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ABSTRACT 

A system for automatic motive identification of large 
folksong corpora is described in this article. The method 
is based on a dynamic time warping algorithm determin-
ing inherent repeating elements of the melodies and a 
self-organizing map that learns the most typical motive 
contours. Using this system, the typical motive collec-
tions of 22 cultures in Eurasia have been determined, and 
another great common self organising map has been 
trained by the unified collection of the national/areal mo-
tive collections. The analysis of the overlaps of the 
national-areal excitations on the common map allowed us 
to draw a graph of connections, which shows two main 
distinct groups, according to the geographical distribu-
tion.  
 

1. INTRODUCTION 

In order to study interethnic and historical relations, 
Bartók and Kodály compared different layers of Hungar-
ian folk music to those of other nations living in the 
neighborhood of Hungarians. Later, they extended the 
study to Anatolian, Mari and Chuvash folk music [1-2]. 
These exciting results raise the question, whether it is 
possible to describe a whole and clear system of musical 
contacts in Eurasia by a systematic comparison of a suffi-
cient number of national or regional cultures.  
 
A further question, raised by the classical results men-
tioned above, refers just to the method of the analysis. 
The aim of these classical works was to find parallelism 
of entire melody structures. The similarity of whole mel-
ody contours seems to be really a sufficient condition to 
find genetic musical relations [1-3]. However, the 
question rises: do less rigorous requirements also exist? 
Instead of comparing the complete melody structures, our 
aim was to find and analyse the smallest independent me-
lodic units. It is well known that folksongs can usually be 
divided into certain phrases on the basis of musical and 
textual regularities. In a previous work, we have shown 
some results comparing individual phrases, as well as 
whole melodies of 6 European cultures [4].   
 
The idea of a motive identification algorithm can be de-
rived from the recognition that phrases are not necessarily 
the smallest intelligible units in folk music. We want to 
find the most frequently appearing motive types in a well 

defined melody corpus, with the assumption that each 
motive type may have several variants. However, the rep-
etition inside a melody can also be considered as an indi-
cation of a motive. Therefore, we suppose two possible 
detections of the motives. In addition to the “culture-
defined” motive identification, based on the frequent ap-
pearance in different songs, we also suppose the existence 
of the “melody-defined” identification which is based on 
the repetitions inside the melodies.  
 
The central problem of algorithmic melody pattern identi-
fication is the musical relevance of the results [5]. The 
most frequently applied melody segmentation techniques 
can be divided into two main groups. In the first group, 
segmenting is based on pre-defined and data-independent 
rules [6-8]. Using such rules, the so-called Local Boun-
dary Detection Model (LBDM) determines a boundary 
strength value between each couple of notes, and deter-
mines the segment boundaries at the maximal strength 
values [6,9]. Due to the requirement of pre-defined rules, 
such methods are not available for the sake of a learning 
system. The second group of segmenting techniques is 
based on a learning process to determine the regularities 
of a given melody corpus. Such regularities can be char-
acterised by the frequencies or conditional probabilities 
of the motives [10-12]. The so called Markov technique 
operating with conditional probabilities has already been 
applied to folk songs [13-14]. A further data-based self 
learning method for segmenting a large corpus of folk-
songs has been also described, which determines the con-
ditional entropy of the motives and defines an average 
entropy increment value for a given segmentation [15]. A 
method based on knowledge representation has been el-
aborated for identifying recurrent melody parts in large 
folksong corpora [16].  
 
The learning unit of the system described in this paper is 
a self organising map (SOM), trained by the contour 
functions of the motives [17-18]. The motive identifica-
tion in a given melody is accomplished in two steps. 
Firstly we determine the repeating elements of the 
melody by an algorithm based on dynamic time warping 
(DTW). After that, the remaining melody parts are ana-
lysed using a self organizing map, which learns and iden-
tifies the most frequently appearing patterns as “culture-
defined” motives. 
 
Our current possibilities allowed us to set up 22 folksong 
corpora, each of them consisting of 600-2400 melodies, 
representing Hungarian, Slovak, Moravian, Chinese, 
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Mongolian, Kyrgyz, Mari-Chuvash-Tatar, Karachay-
Balkar, Anatolian Turkish, Azeri, Sicilian, Spanish, Ru-
manian, Bulgarian, Polish - Cassubian, Finnish, Norwe-
gian, German, Luxembourgian-Lotharingian, French, 
Dutch and Irish-Scottish-English  musical traditions. In 
order to make an unbiased and general analysis, these 
nearly 40 000 melodies were transposed to the common 
final tone G automatically in the analysis. 
 

2. DETERMINATION  OF MOTIVES 
DEFINED BY REPETITION WITHIN 

MELODIES 
 

To search for essentially identical, but not completely 
uniform motives inside melodies, we developed an algor-
ithm based on dynamic time warping technique [17]. The 
operation of the algorithm is illustrated in Figures 1 and 
2. 
 
