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ABSTRACT

Music emotion plays an important role in music retrieval, 
mood detection and other music-related applications. 
Many issues for music emotion recognition have been 
addressed by different disciplines such as physiology, 
psychology, cognitive science and musicology. We 
present a support vector regression (SVR) based music 
emotion recognition system. The recognition process 
consists of three steps: (i) seven distinct features are ex-
tracted from music; (ii) those features are mapped into 
eleven emotion categories on Thayer’s two-dimensional 
emotion model; (iii) two regression functions are trained 
using SVR and then arousal and valence values are pre-
dicted. We have tested our SVR-based emotion classifier 
in both Cartesian and polar coordinate system empirically. 
The result indicates the SVR classifier in the polar repre-
sentation produces satisfactory result which reaches 
94.55% accuracy superior to the SVR (in Cartesian) and 
other machine learning classification algorithms such as 
SVM and GMM.  

1. INTRODUCTION

With the recent advances in the field of music informa-
tion retrieval, there is an emerging interest in (automati-
cally) analyzing and understanding the emotional content 
of music. Due to the diversity and richness of music con-
tent, many researchers have been pursuing a multitude of 
research topics in this field, ranging from computer 
science, digital signal processing, mathematics, and sta-
tistics applied to musicology and psychology. Many 
computer scientists [1][2] have focused on music retriev-
al by using musical meta-data (such as title, genre or 
mood) as well as low-level feature analysis (such as pitch, 
tempo or rhythm), while music psychologists [3][4] have 
been interested in studying how music communicates 
emotion.  

Currently, there is no standard method to measure and 
analyze emotion in music. However, a psychological 
model of emotion has found increasing use in computa-
tional studies. Thayer’s two-dimensional emotion mod-

el [5] offers a simple but quite effective model for plac-
ing emotion in a two-dimensional space. In the model, 
the amount of arousal and valence is measured along the 
vertical and horizontal axis, respectively

The goal of this paper is to develop a music emotion 
recognition system for predicting the arousal and valence 
of a song based on audio content. First, we analyzed sev-
en different musical features (such as pitch, tempo, loud-
ness, tonality, key, rhythm and harmonics) and mapped 
them into eleven categories of emotion: angry, bored, 
calm, excited, happy, nervous, peaceful, pleased, relaxed, 
sad and sleepy. This categorization is based on Juslin’s 
theory [3] along with Thayer’s emotion model [5]. Se-
condly, we adopt support vector regression (SVR) [6] as 
a classifier to train two regression functions for predict-
ing arousal and valence values based on the low-level 
features, such as pitch, rhythm and tempo, extracted from 
music. In addition, we compared our SVR-based method 
with other classification algorithms such as GMM (Gaus-
sian Mixture Model) and SVM (Support Vector Ma-
chine) to evaluate the performance.  

In the following section, we present a brief overview 
on the current state-of-the-art music recognition systems, 
and emotion models. In Section 3, we illustrate a musical 
feature extraction scheme and give an overview of our 
proposed system. Section 4 describes our proposed SVR-
based music emotion recognition method. Experimental 
results are given in Section 5. In the last section, we con-
clude the paper with some observations and future work. 

2. RELATED WORK 

Many researchers have explored models of emotions and 
factors that give rise to the perception of emotion in mu-
sic. Many other researchers investigate the problem of 
automatically recognizing emotion in music. 

2.1 Music and Emotion 

Traditional mood and emotion research in music has fo-
cused on finding psychological and physiological factors 
that influence emotion recognition and classification. 
During the 1980s, several emotion models were pro-
posed, which were largely based on the dimensional ap-
proach for emotion rating.  

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. 

© 2009 International Society for Music Information Retrieval  

651



Poster Session 4  
 

Figure 2. System diagram of the SMERS 

The dimensional approach focuses on identifying 
emotions based on their location on a small number of 
dimensions such as valence and activity. Russell’s [7] 
circumflex model has had a significant effect on emotion 
research. This model defines a two-dimensional, circular 
structure involving the dimensions of activation and va-
lence. Within this structure, emotions that are across the 
circle from one another, such as sadness and happiness, 
correlate inversely. Thayer [5] suggested a two-
dimensional emotion model that is simple but powerful in 
organizing different emotion responses: stress and energy. 
The dimension of stress is called valence while the di-
mension of energy is called arousal.  

