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ABSTRACT

We introduce a method for the automatic extraction of
musical structures in popular music. The proposed algo-
rithm uses non-negative matrix factorization to segment re-
gions of acoustically similar frames in a self-similarity ma-
trix of the audio data. We show that over the dimensions
of the NMF decomposition, structural parts can easily be
modeled. Based on that observation, we introduce a clus-
tering algorithm that can explain the structure of the whole
music piece. The preliminary evaluation we report in the
the paper shows very encouraging results.

1. INTRODUCTION

Music structure discovery (MSD) aims at characterizing
the temporal structure of songs. In the case of popular mu-
sic, this means classifying segments of a music piece into
parts such as intro, verse, bridge, chorus or outro. Knowing
this musical structure, one can introduce new paradigms in
dealing with music collections and develop new applica-
tions such as audio thumbnailing and summarization for
fast acoustic browsing, active listening (audio based re-
trieval and organization engines), song remixing or restruc-
turing, learning semantics, etc.

In the past years, MSD has therefore gained an increas-
ing interest in the music information retrieval community.
This also led to the constitution of common evaluation data
sets and evaluation campaigns (MIREX 09) that strongly
stimulate the research in this field.

1.1 Previous work

Structure in music can be defined as the organization of
different musical forms or parts through time. How we de-
fine musical forms and what builds our perception of these
forms is however an open question, and MSD algorithms
that have been proposed yet mainly differ in the way they
answer those questions. However, Bruderer gives in [2] a
general understanding of perception of structural bound-
aries in popular music, and shows that perception of struc-
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ture is mainly influenced by a combination of changes in
timbre, tonality and rhythm over the music pieces. There-
fore, MSD algorithms generally aim at finding similarities
and repetitions in timbre, tonality and rhythm based de-
scriptions of the audio signal.

In [4], Foote and Cooper addressed the task of music
summarization and proposed to visualize and highlight these
repetitions in the audio signal through a self-similarity ma-
trix. The audio signal is therefore parametrized through
the extraction of audio features and the similarity between
each frame is then measured. Thus using different audio
features and similarity measures, most MSD algorithms
are a processing of such a self-similarity representation.

In [13], the author distinguishes two categories of struc-
ture in the self-similarity matrix: the state representation
and the sequence representation. The state representation
defines the structure as a succession of states (parts). Each
state is a succession of frames that show similar acoustic
properties and therefore forms blocks in the self-similarity
matrix. This representation is closely related to the notion
of structural parts in popular music (intro - verse - chorus
- outro), in which the acoustical information does not vary
much. Algorithms based on state representation usually
start with a segmentation by audio novelty score method
[5]. The segments are then merged together with mean of
hierarchical clustering, spectral clustering, or HMM.

On the other hand, the sequence representation consid-
ers series of times (frames), that are repeated over the mu-
sic piece. The sequence representation is more related to
musical concepts such as melody, progression in chords
and harmony. Algorithms based on sequence representa-
tion look for repetitions on the off-diagonals of the self-
similarity matrix. Matrix filtering of higher-order matrix
transformations [14] can also be applied to the self-similarity
matrix in order to emphasize off-diagonals. One of the
main drawbacks of the sequence representation is that the
structure of the music piece can not be fully explained un-
less all sequences are repeated at least once.

1.2 Approach

Non-negative matrix factorization (NMF) is a low-rank ap-
proximation technique that was first introduced in [9]. It
is known for extracting parts-based representation of data,
that strongly relates to some form of inherent structure
in the data. Therefore, it has been successfully used in
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Figure 1. Overview of the proposed music structure dis-
covery system

a wide range of multimedia information retrieval applica-
tions such as text summarization [9] or sound classifica-
tion [1]. Moreover, Foote et al. showed in [3] that de-
composing the self-similarity matrix of a video stream via
NMF could help separating visually similar segments . We
propose to extend the approach of Foote to music data.

