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ABSTRACT

We consider the problem of intra-opus pattern discovery,
that is, the task of discovering patterns of a specified type
within a piece of music. A music analyst undertook this
task for works by Domenico Scarlattti and Johann Sebas-
tian Bach, forming a benchmark of ‘target’ patterns. The
performance of two existing algorithms and one of our own
creation, called SIACT, is evaluated by comparison with
this benchmark. SIACT out-performs the existing algo-
rithms with regard to recall and, more often than not, pre-
cision. It is demonstrated that in all but the most care-
fully selected excerpts of music, the two existing algo-
rithms can be affected by what is termed the ‘problem of
isolated membership’. Central to the relative success of
SIACT is our intention that it should address this particu-
lar problem. The paper contrasts string-based and geomet-
ric approaches to pattern discovery, with an introduction to
the latter. Suggestions for future work are given.

1. INTRODUCTION

This paper discusses and evaluates algorithms that are in-
tended for the following task: given a piece of music in
a semi-symbolic representation, discover so-called transla-
tional patterns [14] that occur within the piece. Transla-
tional patterns (in the geometric sense) are discussed fur-
ther in Sec. 1.1. Although they are not the only type of pat-
tern that could matter in music analysis, many music ana-
lysts would acknowledge that such a discovery task forms
part of the preparation when writing an analytical essay
[6]. Even if the final essay pays little or no heed to the dis-
covery of translational patterns, neglecting this preparatory
task entirely could result in failing to mention something
that is musically very noticeable, or worse, very important.
Hence we are motivated by the prospect of automating the
discovery task, as it could have interesting implications for
music analysts (and music listeners in general), enabling
them to engage with pieces in a novel manner. We also
consider this task to be an open problem within music in-
formation retrieval (MIR), so attempting to improve upon
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current solutions is another motivating factor. The algo-
rithms are applied to Baroque keyboard pieces by Scarlatti
(Sonatas L1 and 10) and—to ensure common ground with
existing work [7, 13]—Bach (Preludes BWV849 and 854).
Two existing algorithms and one of our own creation are
evaluated by comparing their output with a music analyst’s
(the second author’s) independent findings for these same
keyboard pieces (Sec. 4).

1.1 Review of existing work

In MIR there do not seem to be clear distinctions between
the terms pattern ‘discovery’ [5,8,14,16], ‘extraction’ [10,
11, 17], ‘identification’ [7, 9] , and ‘mining’ [3], at least in
the sense that most of the papers just cited address very
similar discovery tasks to that stated at the beginning of
Sec. 1. Conklin & Bergeron [5] give the label ‘intra-opus’
discovery to concentrating on patterns that occur within
pieces. An alternative is ‘inter-opus’ discovery, where pat-
terns are discovered across many pieces of music [5, 9].
This makes it possible to gauge the typicality of a partic-
ular pattern relative to the corpus style. Terms that are
clearly distinguished in MIR are pattern ‘discovery’ and
‘matching’ [4]. Pattern matching is the central process in
‘content-based retrieval’ [18], where the user provides a
query and then the algorithm searches a music database
for more or less exact instances of the query. The out-
put is ranked by some measure of proximity to the origi-
nal query. This matching task is quite different from the
intra-opus discovery task, where there is neither a query
nor a database as such, just a single piece of music, and
no obvious way of ranking an algorithm’s output. While
we have stressed their differences, some authors attempt
to address both discovery and matching tasks in the same
paper [12, 13], suggesting that representations/algorithms
that work well for one task might be adapted and applied
fruitfully to the other.

Some attempts at pattern discovery have been made with
audio representations of music [15]. However, we, like
the majority of work cited in this section, begin with a
semi-symbolic representation, such as a MIDI file. Work
on semi-symbolic representations can be categorised into
string-based [2,3,5,8–11,16,17] and geometric approaches
[7, 12–14], and which approach is most appropriate de-
pends on the musical situation. For instance the string-
based method is more appropriate for the excerpt in Fig. 1.
We propose that the most salient pattern in this short ex-
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Figure 1. Bars 1-3 of the Introduction from The Rite of
Spring by Igor Stravinsky, annotated with MIDI note num-
bers and ontimes in crotchets starting from zero. For clar-
ity, phrasing is omitted and ornaments are not annotated.

cerpt consists of the notes C5, B4, G4, E4, B4, A4, ignor-
ing ornaments for simplicity. The simplest way to discover
the three occurrences of this pattern is to represent the ex-
cerpt as a string of MIDI note numbers and then to use an
algorithm for pattern discovery in strings. The string 72,
71, 67, 64, 71, 69, ought to be discovered, and the user re-
lates this back to the notes C5, B4, G4, E4, B4, A4. The
geometric method is not appropriate here because each oc-
currence of the pattern has a different rhythmic profile.

