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ABSTRACT

Most musical instrument recognition systems rely entirely
upon spectral information instead of temporal information.
In this paper, we test the hypothesis that temporal informa-
tion can improve upon the accuracy achievable by the state
of the art in instrument recognition. Unlike existing tem-
poral classification methods which use traditional features
such as temporal moments, we extract novel features from
temporal atoms generated by nonnegative matrix factoriza-
tion by using a multiresolution gamma filterbank. Among
isolated sounds taken from twenty-four instrument classes,
the proposed system can achieve 92.3% accuracy, thus im-
proving upon the state of the art.

1. INTRODUCTION

Advances in sparse coding and dictionary learning have in-
fluenced much of the recent progress in musical instrument
recognition. Many of these methods depend upon nonneg-
ative matrix factorization (NMF) – a popular, convenient,
and effective method for decomposing matrices – to ob-
tain low-rank approximations of audio spectrograms [9].
NMF yields a set of vectors, spectral atoms, which ap-
proximately span the frequency space of the spectrogram,
and another set of vectors, temporal atoms, which corre-
spond to the temporal activation of each spectral atom.
The spectral atoms can then be classified by instrument
using features such as mel-frequency cepstral coefficients
(MFCCs).

While these methods are effective in exploiting the spec-
tral redundancy in a signal, redundancy remains in the tem-
poral domain. Psychoacoustic studies have shown that
spectral and temporal information are equally important in
the definition of acoustic timbre [10]. Classification meth-
ods that only utilize spectral information are discarding the
potentially useful temporal information that could be used
to improve classification performance.

In this paper, we combine advances in dictionary learn-
ing, auditory modeling, and music information retrieval to
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propose a new timbral representation. This representation
is inspired by another widely accepted timbral model, the
cortical representation, which estimates the spectral and
temporal modulation content of the auditory spectrogram.
Our method of extracting temporal information uses a mul-
tiresolution gamma filterbank which is computed from the
temporal atoms extracted from spectrograms using NMF.
Extracting and classifying this feature is simple yet effec-
tive for musical instrument recognition.

After defining the proposed feature extraction and clas-
sification method, we test the hypothesis that the proposed
feature improves upon the accuracy achievable by the state
of the art in musical instrument recognition. For isolated
sounds, we show that temporal information can be used to
build a classifier capable of 72.9% accuracy when tested
among 24 instrument classes. However, when combining
temporal and spectral features, the proposed classifier can
achieve an accuracy of 92.3%, thus reflecting state of the
art performance.

2. TEMPORAL INFORMATION

Temporal information is incorporated into timbral mod-
els in different ways. Many attempts to incorporate tem-
poral information use features such as the temporal cen-
troid, spread, skewness, kurtosis, attack time, decay time,
slope, and locations of maxima and minima [5,6]. One tim-
bral representation, the cortical representation, incorpo-
rates both spectral and temporal information. Essentially,
the cortical representation embodies the output of cortical
cells as sound is processed by earlier stages in the audi-
tory system. Fig. 1 illustrates the relationship between the
early and middle stages of processing in the mammalian
auditory system. The early stage models the transforma-
tion by the cochlea of an acoustic input signal into a neural
representation known as the auditory spectrogram, while
the middle stage models the analysis of the auditory spec-
trogram by the primary auditory cortex.

One property of cortical cells, the spectrotemporal re-
ceptive field (STRF), summarizes the way a single corti-
cal cell responds to a stimulus. Mathematically, the STRF
is like a two-dimensional impulse response defined across
time and frequency. Each STRF has three parameters: scale,
rate, and orientation. Scale defines the spectral resolution
of an STRF, rate defines its temporal resolution, and ori-
entation determines if the STRF selects upward or down-
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Figure 1. Early and middle stages of the auditory system.
The auditory spectrogram is convolved across time and fre-
quency with STRFs of different rates and scales to produce
the four-dimensional cortical representation.

ward frequency modulations. Fig. 2 illustrates the STRF
as a function of these three parameters. Each cortical cell
can be interpreted as a filter whose impulse response is an
STRF with a particular rate, scale, and orientation. There-
fore, a collection of cortical cells constitutes a filterbank.
Indeed, it turns out that the cortical representation is math-
ematically equivalent to a multiresolution wavelet filter-
bank [2].