As shown in Figure 1, the two-dimensional emotion 
plane can be divided into four quadrants with eleven 
emotion adjectives placed over them. We use eleven 
types based on Juslin’s theory and Thayer’s emotion 
model.  

During the last decade, many researchers have investi-
gated the influence of music factors like loudness and to-
nality on the perceived emotional expression [3][5]. They 
analyzed those factors using diverse techniques, some of 
which are involved in measuring psychological and phy-
siological correlation between the state of particular mus-
ical factor and emotion evocation. According to the [3], 
Juslin and Sloboda investigated the utilization of acoustic 
cues in the communication of music emotions by perfor-
mers and listeners and measured the correlation between 
emotional expressions (such as anger, sadness and happi-
ness) and acoustic cues (such as tempo, spectrum and ar-
ticulation).  

2.2 Music Emotion Recognition  

Automatic emotion detection and recognition in speech 
and music is growing rapidly with the technological ad-
vances of digital signal processing and various effective 
feature extraction methods. Emotion recognition can 
play an important role in many other potential applica-
tions such as music entertainment and human-computer 
interaction systems.  

One of the first studies of emotion detection in music 
is presented by Feng et al. [8]. Their work, based on 

Computational Media Aesthetics (CMA), analyzes two 
dimensions of tempo and articulation which are mapped 
into four categories of moods: happiness, anger, sadness 
and fear. Lie et al. [4] developed a hierarchical frame-
work for extracting music emotion automatically from 
acoustic music data. They used music intensity to 
represent the energy dimension of Thayer model, and 
timbre and rhythm for the stress dimension.  

FEELTRACE [9] is software that is designed to let 
observers track the emotional content of stimuli (such as 
words, faces, music, and video) as they perceive it and 
taking full account of gradation and variation over time. 
Yang et al. [10] developed a music emotion recognition 
(MER) system from a continuous perspective and 
represented each song as a point in the emotion plane.  
They also proposed a novel arousal/valence computation 
method based on regression theory.  

3. IMPLEMENTATION

In this paper, we implemented a music recognition sys-
tem, called SMERS (SVR-based Music Emotion Recog-
nition System). The system diagram is shown in Figure 2 
and the details are described as follows. 

3.1 System Description 

The SMERS mainly consists of three steps: (i) Feature 
extraction: Seven distinct musical features are extracted 
and analyzed (Details are described in the Section 3.3); 
(ii) Mapping: Extracted features are mapped into eleven 
emotion categories on Thayer’s two-dimensional emo-
tion model; (iii) Training: The system uses extracted fea-
tures as input vectors to train the SVR. We use two dis-
tinct SVR functions in a polar coordinate system: one is 
for distance from origin (0, 0) to the emotion in a Thay-
er-like coordinate system, and the other is for angle. Us-
ing these two trained SVRs, the system predicts each 
song’s emotion. Based on empirical test results, the polar 
coordinate system is a better representation than the ob-
vious Cartesian coordinates. (More details about training 
procedure in both Cartesian and polar coordinate sys-
tems are presented in Section 4.1). 

 
Figure 1. Modified Thayer’s 2-dimensional emotion 

model 
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3.2 Dataset

The music dataset for training the SMERS is made up of 
165 western pop songs. We collected the 15 songs in 
each of eleven categories of emotion from the large mu-
sic database, All Music Guide [11], which provides 180 
emotional categories for classifying entire songs. To 
build classifiers we used Support Vector Regression 
(SVR) and our implementation is based on the LIBSVM 
library [12], which gives almost full functionalities for 
SVR training.  

3.3 Musical Features

In this paper, we consider various musical features in-
cluding scale, intensity, rhythm, and harmonics and use 
them as an input vector in the emotion recognition system.  