On the other hand, the geometric method is better suited
to finding the most salient pattern in Fig. 2a, consisting of
all the notes in bar 13 except the tied-over G4. This pattern
occurs again in bar 14, transposed up a fourth, and then
once more at the original pitch in bar 15. Each note is an-
notated with its relative height on the stave (or morphetic
pitch number [14]), taking C4 to be 60. Underneath the
stave, ontimes are measured in quaver beats starting from
zero. The first note in this excerpt, G3, can be represented
by the datapoint d1 = (0, 57), since it has ontime 0 and
morphetic pitch number 57. A scatterplot of morphetic
pitch number against ontime for this excerpt is shown in
Fig. 2b. Meredith et al. [14] call the set of all datapoints
representing an excerpt a dataset, denoted by D. Restrict-
ing attention to bars 13-15, we begin with the dataset

D = {d1,d2, . . . ,d26}. (1)

A pattern is defined as a non-empty subset of a dataset. In
our example, we will choose to look at the patterns

P = {d1, . . . ,d8}, and Q = {d9,d11, . . . ,d17}. (2)

The vector that translates d1 to d9 is

d9 − d1 = (3, 60)− (0, 57) = (3, 3) = v. (3)

We have given this vector a label v = (3, 3). It is this
same vector v that translates d2 to d11, d3 to d12, . . . ,d8

to d17. Recalling the definitions of P and Q from (2), it
is more succinct to say that ‘the translation of P by v is
equal to Q’. This translation is indicated in Fig. 2c.

Looking at Fig. 2c it is evident that as well as Q be-
ing a translation of P , pattern R is also a translation of P .
Meredith et al. [14] call {P,Q, R} the translational equiv-
alence class of P in D, notated

TEC(P,D) = {P,Q, R}. (4)

The TEC gives all the occurrences of a pattern in a
dataset.
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Figure 2. (a) Bars 13-16 of the Sonata in C major L3
by Scarlatti, annotated with morphetic pitch numbers and
ontimes; (b) each note from the excerpt is converted to a
point consisting of an ontime and a morphetic pitch num-
ber. Morphetic pitch number is plotted against ontime, and
points are labelled in lexicographical order d1 to d35; (c)
the same plot as above, with three ringed patterns, P,Q, R.
Arrows indicate that both Q and R are translations of P .

So P is an example of a translational pattern, as trans-
lations of P , namely Q and R, exist in the dataset D. The
formal definition of a translational pattern is as follows.

Definition. For a pattern P in a dataset D, the pattern P
is a translational pattern if there exists at least one sub-
set Q of D such that P and Q contain the same number
of elements, and there exists one non-zero vector v that
translates each datapoint in P to a datapoint in Q.

In the example in Fig. 2, two dimensions were considered
(ontime and morphetic pitch number). The definitions and
pattern discovery algorithms given by Meredith et al. [13]
extend to k dimensions; specifically MIDI note number
and duration are included as further dimensions.

The string-based method is not so well suited to Fig. 2a.
The first step would be voice separation, generating per-
ceptually valid melodies from the texture. Sometimes the
scoring of the music makes separation simple [9], but even
when voicing contains ambiguities, there are algorithms
that can manage [1, 3]. Supposing fragments of the pat-
tern in Fig. 2a were discovered among separated melodies,
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Figure 3. A Venn diagram (not to scale) for the number of
patterns (up to translational equivalence) in a dataset. The
total E is shown relative to the number typically returned
by SIATEC (F ), COSIATEC (G), and SIACT (H).

these fragments still would have to be correctly reunited.
In this instance, even the most sophisticated string-based
method [5] does not compare with the efficiency of the ge-
ometric method. The key difference between geometric
and string-based approaches is the binding of ontimes to
other musical information in the former, and the decou-
pling of this information in the latter. Both are valid meth-
ods for discovering patterns in music.