Defining structural parts as acoustically similar regions
like in the state-representation, we apply NMF to the self-
similarity matrix. We show that such structural parts can
easily be discriminated over the dimensions of the obtained
decomposition. With a clustering approach, we are thus
able to merge together similar audio segments in the NMF
decomposed matrices, and explain the structure of the whole
music piece.

In the next section, we provide a detailed description
of our system. Evaluation metrics, data set and results are
presented in section 3. Section 4. concludes the paper.

2. PROPOSED METHOD

An overview of our system is shown in Figure 1. In this
section each individual block of the system is described.

2.1 Feature Extraction

We first extract a set of audio features that are likely to
model variations between different musical parts. As men-
tioned in the introduction, perception of structural bound-
aries in music is mostly influenced by variations in timbre,
tonality and rhythm [2]. However, few rhythmical changes
occur between parts in our evaluation data set (see section
3.) and we thus only focus on the description of timbre
and tonality. Nevertheless, the reader might refer to [11]
for interesting work also using rhythmical clues for struc-
ture discovery.

Timbre properties of the audio signal are described by
extraction of the following features: the first 13 MFCC
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Figure 2. Self-similarity matrix computed on the timbre-
related features using the exponential variant of the cosine
distance. Audio file : ”Creep” by Radiohead

coefficients, spectral centroid, spectral slope and spectral
spread.

Tonality can be associated to the concepts of melody
and harmony. Songs in a popular music context are how-
ever very diverse and a melody extractor would hardly be
robust over a whole set of popular songs. We thus only fo-
cus on the description of harmonic properties through the
extraction of the chroma features. Chroma features are 12
dimensional, each element corresponding to a pitch-class
profile of a 12 scaled octave.

The frame analysis is performed with mean of a window
size of 400 ms and a hop size of 200 ms. Each feature is
normalized to mean zero and variance one.

Timbre-related features and chroma features are stored
in two different feature matrices and processed separately.

2.2 Self-Similarity Matrix

After parameterization of the audio, we measure the simi-
larity between each signal frame in a self-similarity matrix
S. Each element s;; is defined as the distance between the
feature vectors v; and v, extracted over frames 7 and j.
The cosine angle is used as a similarity measure :

< Vi, Vv >

Vil [llv]]

d(Vi, V]') = (1)
As proposed in [3], an exponential variant of this dis-
tance is used to limit its range to [0,1] :

de(vi,v;) = exp(d(vi, v;) — 1) @

As an example, we extracted the timbre-related features
over the song ”Creep” by Radiohead. The resulting self-
similarity matrix is shown in Figure 2. One clearly sees
that structural information is conveyed by the self-similarity
matrix. Regions of acoustically similar frames form blocks
in the matrix and one can also distinguish repetitions of
these blocks. This illustrates the state representation of
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structure, as explained in the introduction. In this spe-
cific example, there are few sequence repetitions to see
on the off-diagonals. In fact, the clearness of such se-
quences in the self-similarity matrix pretty much depends
on the nature of the song and the features that describe it
(chroma features tend to highlight sequences). In our ex-
ample, blocks are formed because of the strong presence
of saturated guitar, which does not yield much timbre evo-
lution within the structural parts.

2.3 Segmentation

Once the audio has been embedded in the self-similarity
matrix S, a segmentation step is needed to estimate po-
tential borders of the structural parts. Therefore the self-
similarity matrix is segmented using the audio novelty score
introduced in [5]. The main idea is to detect boundaries
by correlating a Gaussian checkerboard along with the di-
agonal of the self-similarity matrix S. The checkerboard
basically models the ideal shape of a boundary in S. The
correlation values yield a novelty score in which local max-
ima indicate boundaries. We apply an adaptive threshold
as described in [6] to detect these maxima and generate the
segmentation.