Despite the biological relevance between the cortical
representation and timbre, this representation has disad-
vantages for classification purposes. First, because the cor-
tical representation is a complex-valued four-dimensional
filterbank output, it is massively redundant. Like many
types of redundant data, the cortical representation could
benefit from some form of coding, decomposition, or di-
mensionality reduction. However, proper application of
these tools to the cortical representation for engineering
purposes such as speech recognition and MIR is not yet
well understood. Therefore, these are ongoing areas of re-
search [11]. Second, the STRF is not time-frequency sep-
arable [2]. In other words, computation of the cortical rep-
resentation cannot be decomposed into two procedures that
operate on the time and frequency dimensions separately.
Because spectral and temporal information require differ-
ent classification methods, this obstacle impedes classifi-
cation.

Unlike the cortical representation, the spectrogram com-
puted via short-time Fourier transform (STFT) is easily de-
composed, particularly for musical signals. For example,
many works have applied decomposition methods to mag-
nitude spectrograms of musical sounds in order to identify

Rate: 2 Hz Rate: 1 Hz
Orientation: Downward

Rate: 1 Hz Rate: 2 Hz
Orientation: Upward

Sc
al

e:
4

cy
c/

oc
t

F
re

qu
en

cy

Sc
al

e:
2

cy
c/

oc
t

F
re

qu
en

cy

Sc
al

e:
1

cy
c/

oc
t

F
re

qu
en

cy

Time Time Time Time

Figure 2. Twelve example STRFs. Together, they con-
stitute a filterbank. The left six STRFs select downward-
modulating frequencies, and the right six STRFs select
upward-modulating frequencies. Top row: seed functions
for rate determination. Left column: seed functions for
scale determination.

a set of spectral and temporal basis vectors from which the
magnitude spectrogram can be parameterized [15]. One
such decomposition method is NMF [9]. Given an element-
wise nonnegative matrix X, NMF attempts to find two
nonnegative matrices, A and S, that minimize some di-
vergence between X and AS. Among the algorithms that
can perform this minimization, one of the most convenient
algorithms uses a multiplicative update rule during each it-
eration in order to maintain nonnegativity of the matrices
A and S [9].

Many researchers have already demonstrated the use-
fulness of NMF for separating a musical signal into indi-
vidual notes [7,15,16]. By first expressing a time-frequency
representation of the signal as a matrix, these methods de-
compose the matrix into a summation of a few individual
atoms, each corresponding to one musical source or one
note. Fig. 3 illustrates the use of NMF upon the spectro-
gram of a musical signal. We define each column of A
as a spectral atom and each row of S as a temporal atom.
The temporal atoms usually resemble envelopes of known
sounds, particularly in musical signals. For example, ob-
serve the difference between the profiles of the temporal
atoms in Fig. 3. The three beats generated by the kick
drum share the same temporal profiles, and the two beats
generated by the snare drum share the same profiles. This
general observation motivates the hypothesis that the en-
ergy distribution of temporal NMF atoms is a valid timbral
representation that can be used to classify instruments.

In the next section, we propose one technique that ex-
tracts timbral information from temporal NMF atoms simi-
lar to that of the cortical representation. Our technique uses
a multiresolution gamma filterbank to perform multires-
olution analysis upon the factorized spectrogram. How-
ever, unlike the cortical representation, this multiresolution
analysis is particularly suited to the energy profiles con-
tained in the temporal NMF atoms.
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Figure 3. The NMF of a spectrogram drum beats. Compo-
nent 1: kick drum. Component 2: snare drum. Top right:
X. Left: A. Bottom: S.

3. PROPOSED METHOD: MULTIRESOLUTION
GAMMA FILTERBANK

The multiresolution gamma filterbank is a collection of
gamma filters. For this work, we define the gamma ker-
nel to be

g(t;n, b) = αtn−1e−btu(t) (1)

where b > 0, n ≥ 1, u(t) is the unit step function, and

α =

√
(2b)2n−1

Γ(2n− 1)
(2)

ensures that
∫
|g(t;n, b)|2dt = 1 for any value of n and

b, where Γ(n) is the Gamma function. Let I be the total
number of gamma filters in the filterbank. For each i ∈
{1, ..., I}, define the correlation kernel (i.e., time-reversed
impulse response) of each gamma filter to be

gi(t) = g(t;ni, bi). (3)

The set of kernels {g1, g2, ..., gI} defines the multiresolu-
tion gamma filterbank. Fig. 4 illustrates some example
kernels of the filterbank.