The reporting of existing intra-opus algorithms will of-
ten mention running time [3,8,12–14], occasionally recall
is given [11, 17], and sometimes precision [10]. With the
inter-opus discovery task an algorithm’s output is seldom
compared with a human benchmark [5,9]. The justification
is that ‘investigations of entire collections require consider-
able amounts of time and effort on the part of researchers’
[9, p. 171]. Still, is it not worth knowing how an algorithm
performs on a subset of the collection?

2. ALGORITHMS FOR PATTERN DISCOVERY

In equation 2, pattern P was introduced without explain-
ing how it is discovered. It could be discovered by cal-
culating all the TECs in the dataset D, and then certainly
TEC(P,D) will be among the output. However this ap-
proach is tremendously expensive and indiscriminate. It is
expensive in terms of computational complexity, as there
are 2n patterns to partition into equivalence classes, where
n = |D| is the size of the dataset. Moreover, it is indis-
criminate as no attempt is made to restrict the output in
terms of ‘musical importance’: while P is arguably of im-
portance, not all subsets of D are worth considering, yet
they will also be among the output. The set E in Fig. 3
represents the output of this expensive and indiscriminate
approach.

Therefore Meredith et al. [14] restrict the focus to a
smaller set F , by considering how a pattern like P is max-
imal. Recalling (1) and (2), the pattern P is maximal in
the sense that it contains all datapoints that are translatable
in the dataset D by the vector v = (3, 3). It is called a
maximal translatable pattern [14], written

P = MTP (v, D) = {d ∈ D : d + v ∈ D}. (5)

Meredith et al.’s [14] structural inference algorithm (SIA)
calculates all MTPs in a dataset, which requires O(kn2)
calculations. While the TEC of each MTP must still be de-
termined to give the set F in Fig. 3, this approach is enor-
mously less expensive than partitioning 2n patterns and
involves a decision about musical importance: ‘In music,
MTPs often correspond to the patterns involved in percep-
tually significant repetitions’ [14, p. 331]. SIA works by
traversing the upper triangle of the similarity matrix

A =


d1 − d1 d2 − d1 · · · dn − d1

d1 − d2 d2 − d2 · · · dn − d2

...
...

. . .
...

d1 − dn d2 − dn · · · dn − dn

 . (6)

If the vector w = dj − di is not equal to a previously cal-
culated vector then a new MTP is created, MTP (w, D),
with di as its first member. Otherwise w = u for some
previously calculated vector u, in which case di is included
in MTP (u, D). So it is possible to determine the set F for
a dataset D by first running SIA on the dataset and then
calculating the TEC of each MTP. The structural inference
algorithm for translational equivalence classes (SIATEC)
performs this task [14], and requires O(kn3) calculations.

To our knowledge there are two further algorithms that
apply the geometric method to pattern discovery: the cov-
ering structural inference algorithm for translational equiv-
alence classes (COSIATEC) [13] and a variant proposed by
Forth & Wiggins [7]. COSIATEC rates patterns accord-
ing to a heuristic for musical importance and produces a
smaller output than SIATEC, the set labelled G in Fig. 3.
The name COSIATEC derives from the idea of creating a
cover for the input dataset:

1. Run SIATEC on D0 = D, rate the discovered pat-
terns using the heuristic for musical importance, and
return the pattern P0 that receives the highest rating.

2. Define a new dataset D1 by removing from D0 each
datapoint that belongs to an occurrence of P0.

3. Repeat step 1 for D1 to give P1, repeat step 2 to de-
fine D2 from D1, and so on until the dataset DN+1

is empty.

4. The output is

G = {TEC(P0, D0), . . . , TEC(PN , DN )}. (7)

Forth & Wiggins’ variant on COSIATEC [7] uses a non-
parametric version of the heuristic for musical importance
and requires only one run of SIATEC. While only one run
reduces the computational complexity of their version, it
does mean that the output is always a subset of F , whereas
running SIATEC on successively smaller datasets (steps 2
and 3 above) makes it possible to discover patterns beyond
F (the portion G\F in Fig. 3).