2.4 Non-negative Matrix Factorization

Matrix factorization techniques such as principal compo-

nents analysis (PCA), independent component analysis (ICA)

or vector quantization (VQ) are common tools for the anal-
ysis of multivariable data and are mainly used for dimen-
sionality reduction purposes. In [7], Lee and Seung intro-
duced non-negative matrix factorization (NMF), and pro-
posed to build the decomposition additively by applying
a non-negativity constraint on the matrix factors. Unlike
PCA and other factorization techniques, cancelation of the
decomposed data is thus not allowed, leading to a parts-
based representation of the data. An intuitive justification
is that not allowing negative coefficients in the decompo-
sition will prevent the loss of the physical meaning of the
data.

Given an n X m non-negative matrix V, NMF aims at
estimating the non-negative factors W (n x ) and H (r X
m), that best approximate the original matrix :

V ~ WH 3)
W contains the basis vectors and H the encoding coef-
ficients for the best approximation of V. The rank of the
decomposition r is usually chosen so that (n+m)r < nm,
thus providing a compressed version of the original data.

In our approach, we compute NMF on the self-similarity
matrix of the audio in order to separate basic structural
parts. The algorithm we use for the estimation of the ma-
trix factors W and H is detailed in [8]. In the next sec-
tion, we describe how the factorization via NMF relates to
structure and show how we can use that result for music
structure discovery.
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Figure 3. Matrices A, and A obtained by NMF decom-
position of the timbre self-similarity matrix of the song
”Creep” (see Figure 2).

2.5 NMF based feature space

After decomposition via NMF, each element s;; of S can
be written as:

Sij R~ ZAk(iaj) 4
k=1
with

Ay, = W(, k)H(k, ) (5)

To illustrate how NMF can decompose data into basic struc-
tural parts, we compute NMF on the self-similarity matrix
calculated over the song ”Creep” by Radiohead. The rank
of decomposition is set to 2 and the decomposed matrices
A; and A are shown in Figure 3.

According to the timbre description in Figure 2, we can
say that the music piece is composed of two main struc-
tural parts. Figure 3 shows that these two parts are strongly
separated over the two dimensions of the NMF decompo-
sition.

This suggests that each dimension of the NMF decom-
position somehow relates the contribution of a structural
part in the original data. In other words, that means that
there is a specific energy distribution over the dimensions
of the decomposition for each structural part.

Therefore it seems relevant to study for each segment
how the energy is distributed over the matrices Ay. In or-
der to consider temporal dependencies, we choose to con-
sider segments as successions of frames in matrices Ay,
and not as blocks. That means that each frame from the
music piece is represented by its corresponding values over
the diagonals of matrices Ay. We thus define the feature
vector dy,, representing the contribution of the k** decom-
position over all frames:

dy, = diag(Ay) ©6)

Each frame can then be represented in the (nxr) feature
space D :

D = [did;...d,] 7

To illustrate this approach, we show an example with
the song “Help” by The Beatles. The self-similarity matrix
S computed on the timbre features of the song and the an-
notated structure are plotted in Figure 4. We compute the
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Figure 4. Self-similarity matrix computed on the timbre-
related features for the song “Help” by The Beatles. The
black boxes indicate the annotated segments, with A being
the intro, B the verse, C the chorus and D the outro.
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Figure 5. Representation of the structural parts of the song
“help” in the feature space D

NMF decomposition of S. For visualization purposes, the
rank of decomposition is set to 3. In Figure 5, each of the
annotated segments is represented in the feature space D.
It is clear that structural parts chorus, verse and outro tend
to be well represented over feature vectors d;, d2 and d3
respectively. In this case, we can say that each dimension
of the NMF decomposition relates the contribution of a
structural part. It is also interesting to note that segments
of the same structural part seem to follow similar trajecto-
ries, suggesting that temporal dependencies should also be
considered.

In classification problems, a feature space should pro-
vide good separability between classes. This means that
the set of observations for a single class should have a
small variance, whereas the set of all observations (for all
the classes) should have a large variance. In that sense and
according to Figure 5, representing segments in the feature
space D should provide a good basis for structural classi-
fication.
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2.6 Clustering

Each found segment is now represented in the NMF based
feature space D. In order to merge together segments be-
longing to the same structural part, we propose to use a
classical clustering approach. Therefore, the similarity be-
tween segments in D is measured with:

e The Bayesian information criterion (BIC)
e The Mahalanobis distance

The clustering is performed using the two measures sep-
arately. A comparison of the performance obtained with
both measures is done in section 3. The clustering is done
with a classical hierarchical approach.