In the first step, the contour vectors   of the melodies 
are generated in the way demonstrated in Figure 1. The 
time duration of the kth melody is divided into small units 
according to the rhythmic value of 1/16, and the pitch 
values belonging to these subsequent small time intervals 
are stored in a multidimensional vector .  

 

 
Figure 1. Generation of the contour vector . 

 
The original aim of a DTW process is to determine a non-
negative scalar number characterising the difference of 
two vectors. In order to calculate this DTW-distance be-
tween melody contours  and , the matrix  is gener-
ated containing the deviations of the nth and mth pitch 
samples of the vectors   and : 
 

  ,                (1) 

where  and are the dimensions of  and  re-
spectively. Figure 2 shows an example of the above cal-
culation for the contour vectors demonstrated by the dia-
grams on the left side and the bottom of the matrix.  
 
The zero elements of the matrix  marked by bold italic 
characters indicate local warping curves assigning similar 
parts of the two vectors to each other. Our algorithm is 
based right on this recognition: instead of determining the 
total DTW distance of the vectors, we search for such lo-
cal warping paths in matrix . To do this, the partial 

time warping distances  are calculated, according to 
the dynamic time warping process: 

 

 
 

Figure 2. Generation of the partial deviation matrix , 
and the path of 0 elements indicating the relation between 

corresponding motives. 
 

 
               

(2) 
 
The original DTW algorithm produces the final distance 
at the end of the above recursive calculation as . 

The local warping paths can be determined using the 
dimensional matrix . Since the elements of the 

matrix  cannot be defined for negative indices, the al-
gorithm starts with the values of ,  

and the initial values of   are  and 

.  
 
The overall similarity of the vectors can be characterised 
by the summed length of the similar sub-sequences com-
pared to the sum of the total length of the vec-
tors . Thus, our technique can characterise the 
similarity of two different contour vectors by a scalar 
number ranging between 0 and 1. This similarity measure 
ignores the order of the motives, in contrast to the origi-
nal DTW and the Euclidean distances. Therefore it is able 
to detect the relationship even if the successions of the 
characteristic melody parts are different in the compared 
melodies.  
 
Example 1 shows two couples of melodies arising from 
different cultures, with a significant amount of similar 
parts found by the above described method. For instance, 
the first, second and fourth phrases of the Hungarian song 
in the first example are practically identical to the second 
and fourth phrases of the corresponding Appalachian 
melody, and the third phrase of the Appalachian song ap-
pears as a dominant part of the corresponding Hungarian 
phrase, too. Due to these local correspondences, the 
melodies are found to be similar, in spite of the difference 
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between the domed, as well as descending character of 
the two melodies.  

 
The above technique can be applied also to identical vec-
tors (i.e. ). In such cases, the trivial result that the 
whole melody is identical to itself is indicated by the zero 
elements of the diagonal, but the partial warping paths 
marked by zero matrix elements indicate the similar sub-
sequences. Therefore, our technique is also able to find 
similar parts within one given melody (see Figure 3). 
 

 

 
 

Figure 3.  Application of the DTW technique to search 
for repeated parts in a melody.  

 
The technique can be generalized for not exactly identical 
pitch values, too, by the extension of the search for paths 
of small elements in matrix . Some results of the 
method are shown in Example 2.   
 

 
 

Example 1.  Common motives of related melodies arising 
from different cultures. 

 
3. THE COMPLEX MOTIVE IDENTIFICATION 

ALGORITHM 
 
In addition to the melody-based motive identification, we 
also need a technique for the culture-defined identifica-
tion which was defined as the determination of those 
melody parts which frequently appear in a whole 
national/areal database. While the melody-based tech-

nique needs the analysis of one given melody, the cul-
ture-based identification requires a self learning process 

 
 
Example 2. Melody-defined and culture-defined motives 
in 4 folksongs. 
 
analysing the whole database simultaneously. In order to 
solve this problem, i.e. to identify the most frequent 
melody parts automatically, we developed a system based 
on a self organising map, as it is shown in Figure 4. 
 

 
 
Figure 4. The complex motive identification system. 
 
The input to the algorithm is a melody selected randomly 
from the database. At the beginning of the process, the  
dimensional motive type contour vectors assigned to the 
lattice points of the SOM,  are filled by random 
numbers. The choice of  proved to be sufficient 
for our database.  
 
The processing is done by the following steps:  
 
1. In the first step, all melody-defined motives of a 
melody are determined, using the melody-based identifi-
cation algorithm. 
 