3. THE PROBLEM OF ISOLATED MEMBERSHIP

In Sec. 2 we noted that pattern P from (2) could be dis-
covered by running SIA on the dataset D from (1). This
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is because P is the MTP (cf. equation 5) for the vector
v = (3, 3) and SIA returns all such patterns in a dataset.
However, D is a conveniently chosen example consisting
only of bars 13-15 of Fig. 2a. How might an MTP be af-
fected if the dataset is enlarged to include bar 16? Letting

D+ = {d1, . . . ,d35}, v = (3, 3), (8)

it can be verified that

P+ = MTP (v, D+) = {d1, . . . ,d8,d18,d19,d22}.
(9)

Unfortunately P+, the new version of P , contains three
more datapoints, d18, d19, d22, that are isolated tempo-
rally from the rest of the pattern. This is an instance of
what we call the ‘problem of isolated membership’. It
refers to a situation where a musically important pattern
is contained within an MTP, along with other temporally
isolated members that may or may not be musically im-
portant. Intuitively, the larger the dataset, the more likely
it is that the problem will occur. Isolated membership af-
fects all existing algorithms in the SIA family, and could
prevent them from discovering some translational patterns
that a music analyst considers noticeable or important (see
Sec. 4 for further evidence in support of this claim).

Our proposed solution to the problem of isolated mem-
bership is to take the SIA output and ‘trawl’ inside each
MTP from beginning to end, returning subsets that have a
compactness greater than some threshold a and that con-
tain at least b points. The compactness of a pattern is the
ratio of the number of points in a pattern to the number
of points in the region of the dataset in which the pattern
occurs [13]. Different interpretations of ‘region’ lead to
different versions of compactness. The version employed
here is of least computational complexity O(kn), and uses
the lexicographical ordering shown in Fig. 2b. The com-
pactness of a pattern P = {p1, . . . ,pl} in a dataset D is
defined by

c(P,D) = l/|{di ∈ D : p1 � di � pl}|. (10)

For instance, the compactness of pattern Q in Fig. 2c is
8/9, as there are 8 points in the pattern and 9 in the dataset
region {d9,d10, . . . ,d17} in which the pattern occurs.

One of Meredith et al.’s [14] suggestions for improv-
ing/extending the SIA family is to ‘develop an algorithm
that searches the MTP TECs generated by SIATEC and
selects all and only those TECs that contain convex-hull
compact patterns’ [p. 341]. The way in which our pro-
posed solution is crucially different to this suggestion is to
trawl inside MTPs. It will not suffice to calculate the com-
pactness of an entire MTP, since we know it is likely to
contain isolated members. Other potential solutions to the
problem of isolated membership are to:

• Segment the dataset before discovering patterns. The
issue is how to segment appropriately—usually the
discovery of patterns guides segmentation [2], not
the other way round.

• Apply SIA with a ‘sliding window’ of size r. Ap-
proximately, this is equivalent to traversing only the

elements on the first r superdiagonals of A in (6).
The issue is that the sliding window could prevent
the discovery of very noticeable or important pat-
terns, if their generating vectors lie beyond the first
r superdiagonals.

• Consider the set of all patterns that can be expressed
as an intersection of MTPs, which may not be as
susceptible to the problem of isolated membership.
The issue with this larger class is that it is more com-
putationally complex to calculate, and does not aim
specifically at tackling isolated membership.

The algorithmic form of our solution is called a com-
pactness trawler. It may be helpful to apply it to the exam-
ple of P+ in (9), using a compactness threshold of a = 2/3
and points threshold of b = 3. The compactness of succes-
sive subsets {d1}, {d1,d2}, . . . , {d1, . . . ,d8} of P+ re-
mains above the threshold of 2/3 but then falls below, to
9/18, for {d1, . . . ,d8,d18}. So we return to {d1, . . . ,d8},
and it is output as it contains 8 ≥ 3 = b points. The pro-
cess restarts with subsets {d18}, {d18,d19}, and then the
compactness falls below 2/3 to 3/5 for {d18,d19,d22}.
So we return to {d18,d19}, but it is discarded as it contains
fewer than 3 points. The process restarts with subset {d22}
but this also gets discarded for having too few points. The
whole of P+ has now been trawled. The formal definition
follows and has computational complexity O(kn).