3.3.1 Scale 

Scale is an overall rule of tonic formation of music. In 
our study, we defined scale as a set of key, mode, and to-
nality. For accurate scale features, we first analyzed the 
chromagram for representing the frequencies in musical 
scales. After that, we applied the key profile matrix by 
Krumhansl [13]. The following equations show the 
process of combining chromagram and key characteriza-
tion:  

MatrixKeyProfileC ��Tonality
� �)(max IdxTonalityKey �

 (1)
KeyIndex

 (2)
, where vector C has 12 elements and represents the 
summed chromagram analyzed for each acoustic frame. 
KeyProfileMatrix is a key profile matrix, which is com-
posed of 12-by-24 elements. KeyIndex indexes KeyProfi-
leMatrix, where KeyIndex=1,2,…,24. After the inner 
product of C and KeyProfileMatrix in Equation (1), we 
obtain a tonality score for each key. Finally, we can ob-
tain the most appropriate key by picking the key having 
maximum tonality in Equation (2). 

3.3.2 Average Energy (AE) 

Average energy (AE) of the overall wave sequence is 
widely adopted to measure the loudness of music. Also, 
standard deviation (�) of AE measures the regularity of 
loudness. Those are defined as: 

� � � � � �� � � � � �� ���
��

���
N

t

N

t
txx

N
xtx

N
x

0

2

0

2 AE1AE,1AE �
 (3)

, where x is an input discrete signal, t is the time in sam-
ples, and N is the length of x in samples. 

3.3.3 Rhythm 

Rhythm, which is composed of rhythmic features such as 
tempo and beat, is one of the most important elements in 
music. Beat is a fundamental rhythmic element of music. 
Tempo is usually defined as the beats per a minute 
(BPM) which is used to represent the global rhythmic 

feature of music. Tempo and regularity of beats can be 
measured in various ways. For beat tracking and tempo 
analysis, we used the algorithm by Ellis et al. [14]. The 
features we use are overall tempo (in beats per minute) 
and the standard deviation of beat intervals, which indi-
cates tempo regularity. 

3.3.4 Harmonics 

Harmonics can be observed in musical tones. In mono-
phonic music, harmonics are easily observed in the spec-
trogram. However, it is hard to find harmonics in poly-
phony, because many instruments and voices are per-
formed at once. To solve this problem, a method to com-
pute harmonic distribution yields 

� � � � � �� ��
�
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M

k
kfff

1
X,XminHS

 
(4)

Here, M denotes the maximum number of harmonics 
considered, f is the fundamental frequency, and X is the 
short-time Fourier transform (STFT) of the source signal. 
In the equation, the min function is used in such a way 
that only the strong fundamental and strong harmonics 
result in a large value for HS. In our implementation, we 
measured average of each frequency using (4) and then 
computed their standard deviation to define the harmonic 
feature. 

4. EMOTION RECOGNITION 

4.1 Training Process 

There are some essential conditions needed for effective 
emotion recognition. Firstly, the regression function 
should be trained as perfectly close to ground-truth as it 
can. If the trained regression function cannot generate 
proper Arousal/Valence (AV) values for a music emotion 
adjective, the separation policy also cannot act in a prop-
er way. Secondly, a proper music emotion separation pol-
icy on the AV plane should be presented. It acts like a 
decoder or quantizer of AV values. If the separation poli-
cy does not reflect the natural mapping between emotion 
adjectives and AV values, system might have to learn 
more complex mapping from features to the AV values. 

Our music emotion separation policy in the AV plane 
is shown in Figure 3. In case of Cartesian representation, 
the emotion of a song can be represented by (a, v), where 
a denoting arousal and v denoting valence and their 
ranges are a [-1,1] and v [-1,1], respectively. There 
are also 5 separating lines: v=v(+), v=v(-), v=0, a=a(+), and 
a=a(-). These lines separate the AV plane in 11 areas. As 
shown in Figure 3, each area has a center point, which is 
drawn as a black dot. These dots are used as the ground-
truth data for training SVRs. On the other hand, the blank 
dots are outputs of the SVR-based on feature vectors ex-
tracted from songs. 
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For training our emotion classifier, we need two dis-
tinct SVR functions. One is for training an arousal value 
and the other is for a valence value. The training is per-
formed by the musical features of songs as input and the 
center values of each music emotion as the desired output. 
Our test verifies whether or not the outputs (arousal and 
valence values) of trained regression functions are within 
the range of the proper music emotion in AV plane.  

