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ABSTRACT

The appeal of music lies in its ability to express emotions,
and it is natural for us to organize music in terms of emo-
tional associations. But the ambiguities of emotions make
the determination of a single, unequivocal response label
for the mood of a piece of music unrealistic. We address
this lack of specificity by modeling human response labels
to music in the arousal-valence (A-V) representation of af-
fect as a stochastic distribution. Based upon our collected
data, we present and evaluate methods using multiple sets
of acoustic features to estimate these mood distributions
parametrically using multivariate regression. Furthermore,
since the emotional content of music often varies within a
song, we explore the estimation of these A-V distributions
in a time-varying context, demonstrating the ability of our
system to track changes on a short-time basis.

1. INTRODUCTION

The problem of automated recognition of emotional con-
tent (mood) within music is the subject of increasing atten-
tion among music information retrieval (MIR) researchers
[1-3]. Human judgements are necessary for deriving emo-
tion labels and associations, but perceptions of the emo-
tional content of a given song or musical excerpt are bound
to vary and reflect some degree of disagreement between
listeners. In developing computational systems for recog-
nizing musical affect, this lack of specificity presents sig-
nificant challenges for the traditional approach of using su-
pervised machine learning systems for classification. In-
stead of viewing musical mood as a singular label or value,
the modeling of emotional “ground-truth” as a probability
distribution potentially provides a more realistic (and ac-
curate) reflection of the perceived emotions conveyed by a
song.

A variety of methods are used for collecting mood-
specific labels for music corpora, for example, annotations
curated by experts (e.g., Allmusic.com) and the analysis
of unstructured user-generated tags (e.g., Last.fm). While
these approaches efficiently provide data for large collec-
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tions, they are not well-suited for reflecting variations in
the emotional content as the music changes. In prior work
we created MoodSwings [4], an online collaborative activ-
ity designed to collect second-by-second labels of music
using the two-dimensional, arousal-valence (A-V) model
of human emotion, where valence indicates positive vs.
negative emotions and arousal reflects emotional intensity
[5]. The game was designed specifically to capture A-V
labels dynamically (over time) to reflect emotion changes
in synchrony with music and also to collect a distribution
of labels across multiple players for a given song or even
a moment within a song. This method potentially pro-
vides quantitative labels that are well-suited to computa-
tional methods for parameter estimation.

In previous work we have investigated short-time re-
gression approaches for emotional modeling, developing
a functional mapping from a large number of acoustic fea-
tures directly to A-V space coordinates [1]. Since the ap-
plication of a single, unvarying mood label across an entire
song belies the time-varying nature of music, we focused
on using short-time segments to track emotional changes
over time. In our current work we demonstrate that not
only does the emotional content change over time, but also
that a distribution of (as opposed to singular) ratings is
appropriate for even short time slices (down to one sec-
ond). In observing the collected data, we have found that
most examples can be well represented by a single two-
dimensional Gaussian distribution.

To perform the mapping from acoustic features to the A-
V mood space, we explore parameter prediction using mul-
tiple linear regression (MLR), partial least-squares (PLS)
regression, and support vector regression (SVR). In mod-
eling the data as a two dimensional Gaussian, our goal is to
be able to predict the A-V distribution parameters N (u, )
from the acoustic content. We first evaluate the effective-
ness of this system in predicting emotion distributions for
15 second clips and subsequently shorten the analysis win-
dow length to demonstrate its ability to follow changes in
A-V label distributions over time.

No dominant acoustic feature has yet emerged for mu-
sic emotion recognition, and previous work has focused
on combining multiple feature sets [1-3, 6]. We evalu-
ate multiple sets of acoustic features for each task, in-
cluding psychoacoustic (mel-cepstrum and statistical fre-
quency spectrum descriptors) and music-theoretic (esti-
mated pitch chroma) representations of the labeled audio.
Although the large number of potential features can present
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problems, rather than employing dimensionality reduction
methods (e.g., principal components analysis) we explore
an alternative method for combining different feature sets,
using ensemble methods to determine the relative contri-
bution of single-feature systems for improved overall per-
formance.

2. BACKGROUND

The general approach to implementing automatic mood de-
tection from audio has been to use supervised machine
learning to train statistical models based on acoustic fea-
tures. Recent work has also indicated that regression ap-
proaches often outperform classification when using simi-
lar features [1,2].

Yang et al. introduced the use of regression for map-
ping of high-dimensional acoustic features into the two-
dimensional space [6]. Support vector regression (SVR),
as well as a variety of boosting algorithms including Ad-
aBoost.RT, were applied to solve the regression problem.
The ground-truth A-V labels were collected by recruiting
253 college students to annotate the data, and only one la-
bel was collected per clip. Compiling a wide corpus of
features totaling 114 feature dimensions, they applied prin-
cipal component analysis (PCA) before regression.

