
EVALUATION OF A SCORE-INFORMED SOURCE SEPARATION SYSTEM

Joachim Ganseman, Paul Scheunders
IBBT - Visielab

Department of Physics, University of Antwerp
2000 Antwerp, Belgium

Gautham J. Mysore, Jonathan S. Abel
CCRMA

Department of Music, Stanford University
Stanford, California 94305, USA

ABSTRACT

In this work, we investigate a method for score-informed
source separation using Probabilistic Latent Component
Analysis (PLCA). We present extensive test results that
give an indication of the performance of the method, its
strengths and weaknesses. For this purpose, we created a
test database that has been made available to the public, in
order to encourage comparisons with alternative methods.

1. INTRODUCTION

Source separation is a difficult problem that has been a
topic of research for several decades. It is desirable to
make use of any available information about the problem
to constrain it in a meaningful way. Musical scores pro-
vide a great deal of information about a piece of music.
We therefore use this information to guide a source sepa-
ration algorithm based on PLCA.

PLCA [?] is a technique that is used to decompose mag-
nitude spectrograms into a sum of outer products of spec-
tral and temporal components. It is a statistical interpre-
tation of Non-Negative Matrix Factorization (NMF) [?].
The statistical framework allows for a structured approach
to incorporate prior distributions.

Extraction of a single source out of a sound mixture by
modeling a user guidance as a prior distribution was pre-
sented in [?]. In our previous work [?], we based ourselves
on that approach and extended it to a complete source sep-
aration system informed by musical scores, finally demon-
strating it by separating sources in a single real-world record-
ing.

We perform source separation by decomposing the spec-
trogram of a given sound mixture using PLCA, and then
performing reconstructions of groups of components that
correspond to a single source. Before using PLCA on the
sound mixture, we first decompose synthesized versions of
those parts of musical scores that correspond to the sources
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that we wish to separate (also using PLCA). The temporal
and spectral components obtained by these decompositions
of synthesized sounds are then used as prior distributions
while decomposing the real sound mixture.

In this work we make a detailed evaluation of such source
separation system and its overall performance. To the best
of our knowledge, a comprehensive and extensive dataset
to use as ground truth for such problem does not exist,
mainly because we also require the corresponding scores
as additional information to the source separation system.
We therefore construct a test set of our own, mimicking
realistic conditions as well as possible even though it is
synthetic. This also allows us to make detailed evaluations
of how the results are affected by common performance
practices, like changes in tempo or synchronization. To get
objective quality measurements of this method, we use the
metrics defined in the BSS EVAL framework [?], which
are widely adopted in related literature.

2. SCORE-INFORMED SOURCE SEPARATION
WITH PLCA

We’re not the first to propose source separation based on
score information. A method based on sinusoidal model-
ing has been proposed by Li [?], and Woodruff [?] used
scores as information source for the separation of stereo
recordings. Our PLCA-based system for score-informed
source separation is set up as shown in fig. ?? :

• The complete score gets synthesized;

• Dynamic Time Warping (DTW) matches the spec-
trogram of the sound mixture to that of the score;

• The resulting path is used to match single parts or
sections from the score to the mix;

• Components for each of the parts to extract are learned
using PLCA on separately synthesized parts;

• These components are used as prior distributions in
the subsequent PLCA decomposition of the mix;

• With the learned components ’fitted’ to the mix, we
can now resynthesize only those components from
the mix that we want.
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Figure 1. Architecture of the score-informed PLCA-based
source separation system

The PLCA method that we adopt does not presuppose
any structure, instead it learns the best representation for
a spectrogram through an EM (expectation-maximization)
algorithm. Both temporal and spectral components can as-
sume any shape. The dictionary of spectral and tempo-
ral components resulting from decomposition of the syn-
thesized score parts is only used to initialize the subse-
quent PLCA decomposition of the sound mixture. The
EM-iterations decomposing this mixture optimize those spec-
tral and temporal components further in order to make them
explain the sources in the sound mixture. A drawback of
PLCA is that it operates on magnitude spectrograms and
does not take into account the phase, which easily leads to
some audible distortion in the resynthesized sounds.