Using Cartesian coordinates, we found that some emo-
tions such as “Peaceful” and “Bored” are misclassified 
into the “Calm” emotion category in the center of the AV 
plane. We decided to train using polar coordinates as the 
desired output to see if that would produce better results.  

Assume that Emotionc and Emotionp represent an emo-
tion in Cartesian and polar coordinate systems, respec-
tively. We can calculate the distance and angle values of 
each emotion and transfer the coordinate system from 
Cartesian to polar using the following equa ions: t
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4.2 Classification Methods 

4.2.1 Support Vector Regression (SVR)-based Training 

The basic idea of regression is to determine a function 
that accurately approximates target values using input 
values. SVR [6] is an application of SVM to find the 
mapping function between input and output. There are 
two major training strategies of SVR. One is �-SVR, 
which employs �-insensitive loss function to solve the 
quadratic optimization problem. However, �-SVR has the 
following limitations: � should be set before training the 
SVR model. Also, it is hard to anticipate the range of � in 
most problems. The other strategy, named �-SVR [15], 

solves the limitations of �-SVR by limiting the task of 
finding � to the quadratic optimization problem. 

For the training sets {(x1, y1), (x2, y2), …, (xn, yn)} with 
xi Rn, yi R, and i=1, 2, …, n. The relation between the 
input xi and output yi can be mapped by an optimal re-
gression function f(x) by SVR training. As the result of 
training, the difference between trained function output 
from input and ground-truth of input should be lower 
than the error �. Assuming linearity, f can be represented 
as the following hyperplane: f(x) = �·�(x) + b, where 
� Rn, b R, and � denotes a nonlinear transformation 
from Rn to a high-dimensional space. 

Our goal is to find the value � and b. The values of x 
can be determined by solving following quadratic opti-
mization problem: 

� �
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, where C is a constant value. With some data points �i 
and �i

*, we can write � to , so that f 

can be rewritten as: 
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, where k is known as the kernel function. On the other 
hand, (7) can be solved by transforming to the Lagrange 
function and getting its multipliers, �i and �i

*, as indi-
cated in [16]. These are called support vectors and mea-
ningful when they are nonzero values. Also we can get 
optimal b and � by the Kuhn-Tucker condition. In our 
system, we employed Radial Basis Function (RBF) as a 
kernel function instead of using linear or polynomial 
functions due to its flexibility.  

4.2.2 Support Vector Machine (SVM)-based Training 

For emotion classification, we used multi-class SVM. 
Since SVM classifies only one class at a time, we trained 
11 SVMs to classify each emotion separately. This set of 
classifiers receives input feature vectors extracted from 
music. Each classifier generates a probability that the 
music has a specific emotion. The highest probability 
value determines the final selection of a single emotion 
label for the music. 

4.2.3  Gaussian Mixture Model (GMM)-based Training 

All musical features are modeled using Gaussian Mixture 
Models (GMMs). We use 7 Gaussian models for arousal 
and valence sets. Each GMM is trained using the Expec-
tation Maximization (EM) algorithm. The step of GMM-
based classification is as follows: first of all, 3 and 4 
GMMs were trained for labeling arousal and valence, re-
spectively. Next, the two GMMs sets produce two classi-
fications for arousal and valence, respectively. For exam-
ple, the GMMs set for arousal labeling could classify A is 

Figure 3. Music emotion separation policy in AV 
plane (in both Cartesian and polar representation) 
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lower than -1/3, between -1/3 and 1/3, or higher than 1/3. 
In final step, music emotion is determined by combining 
the results from two GMMs sets. 

5. EXPERIMENTS AND RESULTS 

In this section, we evaluate the effectiveness of our emo-
tion recognition system in terms of accuracy. Coefficients 
for SVR, SVM and GMM and kernels are very critical to 
performance. In our experiment, we tried to find the op-
timal classification parameters empirically. We also con-
sidered the �-fold cross-validation method in order to 
prevent the over-fitting problem. We tested �-fold cross-
validations using different � values.  

The best SVR training parameters and optimum values 
in both Cartesian and polar representation are shown in 
Table 1 and 2, respectively. We searched for optimal val-
ues of all parameters (except “# of folds in cross valida-
tion”) in steps of about 7%. Moreover, cross validations 
were carried out 54 times for each step.  