For each i, let the filter output be the cross-correlation
between the input atom, s(t), and the kernel, gi(t):

yi(τ) =
∫ ∞
−∞

s(t)gi(t− τ)dt (4)

The set of outputs {y1, y2, ..., yI} from the filterbank is
called the multiresolution gamma filterbank response (MGFR).

The gamma filter has convenient temporal properties.
We define the attack time of the kernel g(t) to be the time
elapsed until the kernel achieves its maximum. By differ-
entiating log g(t), we determine the attack time to be

ta = (n− 1)/b seconds. (5)

Fig. 4 illustrates the relationship between the attack time
and the parameter b. Also, as t becomes large, log g(t) ≈
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Figure 4. Kernels of gamma filters. The dashed vertical
line indicates the location of the maxima. Left column:
n = 2. Right column: n = 4.

−bt plus a constant. Therefore, b is the decay parameter of
g(t), where we define the decay rate of g(t) to be

rd = 20b log10 e ≈ 8.7b dB per second. (6)

Together, these two temporal properties imply that a gamma
kernel with any attack time and decay rate can be created
from the proper combination of n and b.

Fig. 5 illustrates the operation of the multiresolution
gamma filterbank. When a temporal NMF atom is sent
through the multiresolution gamma filterbank, the MGFR
reveals the strength of the attacks and decays of the atom’s
envelope for different values for n and b. Observe how the
filterbank response is largest for those filters whose attack
time matches that of the input atom.

The multiresolution gamma filterbank behaves like a set
of STRFs. Both systems perform multiresolution analy-
sis on the input data. Each STRF passes a different spec-
trotemporal pattern depending upon the rate and scale. In
fact, the seed function used to determine the rate of an
STRF is a gammatone kernel – a sinusoid whose envelope
is a gamma kernel. By altering the parameters of the gam-
matone kernel, STRFs can select different rates. Similarly,
in the multiresolution gamma filterbank, each filter passes
different envelope shapes depending upon the parameters
n and b which completely characterize the attack and de-
cay of the envelope. Intuitively, the filter with kernel gi(t)
passes envelopes with attack times equal to (ni − 1)/bi
seconds and envelopes with decay rates equal to 8.7bi dB
per second.

4. PROPOSED FEATURE EXTRACTION AND
CLASSIFICATION

To extract a shift-invariant feature from the MGFR, we
compute the norm for each filter response:

zi =
(∫ ∞
−∞
|yi(t)|pdt

)1/p

(7)
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Figure 5. Top: MGFR as a function of time for n = 2.
Bottom: input atom containing two pulses with attack
times of 160 ms.

The vector z = [z1, z2, ..., zI ] is the extracted feature vec-
tor. To eliminate scaling ambiguities among the input atoms,
every feature vector z is normalized to have unit Euclidean
norm. Different choices of p provide different interpreta-
tions of z. For this work, we use p = ∞. Our future work
will include an investigation into the impact of p on classi-
fication performance.

The proposed feature extraction algorithm is summa-
rized below.

1. Perform NMF on the magnitude spectrogram, X, to
obtain A and S.

2. Initialize the multiresolution gamma filterbank in (3).

3. For each temporal atom (i.e., row of S), compute the
MGFR in (4).

4. Compute the feature vector z in (7).

Finally, we formulate the instrument recognition prob-
lem as a typical supervised classification problem: given
a set of training features extracted from signals of known
musical instruments, identify all of the instruments present
in a test signal. To perform supervised classification, tem-
poral atoms are extracted from training signals of known
musical instruments using NMF. The feature vector z com-
puted from the atom plus its instrument label are used for
training. To predict the label of an unknown sample, z is
extracted from the unknown sample and classified using
the trained model.