2. All possible motives of the remaining parts of the 
melody are determined. The time duration of each pos-
sible motive is divided into  parts, and the pitch values 
belonging to the subsequent time intervals are stored in a 
vector  of dimensionality . This operation has been 
discussed in reference to melody contour generation (see 
Figure 1), but it is worth mentioning here an important 
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difference: When generating motive contour vectors, the 
vector dimension  is a pre-defined constant, while it is 
variable for melody vector generation, because the sam-
pling time unit is pre-defined in this latter case.  
 
3. The optimal motives are identified on the basis of the 
current estimates of the most typical motive types as-
signed to the lattice points of the SOM. Let  denote 
the contour vector belonging to the kth possible motive, 
and the current estimate of the motive contour type 

belonging to the lattice point with the coordinates . 

The motive contour vector  is assigned to the most 
similar motive contour type vector of the SOM:  
 

,                                                       

(3)  
  
where the similarity measure  is the Euclidean 

distance between the  and . 
 

                                 (4) 
 
Finally, the culture-based motives are defined using the 
following constraints: 
 
- The distance of the motive and the corresponding mo-
tive type must be less than a critical value. 
- The culture-defined motives are defined as the longest 
melody parts satisfying the above requirement. 
- The culture-defined motives should not overlap with 
melody-defined motives. Melody-defined motives have 
priority. 
 
4. The SOM is trained with the resulting set of culture-
defined and melody-defined motives, using the well 
known algorithm. Each  vector determines a “winner” 
motive type contour on the SOM according to Equation 
3, and the winner vectors  are modified towards the 
corresponding motive contour (denoting a winner posi-
tion by  on the SOM). The motive type vectors lo-
cated in the surroundings of a winner are also modified, 
while the radius defining the surroundings decreases dur-
ing the training steps [17].  
 
The input data vectors are usually invariable during the 
training process of self organising maps. In our system, 
however, they are variable, because the optimal culture-
based motive identification depends on the current state 
of the motive type vectors  (see Equations 3 and 4). 

Since  are modified during the learning process, the 
optimal segmentation itself depends on the current state 
of the SOM. In other words, there exists a feedback be-
tween the segmentation and the learning algorithm, thus, 
our system converges to an optimal training- and feature 

vector set in parallel. The results of many independent 
training processes verified that all of the characteristic 
motive contour types have been learned consistently and 
independently of the starting conditions of the SOM-s. 
 

4. ANALYSYS OF THE CULTURAL CONTACTS 
AMONG 22 CORPORA 

 
Let suppose that we can create a whole collection of mo-
tive contour types, containing all the significant contours 
that appear in any of the 22 cultures. It is obvious that the 
national/areal sets of motive types can be considered as 
different subsets of this great common collection, there-
fore the study of musical connection between different 
cultures can be determined by the analysis of the intersec-
tions of these subsets.  
 
Being in possession of the size of the great common mo-
tive contour type collection (N), the sizes of its two na-
tional/areal subsets (A and B), as well as the size of their 
intersection (X), the measure of the relationship between 
these cultures can be expressed by a probability as fol-
lows.  
 
As a first step we compute the probability of the event 
that a random choice of two subsets with sizes A and B 
from the set of size N results in an intersection of size x, 
as 

.                                          

(5) 
 
Using this probability density function, the probability of 
the event that the size of the intersection is less than X, is 
expressed as 

 

(6).                                                                
 
A high value of this probability indicates that the number 
of common contour types in the two corpora is much 
higher than the expected value in case of random correla-
tions. Consequently the similarity, manifested by such 
high intersection of two corpora, cannot be a product of 
occasional coincidences of independent musical 
evolutions. It can be stated in such cases of similarity that 
the common musical characteristics implicate a historical 
or present, immediate or intermediate cultural interaction, 
that is, the established relationship is necessarily determi-
nistic. 
 
To construct the above mentioned sets, we first had to 
deduce the characteristic motive contour type collections 
for eash of the 22, by training 22 SOM-s of size 20*20 
lattice points separately. After determining the 22 na-
tional/areal motive contour type collections, a new large 
self organizing map of size 30*30 was trained by the 
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united set of them, in order to determine the set of all 
possible motive contour types appearing anywhere in the 
22 cultures.  
 
This common SOM allows us to classify all motive types 
of a given national/areal collection on it using Equations 
3 and 4. We call this process “excitation of the common 
map by a culture”. The values A, B and X can be deter-
mined for any selected two cultures by counting up the 
lattice points excited in the great common SOM. With 
these quantities, the calculation of the probability  
can be carried out using Equations 5 and 6, knowing that 
N is equal to the total number of the common contour 
types. It is worth mentioning here that this calculation 
avoids the problems arising from the different sizes of the 
corpora, since the expected intersection decreases with 
decreasing subset sizes A and B.  
 