We implemented our system largely in Matlab, with the
DTW routine provided from [?]. We always work on mono
audio. The method does not work in real-time - on a mod-
ern dual-core 3.0GHz computer with 4GB RAM memory,
processing a 1 minute sound file (44100Hz samplerate)
takes about 3 to 4 minutes of calculation time with high
quality settings. The DTW subroutine has a memory com-
plexity that is quadratic in spectrogram size, due to the cal-
culation of a complete similarity matrix between the spec-
trograms of the sound mixture and the synthesized score.
Alternatives to DTW exist and could be used, there is e.g.
prior work on aligning MIDI with audio without comput-
ing a complete rendering of the MIDI file (also available
through [?]).

It needs to be noted that the spectral and temporal com-
ponents of the synthesized score parts are initialized with
random data. Starting from these random probability dis-
tributions, the EM-algorithm then iteratively estimates bet-
ter candidates that fit the data. The resulting estimates of
the components from the score data will be slightly dif-
ferent on each run. This will in turn affect the subsequent
PLCA analysis of the real data and its path towards conver-
gence. We will quantify this in more detail later, but it is
important to keep in mind that all measurements presented
in this paper are subject to a certain error margin that is a
direct result of this random initialization.

3. TEST SETUP

In order to do large scale comprehensive testing of this
method, we need a database of real sources and their scores
which we can mix together and then try to separate. To
the best of our knowledge, a carefully crafted database
for research purposes containing separate sources and their
scores for a wide range of instruments and/or styles does
not yet exist [?]. For source separation, evaluation databases
with multitrack recordings are available (e.g. [?]), but usu-
ally they don’t come with scores, MIDI files, or any other
symbolic information.

We decided to create our own database, generating short
random MIDI tunes, and then running them through differ-
ent synthesizers. In testing, one of the synthesized sounds
then can take on on the role of ’real performance’, while
the other is used as ’synthesized score’. To better simulate
real performance, we generated several versions of each
file with tempos regularly changing, up to half or double
the speed of the original. This also allows the database to
be used to test alignment algorithms. The resulting dataset
is available online 1 .

We generated a set of 10 second sound files using PortSMF
[?]. The files were synthesized once using Timidity++
[?] with the FluidR3 GM soundfont on Linux, and once
with the standard built-in MIDI player capabilities in Win-
dows XP (DirectSound, saved to file using WinAmp [?]).
Each file contains on average 20 note onsets, spread ran-
domly over 10 seconds. We reduced our test set to 20 com-
monly used instruments, both acoustic and electric. This
was done in part because of a lot of the sounds standard-
ized in General MIDI are rarely found in scores (helicopter
sounds, gunshots), and to keep the size of the resulting data
manageable. With 380 possible duos with different instru-
ments out of 20 instruments, it allowed us to run repeated
experiments on all of these combinations.

This original test set of 20 sounds was expanded by in-
troducing timing variations in the MIDI files. Several sets
of related files were generated, in which the tempo in each

1 https://ccrma.stanford.edu/˜jga/ismir2010/ismir2010.html
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Figure 2. Overall source extraction scores per instrument, mixed with any other instrument. On the x-axis, the MIDI
Program Change number. In this and all other figures, standard Matlab style boxplots are used.

file was changed 5 times - this to be able to test the effects
of the method used to align symbolic data and recordings,
which is part of the system. 2 distinctly different tempo
curves were defined, and for each of these 2 curves, 5 new
renditions were made for every original source. The first
of these 5 would have the tempo changed by up to 10%,
either slower and faster, while the last would allow devia-
tions from the original tempo up to 50% . Thus we have
a dataset of 20 original sources, and for each original file
also 10 files with all different variations in tempo.

We acknowledge that there are a couple of drawbacks
with this dataset. The first one that the files are randomly
generated, while in most popular and classical music, har-
monic structure makes separation more difficult due to over-
lapping harmonic components. The second that even using
two different soundbanks to synthesize can result in the
two synthesized versions of a single file to be more similar
to eachother than they might be similar to a real record-
ing. We found however that the timbres of the two sound-
banks used differ quite significantly. As for the random
generation: not using real data frees us from dealing with
copyright issues, and generating it randomly allowed us to
quickly obtain a large and comprehensive body of test files,
not presupposing any structure or style.

In the following sections, we use the files generated on
Windows as sources for the ’performance’ sound mixture,
and the files rendered on Linux as ’scores’ from which
we obtain priors. The BSS EVAL toolbox [?] calculates

3 metrics on the separated sources given the original data.
The Signal-to-Interference Ratio (SIR) measures the inclu-
sion of unwanted other sources in an extracted source; the
Signal-to-Artefacts Ratio (SAR) measures artefacts like mu-
sical noise; the Signal-to-Distortion Ratio (SDR) measures
both the interference and artefacts.