3. EVALUATION
3.1 Data set

The evaluation data set consists of 174 songs from The
Beatles, that were first manually annotated at Universistat
Pompeu Fabra (UPF) 1. Some corrections to the annotation
were made at Tampere University of Technology (TUT)?.
We call the data set TUT Beatles.

The structure in each music piece is annotated as a state
representation and not as sequences (see section 1.). Each
frame is thus affected to a label.

3.2 Metrics for the clustering evaluation

Evaluating the performance of a music structure detection
algorithm is not simple. In fact musical structures are mostly
hierarchical [10], meaning that the structure can be ex-
plained at different levels. For example, a structure A-B-
A, could be also be described as abc-def-abc. We choose
to evaluate our system using the pairwise precision, re-
call and F-measure. Therefore, we define F, the set of
identically labelled frames in the reference annotation, and
F, the set of identically labelled frames in the estimated
structure. Pairwise precision, recall and F-measure, re-
spectively noted P, R and F' are then defined as :

[Fe N Fal
p=1clla 8)
| Fe|
|Fe () Fal
R=1c¢ 1o ©9)
| Fal
2PR
“P+R {10)

These measures are not perfect for evaluating MSD al-
gorithms because they do not reflect hierarchical aspects
in the description of structure. Nevertheless, they give an
idea of the global performance of the system.

Uhttp://www.iua.upf.edu/%7Eperfe/annotaions/sections/license.html
2 http://www.cs.tut.fi/sgn/arg/paulus/structure.html
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‘ F-measure Precision Recall

Timbre 58.6% 58.1% 61.9%

Chroma 50% 46.5% 52.2%
both 53.6% 49% 55%

Table 1. Segmentation evaluation with the TUT Beatles
database

3.3 Segmentation Evaluation

We evaluate the segmentation step with classical F-measure,
precision and recall. Table 1 reports the performance of the
segmentation computed on the timbre-related self-similarity
matrix, the chroma-related self-similarity matrix and the
sum of the two matrices.

The low precision rate in the segmentation suggests that
the algorithm tends to over-segment the audio. In fact,
structure is hierarchical and the annotation labels high level
parts of the structure. The clustering might cope with that
by reassembling segments from the same structural part.

3.4 Rank of decomposition

We ran a small experiment in order to choose a suitable
rank for the NMF. Over a subset of ten songs from the
database, we compute the similarity matrices. Varying the
rank of NMF r from 3 to 12, we measure the separability
between structural parts along each dimension d; of D. To
do so, we compute the inertia ratio of the variance of d;
within segments belonging to the same structural part and
the variance of d; over the whole music piece [12]:

K
_ D k=1 Nﬁk(mk —m;)(mg —m;)’

- % Zg:l(dl(n) - mz)(dl(n) — mi)/

With K being the number of structural parts, Ny the
number of frames in structural part k and N the total num-
ber of frames. m; is the mean of d; over the all piece and
my, the mean value of d; over the k" structural part. For
a given rank of decomposition r, the separability is then
measured as the mean of s:

seplr) =+ 3 (i)

s(i) (11)

12)

We find a maximum of separability with a rank of 9 for
NMF (see Figure 6). It is larger than the median number
of annotated parts. In fact, as structure can be explained at
different hierarchical levels, we don’t expect the NMF de-
composition to match the parts described in the annotation
one-by-one.