Further confirming the robustness of regression for A-V
emotion prediction, Han et al. demonstrated that regres-
sion approaches can outperform classification when ap-
plied to the same problem [2]. Their classification task
consisted of a quantized version of the A-V space into 11
blocks. Using a wide variety of audio features, they ini-
tially investigated the use of classification, obtaining only
~33%. Still mapping to the same 11 quantized categories,
applying regression they obtained up to ~95% accuracy.

Eerola et al. introduced the use of a three-dimensional
parametric emotion model for labeling music [3]. In their
work they investigated multiple regression approaches in-
cluding Partial Least-Squares (PLS) regression, an ap-
proach that considers correlation between label dimen-
sions. They achieve R? performance of 0.72, 0.85, and
0.79 for valence, activity, and tension, respectively, using
PLS and also report peak R? prediction rates for 5 basic
emotion classes (angry, scary, happy, sad, and tender) as
ranging from 0.58 to 0.74.

3. GROUND TRUTH DATA COLLECTION

Traditional methods for collecting perceived mood labels,
such as the soliciting and hiring of human subjects, can be
flawed. In MoodSwings, participants use a graphical inter-
face to indicate a dynamic position within the A-V space to
annotate five 30-second music clips. Each subject provides
a check against the other, reducing the probability of non-
sense labels. The song clips used are drawn from the “us-
pop2002” database,' and overall we have collected over
150,000 individual A-V labels spanning more than 1,000
songs.

! uspop2002 dataset: http://labrosa.ee.columbia.edu/projects/musicsim/
uspop2002.html
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Since the database consists entirely of popular music,
the labels collected thus far display an expected bias to-
wards high-valence and high-arousal values. Although in-
clusion of this bias could be useful for optimizing classifi-
cation performance, it is not as helpful for learning a map-
ping from acoustic features that provides coverage of the
entire emotion space. Because of this trend, we developed
areduced dataset consisting of 15-second music clips from
240 songs, selected using the original label set, to approxi-
mate an even distribution across the four primary quadrants
of the A-V space. These clips were subjected to intense fo-
cus within the game in order to form a corpus referred to
here as MoodSwings Lite, with significantly more labels
per song clip, which is used in this analysis.

4. ACOUSTIC FEATURE COLLECTION

As previously stated, there is no single dominant feature,
but rather many that play a role (e.g., loudness, timbre,
harmony) in determining the emotional content of music.
Since our experiments focus on the tracking of emotion
over time, we chose to focus on solely on time-varying
features. Our collection (Table 1) contains many features
that are popular in Music-IR and speech processing, en-
compassing both psychoacoustic and music-theoretic rep-
resentations. Instead of raw chroma we utilize the auto-
correlation of each short-time chroma vector, providing
a shift-invariant feature. In preliminary experiments we
found this feature to perform better than raw chroma, since
it promotes similarity in terms of the modes of harmony
(e.g. major, minor, augmented, and diminished chords) as
opposed to particular chords (e.g., A major vs. D major).

Feature | Description

Mel-frequency
cepstral coefficients
(MFCCs) [7]

Chroma (i.e., Pitch
Class Profile) [8]

Spectral Spectrum | Includes spectral centroid, flux,
Descriptors (SSDs) | rolloff, and flatness. Often related to
[9] timbral texture.

Low-dimensional representation of
the spectrum warped according to the
mel-scale. 20-dimensions used.

Autocorrelation of chroma is used,
providing an indication of modality.

Spectral Contrast Rough representation of the harmonic
[10] content in the frequency domain.

Table 1. Acoustic feature collection for music emotion
regression.

5. EXPERIMENTS AND RESULTS

Given the continuous nature of our problem, the predic-
tion of a 2-d Gaussian within the A-V space, we explored
several methods for multi-variate parameter regression. In
these experiments we employ multiple linear regression
(MLR), partial least-squares (PLS), and support vector re-
gression (SVR) to create optimal projections from each of
the acoustic feature sets described above. For our initial
distribution regression experiments, we averaged feature
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Feature/ Regression  Average Mean Average KL Average Randomized  T-test
Topology Method Distance Divergence KL Divergence