4. MEASUREMENTS ON IDEAL DATA

4.1 Error margin on the results

As mentioned previously, due to randomness in the ini-
tialization, separation results might differ with every run,
and so might the SDR, SIR and SAR scores. To properly
quantify what we are dealing with, we ran the system with
standard parameters that give decent results (sampling rate
of 44100Hz, 2048-point FFT with 75% overlap, 50 com-
ponents per source, 50 iterations) 10 times on each of the
possible 380 instrument duos in the test set. This was done

min std max std mean std median std
SDR 0.062 1.55 0.48 0.41
SIR 0.056 14.21 1.89 1.20
SAR 0.061 1.55 0.47 0.41

Table 1. Reliability of the results: statistics on the standard
deviation of SDR, SIR and SAR scores of 10 runs of the
algorithm with the same parameters on 380 data pairs.
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Figure 3. SDR, SIR and SAR vs. number of components
used per source

on ’ideal’ data, where the score would exactly line up with
the sound mixture and no DTW was needed, so we com-
pute the effect of the random initialization only. SDR, SIR
and SAR values tend to be pretty consistent in between
runs on the same pair, except in a few rare combinations
where there is a lot of variance in the results. Even in these
cases, the mean values of the scores are still within normal
range.

The numbers in table ?? show that the mean standard
deviation of calculated SDR and SAR scores stays below
0.5 dB, while there can be highly variable results in some
SIR scores. Incidences of high variance in SIR score seem
unrelated to each other, and almost every instrument had
some combination with another instrument where SIR scores
would be very variable in between runs of the algorithm.
For evaluation purposes, SDR and SAR scores seem to be
better suited to pay attention to.

Some instruments seem to be easier to extract from mixes
with any other instrument, than others. Fig. ?? gives an
idea of the ’overall easiness’ with which an instrument can
be extracted from a mix.

4.2 Components and iterations

The algorithm’s running time will increase linearly with
the amount of components. Generally, increasing the num-
ber of components that are available per source increases
the ability to model the priors accurately, and thus also the
overall separation results. We ran a small test of the effect
of the number of components across all couples of sources.
The effectiveness of the number of components is almost
identical for every instrument, so we can generally plot the
number of components versus the outcome of the metrics,
which is shown in fig ??.

With on average 20 notes in each source, there is a huge

Figure 4. SDR, SIR and SAR vs. number of iterations in
EM algorithm

climb in improvements up to 20 components after which
the scores level off. There is some small improvement
after this, but not drastic. We haven’t run complete tests
with significantly larger amounts of components, but from
a couple of single tries we find that overfitting becomes
an issue when the amount of components is chosen too
large. Superfluous components of a single source risk to
start modeling parts of other sources, which degrades sep-
aration performance again.

The number of iterations of the EM algorithm does not
suffer from this - since the likelihood of subsequent EM it-
erations is monotonically increasing, more is always better.
The only constraint here is how much time we’re willing to
spend on those iterations. We can see that the convergence
towards a good solution is obtained rather fast: indepen-
dent of instrument, above 25 iterations there is hardly any
improvement of the scores (fig. ??).

4.3 Other parameters

The PLCA routine decomposes a magnitude spectrogram,
and thus the properties of that spectrogram also play a role
in the end result. Conducting a few small tests, we were
able to conclude that the larger the FFT size, the better the
results generally are. In subsequent tests, we used 2048-
point FFTs. The overlap should be kept above 67.5% ;
75% is a safe value. Binary masking (assigning each spec-
trogram time-frequency bin to a single source instead of
dividing it among different sources) significantly improves
SIR scores, at the cost of a slight decrease in SDR and SAR
scores.

It is possible to cut the spectrogram into ’timeslices’
of variable length. Certainly when there are possibilities
for parallelization, or when due to system limitations the
spectrogram size needs to be kept to a minimum, it might
be interesting to run the analysis on each slice separately.
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Figure 5. SDR, SIR and SAR vs. tempo deviation from
reference, all sources with the same deviation

This makes that the spectral components, and their tem-
poral counterparts, can change from slice to slice. Due to
the random initialization of the components, they are likely
not related to the components in other slices at all, and each
slice will have its components defined such that they rep-
resent the data in that slice optimally. During resynthesis,
small artefacts can be introduced on the slice borders due
to these changes in basis vectors that occur. Our tests indi-
cated that, though a decline in scores remains small and
only noticeable when slices were smaller than a second
long, it is a good idea to have the length of a slice as large
as possible. How this relates to the number of needed com-
ponents or iterations remains to be studied in the future.

