compare the ac-

tual query response times of three different filter-size set-

tings (filter-size= 8%, 5%, 2%, k = 40) to a full linear

scan. It can be seen that the system running on a single

standard CPU core is capable of answering music recom-

mendation queries in half a second while returning about

95% of the correct 100 nearest neighbors compared to a

linear scan which would take about 7.8sec on the system.
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Figure 4. Comparison of the time it takes to query a 2.5

million song collection for nearest neighbors using a full

scan compared to a scan using the filter-and-refine method

proposed. The PC used a standard Intel Core Duo CPU

(2.5GHz) and had all Gaussian models loaded to RAM.

6. CONCLUSIONS

We have described a filter-and-refine method for fast ap-

proximate music similarity search in large collections. The

method is designed for Gaussian music timbre features us-

ing the symmetric Kullback-Leibler divergence to com-

pute acoustic similarity, but could be generalized to other

distance measures. A prototype implementation of our

method handling 2.5 million tracks is able to answer mu-

sic similarity queries in about half a second on a standard

desktop CPU.

By accelerating similarity queries by a factor 10 to 30,

we show how a large scale music recommendation service

relying on recent music information retrieval techniques

could operate.
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