MEFCC MLR 0.161 £ 0.008 4.098 £0.513 8.516 £+ 1.566 5.306
Chroma MLR 0.185 £ 0.010 5.617 £ 0.707 7.765 £ 2.135 5.659
S. Shape MLR 0.167 £ 0.009 4.183 £ 0.656 7.691 £1.573 5.582
S. Contrast MLR 0.151 +£0.008 3.696 £ 0.657 8.601 +1.467 5.192
MFCC PLS 0.155 £ 0.008  3.863 £ 0.56712 8.306 + 1.389 5.540
Chroma PLS 0.183 £0.010  5.286 £+ 0.96019 7.146 £ 1.665 5.565
S. Shape PLS 0.151 £0.008  3.770 £ 0.84026 8.278 +£1.527 4.951
S. Contrast PLS 0.151 +£0.008 3.684 +0.644 8.700 £ 1.831 5.171
MFCC SVR 0.140 +£0.008 3.186 £ 0.597 7.744 £1.252 5.176
Chroma SVR 0.186 £ 0.008 4.831 £0.737 6.466 £+ 0.935 5.655
S. Shape SVR 0.176 £ 0.008 4.611 £0.841 7.348 £1.025 5.251
S. Contrast SVR 0.150 £ 0.008 3.357 £ 0.500 7.356 + 1.341 5.301
Stacked Features MLR 0.152 £ 0.007 3.917 £ 0.496 9.355 £ 1.879 5.737
Fusion Unweighted MLR 0.149 £ 0.007 3.333 £0.433 6.785 £ 0.996 5.879
Fusion Weighted MLR 0.147 £ 0.007 3.280 £ 0.423 6.803 £ 1.309 5.980
M.L. Seperate MLR 0.147 £ 0.007 3.399 £0.478 8.235 £ 1.598 5.598
M.L. Combined MLR 0.145+0.007 3.198 £0.454 7.637 +£1.389 5.551
Stacked Features PLS 0.145 £ 0.006 3.403 £ 0.467 8.407 £1.635 5.543
Fusion Unweighted PLS 0.145 £ 0.007 3.332 £ 0.508 7.123 +£1.461 5.681
Fusion Weighted PLS 0.145 £ 0.006 3.309 £ 0.501 7.160 £1.373 5.619
M.L. Seperate PLS 0.145 £ 0.008 3.465 £ 0.577 8.426 £1.705 5.433
M.L. Combined PLS 0.144 +0.007 3.206 £ 0.515 7.889 +1.656 5.485

Table 2. Distribution regression results for fifteen second clips.

dimensions across all frames of a given 15-second mu-
sic clip, thus representing each clip with a single vector
of features. Preliminary experiments were performed us-
ing second- and higher-order statistics with the 15-second
clips, but in all cases the inclusions of such data failed to
show any significant performance gains.

In all experiments, to avoid the well-known ‘“album-
effect”, we ensured that any songs that were recorded on
the same album were either placed entirely in the training
or testing set. Additionally, each experiment was subject to
over 50 cross-validations, varying the distribution of train-
ing and testing data sets.

5.1 Single Feature Emotion Distribution Prediction

There are many possible methods for evaluating the perfor-
mance of our system. Kullback-Liebler (KL) divergence
(relative entropy) is commonly used to compare proba-
bility distributions. Since the regression problem targets
known distributions, our primary performance metric is the
non-symmetrized (one-way) KL divergence (from the pro-
jected distribution to that of the collected A-V labels). To
provide an additional qualitative metric, we also provide
results as the Euclidean distance between the projected
means as a normalized percentage of the A-V space. How-
ever, to provide context to KL values and to benchmark the
significance of the regression results, we compared the pro-
jections to those of an essentially random baseline. Given a
trained regressor and a set of labeled testing examples, we
first determined an A-V distribution for each sample. The
resulting KL divergence to the corresponding A-V distri-
bution was compared to that of another randomly selected
A-V distribution from the test set. Comparing these cases
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over 50 cross-validations, we computed Student’s T-test for
paired samples to verify the statistical significance of our
results.

From Table 2 it can be seen that the best performing
single feature system is SVR with MFCC features at an
average KL of 3.186. However, in both the MLR and PLS
system the highest performing single feature is spectral
contrast with 3.696 and 3.684, respectively. As the main
advantage of PLS over MLR is that it observes any corre-
lation between dimensions in the multivariate regression,
it is surprising that the performance difference between
the two is nearly negligible. Given our degrees of free-
dom (72 test samples), even our lowest T-test value (5.171)
produces confidence of statistical significance greater than
99.999%.

Shown in Figure 1 is the projection of six 15-second
clips into the (A-V) space resulting from multiple regres-
sion methods and acoustic features. The standard deviation
of the ground truth as well as each projection is shown as
an ellipse. The performance of the regression can be eval-
uated in terms of the total amount of overlap between a
projection and its ground truth.