5. THE EFFECT OF DYNAMIC TIME WARPING

5.1 Quantifying the role of DTW

Whereas in the previous section we discussed metrics on
ideally aligned data, this is not likely to occur in real life.
Performers use their artistic freedom to make the notes on
paper into a compelling concert. One of the main means of
doing so are local changes in tempo. To cope with this, a
DTW routine is attached at the beginning of the system. It
serves to line up the score with the real performance.

In figure ?? the performance of the algorithm on ide-
ally aligned sound mixtures (0% deviation from the score
tempo) is compared to performance on mixtures with tempo
deviations, where alignment is needed. The sources that
were used were divided into 5 segments that each had a
different tempo assigned to them, in such a way that the
tempo was in every file partly below the reference tempo,
and partly above. The amount of change has a pretty high
influence on the effectiveness of the subsequent source sep-
aration.

Logically, the timing of an entire score applies to the
individual instrument parts too. We provide the output
from the DTW routine to a phase vocoder that dilates or
compresses each of the synthesized parts in time, so that
they match up with the the performance mixture. This
is a quick and practical solution to make sure that in the
following PLCA analysis steps, the temporal and spectral
components of the performance mixture and their associ-
ated priors obtained from the synthesized score parts, have
the same dimensions.

Both errors in alignment and the subsequent stretch-
ing of synthesized score parts introduce errors in the pri-
ors, which affect successful analysis. From the data in fig.
??, we conclude that heavy time warping and subsequent
stretching of the spectrum puts the quality of the results at
severe risk. The DTW routine and phase vocoder that we
used [?] were chosen because they were readily available
to plug into our code. It is however a bottleneck in our
system. In future work, alternative methods to align scores
with recordings are worth looking into [?]. If using DTW,
in practical applications the possibility to manually correct
or at least smoothen the time alignment should be avail-
able.

In tests where source files with different tempo curves
were used in a single sound mixture (in order to simulate
performers that are out of sync with each other), very simi-
lar results were observed. In such a case the time alignment
is likely to contains errors for at least one of the sources,
since notes that should be played together according to the
score, are not necessarily played together in the mixture.
We can conclude that the application of DTW and sub-
sequent time dilating and compressing of the synthesized
data with a phase vocoder can cause a considerable stir in
the computed priors, to such an extent that in the subse-
quent decomposition of the mix, it becomes very difficult
to get decent separation results.

5.2 Adaptations and alternatives

The DTW plus phase vocoder routine is the weak link in
the complete process, and we ventured on to do a couple
of experiments adapting that part of our system. Inspired
by recent work by Dannenberg et al [?] we substituted the
spectrograms used in the DTW routine by chromagrams,
using code obtained from the same source [?]. The re-
sults are practically equal to those in fig. ?? . Just like in
the case of DTW with spectrograms, some (manual) post-
processing on the results of the DTW routine is likely to
improve the test results.

We also undertook a small experiment skipping the use
of a phase vocoder to stretch the spectrograms of the scores,
instead only resampling the temporal vectors using piece-
wise cubic Hermite polynomials to maintain nonnegativ-
ity. It turns out that the mean SDR and SAR scores plum-
met, and the standard deviation increases drastically, re-
sulting in a small but not negligible number of test results
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that are actually better than what could be attained previ-
ously. Also, the SIR values stay remarkably high, and even
at large tempo deviations. However, overall the system be-
came highly unreliable and unfit for general use.

Given that the parameters of the PLCA routine can be
chosen optimally and that their effects are relatively well-
known, most of the future effort in improving this score-
informed separation system should clearly go into better
and more accurate alignment and matching of the scores
to the real performance data. Also more varied data and
use cases need to be considered - here, we only worked
on mixes of 2 instruments, and did not include common
performance errors like wrongly struck notes. Several ap-
proaches to solve this problem, or parts of it, exist or are
being worked on [?], and can contribute to a solution.