An advantage of the proposed feature extraction and
classification procedure is its simplicity. The proposed sys-
tem requires no rule-based preprocessing. Unlike other
systems that contain safeguards, thresholds, and hierarchies,
the proposed system uses straightforward filtering and a
flat classifier. As the next section shows, this simple pro-
cedure can achieve state-of-the-art accuracy for instrument
recognition.

n b ta n b ta

1.2 0.200 1.000 1.5 0.500 1.000
1.2 0.250 0.800 1.5 0.625 0.800
1.2 0.333 0.600 1.5 0.833 0.600
1.2 0.500 0.400 1.5 1.25 0.400
1.2 1.00 0.200 1.5 2.50 0.200
1.2 2.00 0.100 1.5 5.00 0.100
1.2 4.00 0.050 1.5 10.0 0.050
1.2 10.0 0.020 1.5 25.0 0.020
2.0 1.00 1.000 3.0 2.00 1.000
2.0 1.25 0.800 3.0 2.50 0.800
2.0 1.67 0.600 3.0 3.33 0.600
2.0 2.50 0.400 3.0 5.00 0.400
2.0 5.00 0.200 3.0 10.0 0.200
2.0 10.0 0.100 3.0 20.0 0.100
2.0 20.0 0.050 3.0 40.0 0.050
2.0 50.0 0.020 3.0 100 0.020

Table 1. Gamma filterbank parameters used in the follow-
ing experiments.

5. EXPERIMENTS

We perform experiments on an extensive set of isolated
sounds. The data set for these experiments combines sam-
ples from the University of Iowa database of Musical In-
strument Samples [4], McGill University Master Samples
[14], the OLPC Samples Collection [13], and the Freesound
Project [12]. All of these samples consist of isolated sounds
generated by real musical instruments. We have parsed the
audio files such that each file consists of a single musical
note (for harmonic sounds) or beat (for percussive sounds).

From each input signal, x(t), we obtain the magnitude
spectrogram, X, via STFT using frames of length 46.4 ms
(i.e., 2048/44100) windowed using a Hamming window
and a hop size of 10.0 ms. Then, we perform NMF using
the Kullback-Leibler update rules [9] with an inner dimen-
sion of K = 1 to obtain A and S. When applicable, we
use a multiresolution gamma filterbank of thirty-two filters
with the parameters shown in Table 1. These attack times
and decay rates cover a wide range of sounds produced by
common musical instruments. Each 32-dimensional fea-
ture vector, z, is then classified.

For supervised classification, we use the LIBSVM im-
plementation [1] of the support vector machine (SVM) with
the radial basis kernel. For multiple classes, LIBSVM uses
the one-versus-one classification strategy by default. The
remaining programs and simulations were written entirely
in Python using the SciPy package [8]. Source code is
available upon request.

In total, there are 3907 feature vectors collected among
twenty-four instrument classes. Table 2 summarizes this
data set. With few exceptions [3], this selection of instru-
ments is more comprehensive than any existing work on
isolated instrument recognition. Recognition accuracy for
class c is defined to be the percentage of the feature vec-
tors whose true class is c that are correctly classified by the
SVM as belonging in class c. Overall recognition accuracy
is the average of the accuracy rates for each class.
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Instrument # S T ST
Bassoon 131 99.2 75.6 96.9
Clarinet 145 80.7 73.1 86.2
Flute 236 84.7 60.6 89.0
Oboe 118 72.0 77.1 91.5
Saxophone 196 93.4 65.8 86.7
Horn 92 80.4 62.0 85.9
Trombone 99 93.9 53.5 89.9
Trumpet 236 97.5 82.2 97.9
Tuba 111 98.2 75.7 99.1
Cello 349 94.8 89.7 97.4
Viola 309 94.2 67.6 90.9
Violin 390 97.2 86.2 96.2
Cello Pizz. 321 98.1 87.5 98.4
Viola Pizz. 254 99.6 81.9 99.6
Violin Pizz. 315 97.5 85.4 99.0
Glockensp. 10 100.0 90.0 100.0
Guitar 27 51.9 29.6 63.0
Marimba 39 46.2 25.6 79.5
Piano 260 95.0 89.2 98.5
Xylophone 13 61.5 53.8 84.6
Kick 90 98.9 95.6 100.0
Snare 86 96.5 88.4 98.8
Timpani 47 85.1 61.7 87.2
Toms 33 100.0 90.9 100.0
Total 3907 88.2 72.9 92.3

Table 2. Sample sizes and accuracy rates. S: spectral in-
formation. T: temporal information. ST: spectral plus tem-
poral information.