In order to evaluate Cartesian coordinate system-based 
classification methods, we employed three types of clas-
sifiers: SVMs with one-to-one training policy, SVR, and 
GMM. First of all, in SVMs-based classification, one-to-
one training policy was employed, since SVM does not 
support multi-classification basically. In SVR-based clas-
sification, we trained two regression functions to 
represent arousal and valence respectively. Finally, 
GMM was trained following the procedure in Section 

4.2.3. On the other hand, in polar coordinate system-
based classification, two SVRs, which represent distance 
and angle respectively, were trained. 

5.1 Confusion Matrix 
Confusion matrices of each coordinate system combined 
with each classifier are presented in Figure 4. As shown 
in Figure 4, the errors of both SVMs and SVR in Carte-
sian coordinate system were comparably higher than both 
GMM in Cartesian coordinate system and SVR in the po-
lar coordinate system. 

The result of SVMs in the Cartesian coordinate system, 
presented in Figure 4(a), was good on specific music 
emotions such as angry, bored, and peaceful. However, 
most other diagonal elements had poor results.  

The change from multi SVMs to SVR increased the 
performance as shown in Figure 4(b). On average, 9.5 

Table 1. SVR training parameters and obtained opti-
mums in Cartesian representation
Name of parameters Range Optimum
Nu (�) 2-5 ~ 2-0.1 2-1.7 
Gamma of RBF (g) 2-20 ~ 2-0.1 2-8.3 
Cost (C) 1 ~ 215 27.4 

 

Table 2. SVR training parameters and obtained opti-
mums in polar representation
Name of parameters Distance Angle 
Nu (�) 2-8 2-8 
Gamma of RBF (g) 2-10 2-4 
Cost (C) 28 26 
mean squared error 0.02498 0.09834 

 
(a) (b) (c) 

  

Table 3. Classification result

Classifiers Coordinate 
System Accuracy 

SVMs Cartesian 32.73% 
SVR Cartesian 63.03% 
GMM Cartesian 91.52% 
SVR polar 94.55% 
GMM polar 92.73% 

(d) (e)  

Figure 4. Confusion matrices: Cartesian coordinate system with (a) SVMs (b) SVR 
(c) GMM, and polar coordinate system with (d) GMM and (e) SVR. 
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songs were correctly classified, but still some emotions 
had errors. It can be seen that 12.73% of songs (21 
songs) were misclassified into calm in Figure 4(b). This 
indicates that the calm problem should be solved first. 

The result in Figure 4(c) and (d) is better than Figure 
4(a) and (b). Most diagonal elements were well classified. 
In the case of GMM in the Cartesian coordinate system, 
12.8 songs on average were classified correctly. However, 
there is still a concentration of misclassification in some 
emotions such as angry (4 songs), sad (5 songs), and 
sleepy (2 songs). However, SVR in the polar coordinate 
system showed that the imbalanced classifications were 
significantly reduced: the average number of correct clas-
sification was 14.2 songs, and also, misclassification was 
concentrated only in relaxed (2 songs) and sleepy (3 
songs). 

5.2 Accuracy
The results are shown in Table 3. In the experiments 

based on Cartesian coordinate systems, maximum accu-
racy was 91.52% (151 of 165 samples). By changing 
coordinate system into polar, the accuracy was increased 
to 94.55% (156 of 165 samples) using SVR and 92.73% 
(153 of 165 samples) using GMM. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, automatic emotion recognition of music has 
been evaluated using various machine learning classifica-
tion algorithms such as SVM, SVR and GMM. In our 
experiment, it is shown that the SVR-based classification 
in the polar coordinate system remarkably improved the 
accuracy of the emotion recognition from 63.03% to 
94.55%. However, the GMM classification with polar 
coordinates only improved from 91.52% to 92.73%. 

For further research, more perceptual features should 
be considered and other classification algorithms such as 
fuzzy and kNN (k-Nearest Neighbor). We also plan to 
compare the result of machine learning (ML)-based emo-
tion recognition with human performed arousal/valence 
data. 
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