For alignment of scores with recordings, we have some
future work set out, replacing the DTW and phase vocoder
with methods more fit for our particular setup. In hind-
sight, with symbolic data and performance recordings avail-
able, we would very likely be better off applying a method
that directly aligns symbolic information with a single spec-
trogram, to then modify the timing of the symbolic data,
only then to synthesize it and compute priors from. For any
future developments, we now have an extensive dataset to
quickly evaluate the system.

6. CONCLUSIONS

In this paper we quantified the performance of a recently
developed score-informed source separation framework based
on PLCA. Several parameter options were explored and we
paid special attention to the effect of DTW. The use of met-
rics that are prevalent in literature allows for future com-
parison with competing methods. We synthesized our own
test dataset covering a wide range of instruments, using dif-
ferent synthesizers to mimick the difference between real-
world data and scores, and mimicking some performance
characteristics by introducing tempo changes. This dataset
has been made freely available to the general public, and
we exemplified its usability for extensive testing of align-
ment and source separation algorithms.

7. REFERENCES

[1] P. Smaragdis, B. Raj and M.V. Shashanka: “Super-
vised and Semi-Supervised Separation of Sounds from
Single-Channel Mixtures,” Proc. of the 7th Interna-
tional Conference on Independent Component Analysis
and Signal Separation, London, UK, September 2007.

[2] D. Lee and H.S. Seung: “Algorithms for Non-negative
Matrix Factorization,” Proc. of the 2000 Conference on
Advances in Neural Information Processing Systems,
MIT Press. pp. 556562.

[3] P. Smaragdis and G. Mysore: “Separation by ’hum-
ming’: User-guided sound extraction from mono-
phonic mixtures,” Proc. of IEEE Workshop on Applica-
tions Signal Processing to Audio and Acoustics , New
Paltz, NY, October 2009.

[4] J. Ganseman, G. Mysore, P. Scheunders and J. Abel:
“Source separation by score synthesis,” Proc. of the
International Computer Music Conference, New York,
NY, June 2010.

[5] C. Févotte, R. Gribonval and E. Vincent: “BSS EVAL,
A toolbox for performance measurement in
(blind) source separation,” Available at http://bass-
db.gforge.inria.fr/bss eval/, accessed May 27, 2010.

[6] Y. Li, J. Woodruff and D. L. Wang: “Monaural mu-
sical sound separation using pitch and common am-
plitude modulation,” IEEE Trans. Audio, Speech and
Language Processing, vol. 17, no. 7, pp. 1361-1371,
2009.

[7] J. Woodruff, B. Pardo and R. B. Dannenberg: “Remix-
ing Stereo Music with Score-informed Source Sepa-
ration,” Proc. of the 7th International Conference on
Music Information Retrieval, Victoria, Canada, Octo-
ber 2006.

[8] D. Ellis: “Matlab audio processing examples,” Avail-
able at http://labrosa.ee.columbia.edu/matlab/ ac-
cessed May 27, 2010.

[9] A. Grecu: “Challenges in Evaluating Musical In-
strument Sound Separation Algorithms,” Proc. 9th
International Student Workshop on Data Analysis
(WDA2009), Certovica, Slovakia, July 2009, pp. 3-9.

[10] E. Vincent, R. Gribonval, C. Févotte et al,.
“BASS-dB: the Blind Audio Source Sep-
aration evaluation database.” Available at
http://www.irisa.fr/metiss/BASS-dB/ , accessed
May 27, 2010.

[11] R. B. Dannenberg and contributors: “PortSMF,
part of PortMedia” Available at http://portmedia
.sourceforge.net/, accessed May 27, 2010.

[12] Masanao Izumo and contributors: “Timidity++,” Avail-
able at http://timidity.sourceforge.net , accessed May
27, 2010.

[13] NullSoft, Inc: “Winamp,” Available at
http://www.winamp.com, accessed May 27, 2010.

[14] R. B. Dannenberg and C. Raphael: “Music Score
Alignment and Computer Accompaniment,” Commu-
nications of the ACM, vol. 49, no. 8 (August 2006), pp.
38-43.

[15] R. B. Dannenberg and G. S. Williams: “Audio-to-
Score Alignment In the Audacity Audio Editor,” Late
Breaking Demo session, 9th International Conference
on Music Information Retrieval, Philadelphia, USA,
September 2008.

224

11th International Society for Music Information Retrieval Conference (ISMIR 2010)