5.1 Spectral Information

As a control experiment, we evaluate the classification abil-
ity of spectral features using MFCCs. From each column
of A, we extract 32 MFCCs with center frequencies log-
arithmically spaced over 5.3 octaves between 110 Hz and
3951 Hz. From the 3907 32-dimensional feature vectors,
we evaluate classification performance through ten-fold cross
validation.

Fig. 6 illustrates the confusion matrix for this experi-
ment, and Table 2 shows the accuracy rates for each class.
The average of the 24 accuracy rates is 88.2%. We no-
tice some understandable misclassifications. For example,
18.5% of guitar samples are misclassified as cello pizzi-
cato and 14.8% are misclassified as piano. 5.5% of clarinet
samples and 13.6% of oboe samples are misclassified as
flute. 10.3% of marimba samples are misclassified as xy-
lophone. In general, these spectral features can accurately
classify the drums, brass, and string instruments. However,
accuracy is poor among the woodwinds and pitched per-
cussive instruments. Some of these misclassifications are
due to an imbalance in the sample size of each class. De-
spite its ability to improve the average accuracy rate, the
reduction of class imbalance in supervised classification is
beyond the scope of this paper.

5.2 Temporal Information

Next, we evaluate the classification ability of temporal fea-
tures using the proposed feature extraction algorithm with
the parameters shown in Table 1. One feature vector z
is computed for each temporal NMF atom as described
in Section 4. Like the previous experiment, we evaluate
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Figure 6. Classification accuracy using spectral informa-
tion. Row labels: True class. Column labels: Estimated
class. Average accuracy: 88.2%.

classification performance through ten-fold cross valida-
tion among the 3907 32-dimensional feature vectors.

Table 2 shows the accuracy rates for each class. The av-
erage accuracy rate is 72.9%. Fig. 7 illustrates the confu-
sion matrix for this experiment. We observe that temporal
features alone do not classify instruments as well as spec-
tral features. Nevertheless, for 11 out of the 24 classes,
accuracy remains above 80%. In particular, there are very
few misclassifications between percussion instruments and
non-percussion instruments. Most misclassifications occur
within instrument families, e.g., cello and viola, bassoon
and clarinet, and guitar and piano.

5.3 Spectral Plus Temporal Information

Finally, we evaluate the classification performance when
concatenating spectral and temporal features. The features
extracted during the previous two experiments are concate-
nated to form 3907 64-dimensional feature vectors. Table
2 shows the accuracy rates, and Fig. 8 illustrates the con-
fusion matrix. The total accuracy rate is 92.3%. Temporal
information improves classification accuracy for 16 of the
24 instrument classes along with the overall accuracy. Ac-
curacy improves most for the string pizzicato, percussion,
brass, and certain woodwind instruments. The remaining
misclassifications occur mostly within families, e.g., clar-
inet and flute, and guitar and piano. For isolated sounds,
this experiment verifies the hypothesis that temporal infor-
mation can improve instrument recognition accuracy over
methods that use only spectral information.

6. CONCLUSION

From the experiments, we conclude that a combination of
spectral and temporal information can improve upon those
instrument recognition systems that only use spectral in-
formation. The proposed method extracts temporal infor-
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Figure 7. Classification accuracy using temporal informa-
tion. Row labels: True class. Column labels: Estimated
class. Average accuracy: 72.9%.

mation using a multiresolution gamma filterbank which
parameterizes each temporal dictionary atom by its most
prominent attack times and decay rates. Like the cortical
representation, the spectral and temporal dictionary atoms
generated by NMF provide a complete timbral representa-
tion of musical sounds. However, unlike the cortical rep-
resentation, each of these dictionary atoms typically rep-
resent an individual musical note, thus facilitating music
instrument recognition further.

We have already begun an investigation of the proposed
method for both solo melodic excerpts and polyphonic mix-
tures. Also, because the proposed method classifies each
individual NMF atom by instrument, we are investigating
the use of the proposed method for source separation by
grouping, emphasizing, or removing atoms that correspond
to chosen instruments.
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