3.5 Experimental set up for the clustering

Self-similarity matrices are computed over the timbre and
chroma features separately. As shown in Table 1, seg-
mentation using the timbre features provides better per-
formances. Therefore, in the evaluation of the clustering
step, we only use the segments positions extracted over
the timbre-related self-similarity matrix. We propose four
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Figure 6. Separability of structural parts given different
ranks of decomposition

strategies to evaluate our clustering approach. For the three
first strategies, the NMF based feature space is obtained by
decomposition of the timbre-related self-similarity matrix
(labeled as ”Timbre” ), the chroma-related self-similarity
matrix (labeled as ”Chroma”) and the sum of the two matri-
ces (labeled as “Fusion 17). We also study a second fusion
strategy where similarity between segments is computed
separately in the timbre and chroma related feature spaces
and then summed for the clustering algorithm (labeled as
”Fusion 2”).

We also compare the clustering obtained using the auto-
matic segmentation described in section 2. (labeled “auto™)
and using the annotated segments (labeled “manual”). Fi-
nally, each configuration is run using the BIC (Table 2) and
the Mahalanobis distance (Table 3) as similarity measure
for the clustering algorithm.

The number of clusters is set to 4, which is the median
number of annotated parts within a song in our evaluation
data set.

3.6 Clustering Evaluation and Discussion

As a reference we use the system described in [11], that
was also evaluated on the TUT Beatles database. The sys-
tem is based on a description of the audio signal through
MFCC, chroma and rhythmogram features. Each of these
features is then used to estimate the probability for two
segments to belong to the same structural part and a fit-
ness measure of the description is introduced. A greedy
approach is used to generate the candidate descriptions.

Evaluation of the whole system is reported in Tables
2 and 3, using BIC and Mahalanobis distance respectively.
Compared to the reference system, our system shows slightly
better F-measure rates. The interesting result is that we
show significantly better recall rates. This suggests that our
algorithm splits the parts in the annotation as sequences of
sub-parts. This also explains why we don’t match the pre-
cision rates in [11]. There again, the annotation relates a
high stage of the structure hierarchy, and over-segmentation
causes a lack of precision. Modeling sequences of basic
parts in our algorithm might cope with that. This also ex-
plains the huge gain of performance when using the anno-
tated segments for the evaluation.



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Method | Segmentation F P R
[11] 59.9% 72.9% 54.6 %
Timbre auto 60.2% 64.7% 60%
manual 76.1% 83.6% 72.6%
Chroma auto 60.5% 66%  59.6%
manual 80% 87% 76.6%
Fusion 1 auto 60.6%  65% 60%
manual 787%  85% 76.4%
Fusion 2 auto 60.2% 64.7% 60%
manual 80%  86.5% T7%
Table 2. Evaluation on TUT Beatles, BIC
Method | Segmentation F P R
[11] 599% 72.9% 54.6 %
Timbre auto 61% 624% 63.3%
manual 784% 82.1% 78.3%
Chroma auto 60.8% 61.5% 64.6%
manual 76.6% 81.2% 75.7%
Fusion 1 auto 62.1% 63.6% 64.5%
manual 77.8%  82.3% 77%
Fusion 2 auto 61% 62.4% 63.3%
manual 78% 81.7% 78.2%

Table 3. Evaluation on TUT Beatles, Mahalanobis

Obviously, fusing both timbral and chroma description
as in the “Fusion 1” strategy makes sense and improves
the overall performance of the system. Finally, using the
Mahalanobis distance yields better performances than the
BIC.

4. CONCLUSIONS

We introduced a music structure discovery method that
uses the ability of NMF to generate parts-based represen-
tation of data. The evaluation conducted on the TUT Beat-
les data set shows that we are able to obtain slightly better
performances than the reference system introduced in [11].
The improvements we obtain in the recall rates however
suggest that there is still room for improvements. More-
over, the method used for the clustering of segments in the
NMF based feature space only considers statistical similar-
ity between the segments over time. We will consider mod-
eling time dependencies between frames and thus model
trajectories in the feature space instead of clouds of points.
The NMF processing itself could also be enhanced by us-
ing sparse constraints on the matrix factors. Further eval-
uation on more diverse audio material will be done. The
first results we obtained are however very encouraging.
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