1. Let P = {p1, . . . ,pl} be a pattern in a dataset D
and i = 1.

2. Let j be the smallest integer such that i ≤ j < l and
c(Pj+1, D) < a, where Pj+1 = {pi, . . . ,pj+1}. If
no such integer exists then put P ′ = P , otherwise
let P ′ = {pi, . . . ,pj}.

3. Return P ′ if it contains at least b points, otherwise
discard it.

4. If j exists in step 2, re-define P in step 1 to equal
{pj+1, . . . ,pl}, set i = j + 1, and repeat steps 2
and 3. Otherwise re-define P as empty.

5. After a certain number of iterations P will be empty
and the output can be labelled P ′1, . . . , P

′
N , that is N

subsets of the original P , where 0 ≤ N ≤ l.

We give the name ‘structural inference algorithm and
compactness trawler’ (SIACT) to the process of calculat-
ing all MTPs in a dataset (SIA), followed by the applica-
tion of the compactness trawler to each. The compactness-
trawling stage in SIACT requires O(kmn) calculations,
where m is the number of MTPs returned by SIA. If de-
sired, it is then possible to take the output of SIACT and
calculate the TECs. These TECs are represented by the set
H in Fig. 3. To our knowledge, this newest member of
the SIA family is the only algorithm intended to solve the
problem of isolated membership.
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4. COMPARATIVE EVALUATION

A music analyst (the second author) analysed the Sonata in
C major L1 and the Sonata in C minor L10 by Scarlatti, the
Prelude in C] minor BWV849 and the Prelude in E major
BWV854 by Bach. The brief was similar to the intra-opus
discovery task described in Sec. 1: given a piece of music
in staff notation, discover translational patterns that occur
within the piece. Thus, a benchmark of translational pat-
terns was formed for each piece, the criteria for benchmark
membership being left largely to the analyst’s discretion.
One criterion that was stipulated was to think in terms of
an analytical essay: if a pattern would be mentioned in
prose or as part of a diagram, then it should be included in
the benchmark. The analyst is referred to as ‘independent’
because of the relative freedom of the brief and because
they were not aware of the details of the SIA family, or
our new algorithm. The analyst was also asked to report
where aspects of musical interest had little or nothing to
do with translational patterns, as these occasions will have
implications for future work.

Three algorithms—SIA [14], COSIATEC [13] and our
own, SIACT—were run on datasets that represented L1,
L10, BWV849, and BWV854. For COSIATEC the non-
parametric version of the rating heuristic was used [7] and
for SIACT we used a compactness threshold of a = 2/3
and a points threshold of b = 3. The choice of a =
2/3 means that at the beginning of an input pattern, the
compactness trawler will tolerate one non-pattern point be-
tween the first and second pattern points, which seems like
a sensible threshold. The choice of b = 3 means that a
pattern must contain at least three points to avoid being
discarded. This is an arbitrary choice and may seem a lit-
tle low to some. Each point in a dataset consisted of an
ontime, MIDI note number (MNN), morphetic pitch num-
ber (MPN), and duration (voicing was omitted for simplic-
ity on this occasion). Nine combinations of these four di-
mensions were used to produce ‘projections’ of datasets
[14], on which the algorithms were run. These projections
always included ontime, bound to: MNN and duration;
MNN; MPN and duration; MPN; duration; MNN mod 12
and duration; MNN mod 12; MPN mod 7 and duration;
MPN mod 7. For the first time to our knowledge, the use
of pitch modulo 7 and 12 enabled the concept of octave
equivalence to be incorporated into the geometric method.

If a pattern is in the benchmark, it is referred to as a
target; otherwise it is a non-target. An algorithm is judged
to have discovered a target if a member of the algorithm’s
output is equal to the target pattern or a translation of that
pattern. In the case of COSIATEC the output consists of
TECs, not patterns. So we will say it has discovered a tar-
get if that target is a member of one of the output TECs. Ta-
ble 1 shows the recall and precision of the three algorithms
for each of the four pieces. Often COSIATEC did not dis-
cover any target patterns, so for these pieces it has zero
recall and precision. This is in contrast to the parametric
version’s quite encouraging results for Bach’s two-part in-
ventions [12,13]. When it did discover some target patterns
in L10, COSIATEC achieved a better precision than the