The graph of the system of closest relationships is sum-
marized in Figure 5, where a connection line indicates a 
high probability ( ) of deterministic contact 
between the nodes of musical cultures. The Figure shows 
two main sub-graphs containing an “Eastern” - Mongo-
lian, Chinese, Volga,  Hungarian, Slovak, Moravian, 
Spanish, Kyrgyz, Romanian, Bulgarian, Azeri, Sicilian, 
Turkish and Karachay-Balkar, as well as a “Western” - 
Finnish, Norwegian, Irish-Scottish-English, French, 
German, Dutch, Luxembourgish and Cassubian – group 
of nodes. There are some interconnections between these 
two large sets due to the close connections of the Hungar-
ian – Slovak – Finnish – (Irish-Scottish-English), and the 
Moravian - Norwegian corpora. Besides these close con-
tacts of the Carpathian Basin to the Scandinavian and 
Irish-Scottish-English cultures, the Irish-Scottish-English 
and Norwegian corpora have certain further Eastern con-
tacts to the Volga-region and Kyrgyzstan. Anyhow, the 
connection of the two main subsystems indicates a spe-
cial role of the above mentioned cultures inside their 
main groups and also in the whole system.  
 
The structure of the graph indicates certain smaller 
groups inside the great “Eastern” system. The majority of 
the motives belonging to the large pattern excited by the 
Mongolian, Chinese and Volga group on the common 
SOM move in the highest regions of the melodies – they 
start or end at the octave or higher notes (See the Mongo-
lian motive contour type in Figure 4). The visible over-
laps of the patterns of the Hungarian, Slovak, Karachay-
Balkar, Turkish and Sicilian excitations with the above 
mentioned triad are based mainly on the above mentioned 
motives in the highest region of the melodies.  
 
The patterns of the Irish-Scottish-English, Finnish and 
Norwegian excitations also indicate an important role of 
such motives, resulting in the deterministic contacts of 
these cultures to the Carpathian Basin and the Volga-
region. However, this “Eastern” part of the common mo-
tive type map empties in the further Western patterns. 
 

The French and Dutch contour examples show that the 
most common Western motive types move in the lowest 

 
 
Figure 5. The graph of deterministic relations of 22 musi-

cal cultures in Eurasia. 
 
 
ranges of the melodies, starting or ending at a fourth or 
fifth below the ending note.  
 
The cloud of the high motives also disappears gradually 
along the branch of the Spanish – Kyrgyz – Romanian – 
Bulgarian – Azeri excitations, while the pattern on the 
left side of the motive type map becomes more and more 
emphasized. The Azeri motive example illustrates that 
the motive types belonging to this part of the map are of 
low ambit, ranging between the fourth, third or the sec-
ond. The Sicilian, Turkish and  Karachay-Balkar excit-
ations show that these cultures also frequently apply such 
motive types, (beneath the above mentioned group of mo-
tives in high), indicating deterministic cultural contacts 
between the two branches. However, the group of these 
low-ambit motives practically misses in the Mongolian-
Chinese-Volga branch, and it is also rather rare in the 
Hungarian, Slovak and Moravian melodies. Therefore, 
these cultures have no direct connections to the Spanish-
Kyrgyz-Romanian-Bulgarian-Azeri branch.  

 
SUMMARY 
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The very clear connections between the patterns of the 
different national/regional excitations on the common 
motive type map allowed us to analyze the musical struc-
tures of different cultures as different manifestations of a 
common motive set, and led to the conclusion that the 
main contacts between the cultures can be explained by 
the dominance/lack of a few motive types. This analysis 
clarified that “Eastern” cultures prefer motives in high 
regions of the melody, generally moving between the oc-
tave and the fifth as well as fourth, while the “Western” 
melodies prefer motives connecting the tonic to a fifth or 
a fourth beyond the tonic. The combined analysis of the 
contact probabilities and the overlaps of the national/areal 
patterns indicated several distinguishable branches among 
the Eastern cultures. The Mongolian-Chinese-Volga 
branch highly prefers motives in high, while the Sicilian-
Turkish-Karachay branch evaluates a balance between 
these high motives and those of an explicitly low ambit. 
The close contacts of Hungarian, Slovak and Moravian 
cultures to these two distinguishable branches are based 
mainly on the high motive types. At the same time, the 
high motive types gradually disappear in the Spanish-
Kyrgyz-Romanian-Bulgarian-Azeri branch, while the 
dominance of motives of low ambit connects them to the 
Sicilian-Turkish-Karachay branch.  
 
Not forgetting the simplifications made during the appli-
cation of our technique, we can state that the motive 
analysis allowed us to draw a rather perspicuous picture 
of the cross-cultural connections of different folksong 
cultures. We hope that these results may demonstrate the 
feasibility of an extended research of “musical linguis-
tics”, and suggest an efficient and quantitative tool for 
“melody mining”, using artificial intelligence and other 
mathematical tools.  
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