Piece→ L1 L10 BWV849 BWV854

Algorithm ↓ Recall
SIA .29 .22 .28 .22

COSIATEC .00 .17 .00 .00
SIACT .50 .65 .56 .61

Precision
SIA 1.5 e−5 1.1 e−5 1.3 e−5 1.8 e−5

COSIATEC .00 .02 .00 .00
SIACT 2.6 e−3 1.5 e−3 7.8 e−4 2.0 e−3

Table 1. Results for three algorithms on the intra-opus pat-
tern discovery task, applied to four pieces of music. Recall
is the number of targets discovered, divided by the sum of
targets discovered and targets not discovered. Precision is
the number of targets discovered, divided by the sum of
targets discovered and non-targets discovered.

other algorithms, as it tends to return far fewer patterns per
piece (168 on average compared with 8,284 for SIACT and
385,299 for SIA). Hence the two remaining contenders are
SIA and SIACT. SIACT, defined in Sec. 3, out-performs
SIA in terms of both recall and precision. Having exam-
ined cases in which SIA and COSIATEC fail to discover
targets, we attribute the relative success of SIACT to its
being intended to solve the problem of isolated member-
ship. Across the four pieces, the running times of SIA and
SIACT are comparable (the latter is always slightly greater
since the first stage of SIACT is SIA).

5. DISCUSSION

This paper has discussed and evaluated algorithms for the
intra-opus discovery of translational patterns. One of our
motivations was the prospect of improving upon current
solutions to this open MIR problem. A comparative eval-
uation was conducted, including two existing algorithms
and one of our own, SIACT. For the pieces of music con-
sidered, it was found that SIACT out-performs the existing
algorithms considerably with regard to recall and, more of-
ten than not, it is more precise. Therefore, our aim of im-
proving upon the best current solution has been achieved.
Central to this achievement was the formalisation of the
‘problem of isolated membership’. It was shown that for
a small and conveniently chosen excerpt of music, a maxi-
mal translatable pattern corresponded exactly to a percep-
tually salient pattern. However, when the excerpt was en-
larged by just one bar, the MTP gained some temporally
isolated members, and the salient pattern was lost inside
the MTP. Our proposed solution, to trawl inside an MTP,
returning compact subsets, led to the definition of SIACT.

The weight placed on the improved results reported here
is limited somewhat by the extent of the evaluation, which
includes only four pieces, all from the Baroque period,
and all analysed by one expert. Extending and altering
these conditions and assessing their effect on the perfor-
mance of the three algorithms is a clear candidate for fu-
ture work. There are also more sophisticated versions of
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compactness and the compactness trawler algorithm that
could be explored, and alternative values for the compact-
ness and points thresholds, a and b. The discovery of ‘ex-
act repetition’ has provided a sensible starting point for
this research, but extending definitions such as (5) to al-
low for ‘inexact repetition’ is an important and challeng-
ing next step. Cases of failure, where SIACT does not dis-
cover targets, will be investigated. Perhaps some of these
cases share characteristics that can be addressed in a fu-
ture version of the algorithm. Although we have seen SIA
presented before as the sorting of matrix elements [14],
the connection that A in (6) makes with similarity matri-
ces [15, 16] may lead to new insights or efficiency gains.

We will be trying to elicit more knowledge about the
attributes of a pattern that matter to human analysts, so
as to rank output patterns and to compare these attributes
with the assumptions underlying SIACT. It could be that
current pattern discovery methods overlook particular as-
pects of musical interest. If so a string-based or geometric
method might be easily adapted, or very different meth-
ods may have to be developed. Could one focused algo-
rithm encompass the many and diverse categories of mu-
sical pattern? It seems improbable, and the discussion of
Figs. 1 and 2 in Sec. 1.1 could be interpreted as a coun-
terexample. Hence, given the improved voice separation
algorithms, and string-based and geometric methods that
now exist, another worthy topic for future work would be
the unification of a select number of algorithms within a
single user interface. This would bring us closer to achiev-
ing our opening, more ambitious aim, of enabling music
analysts, listeners, and students to engage with pieces of
their choice in a novel and rewarding manner. To this end,
the work reported here clearly merits further development.
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