5.2 Feature Fusion

While most individual features perform reasonably in map-
ping to A-V coordinates, a method for combining in-
formation from these domains (more informed than sim-
ply concatenating the features) could potentially lead to
higher performance. In this section we investigate mul-
tiple schemes for feature fusion. Given the very small per-
formance gains and high computational overhead of SVR,
we chose to narrow our focus to MLR and PLS for these
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Emotion Distribution Projected From Acoustic Features
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Figure 1. Collected A-V labels and distribution projections resulting from regression analysis. A-V labels: second-by-
second labels per song (gray e), X of collected labels (solid red ellipse), > of MLR projection from spectral contrast features
(dash-dot blue ellipse), ¥ of MLR Multi-Level combined projection (dashed green ellipse).

experiments. As our ultimate system will require many
predictions over time in order to reflect emotional changes,
the costs of SVR outweigh the benefits.

In our fusion results the performance for simply stack-
ing features into one large feature vector is provided to give
context to the other fusion methods. Our more simple ap-
proach consists of a fusion system that is a combination of
the outputs from the individual feature regression systems.
In the unweighted approach we simply average the param-
eter outputs from each individual feature regressor, and in
the weighted approach we weight each individual feature
regressor by its ability to predict a particular parameter,
which is determined by leave-one-out cross-validation.

In addition, we develop a two-level regression scheme
by feeding the outputs of individual regressors, each
trained using distinct features, into a second-stage regres-
sor determining the final prediction. We investigated two
topologies (Figure 2): in one case the secondary arousal
and valence regressors receive only arousal and valence
estimates, respectively; in the second case the secondary
arousal and valence regressors receive both arousal and va-
lence estimates from the first-stage. We refer to these two
topologies as multi-layer separate and multi-layer com-
bined. In all cases the secondary regressors are trained
using a leave-one-out method (on each iteration we train
the first-stage regressors leaving one example out and use
the estimates of that example from the first stage to train
the second stage). The results for both cases are shown in
Table 2.

468

. M4
M | "separme [
— MFCC
MFCCs Regressor
2 o)
Q (@] Parameterized
Q (@) Emotion
Q Distribution
M4
Contrast
Spectral Regressor Multi-Layer 21
Contrast > 1 Se ara)t/e
Feature Layer P
Regressors
i Q
Multi-Layer Separate e}
O
Second Layer
Regressors
R MFCC H
MFCCs Regressor
= v,
o Multi-Layer Parameterized
o Combined Emotion
Q ! —— Distribution
H z
Contrast —
Spectral | Regressor ;Zz;?esszrser
Contrast >

Feature Layer
Regressors

Multi-Layer Combined

Figure 2. Multi-layer regression topologies.
5.3 Time-varying emotion distribution prediction

In attempting to predict the emotion distribution over time,
we next shorten label observation rate to once per-second
and attempt to regress multiple feature windows from each
song. For the ground truth data collection this means that
for each 15-second clip we now have 15 examples, increas-
ing our total corpus to 3600 examples. Of course for any
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Feature/ Average Mean Average KL Average Randomized  T-test
Topology Distance Divergence KL Divergence

MFCC 0.169 £ 0.007 14.61 £ 3.751 27.00 £ 10.33 10.77
Chroma 0.190 £ 0.007 18.71 £ 6.819 22.53 £6.984 9.403
S. Shape 0.173 £ 0.007 15.46 £+ 6.402 24.61 £9.220 11.06
S. Contrast 0.160 +£0.006 13.61 +5.007 27.29 £ 9.861 10.23
M.L. Combined 0.154 +0.006 13.10+ 5.359 28.39 £10.35 10.08

Table 3. Distribution regression results for short-time (one-second) A-V labels.

experiment, multiple examples from the same song must
be either all in the training or testing set. In addition, as
it is clear that some past data may be necessary to accu-
rately determine the current emotional content, we include
past features and investigate the optimal feature window
length.

Given the similar performance of MLR and PLS in fu-
sion methods, for our short time analysis we will restrict
ourselves to only the MLR methods. The similarity in
performance is likely due to the fact that in the multi-
layer combined system, both MLR and PLS are able to
account for the correlation between label dimensions. In
moving forward with time-varying regression, we wish
to be able to apply all methods in real-time as a “vir-
tual annotator” for MoodSwings. This directly addresses
the bootstrapping problem inherent to the system in cases
where multiple annotators are not available at the same
time. A preliminary single-user version of MoodSwings
called MoodSwings Single Player,?> which demonstrates
our real-time regression system, is available online.
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Figure 3. Window length analysis for different acoustic
features.

For our time-varying approach, we seek to develop re-
gressors that can predict the emotion for a single second
using only current and past audio data. In terms of our data
collection this implies that we have 15 distributions for
each 15-second music clip (for 240 clips this yields a to-
tal of 3600 distributions). But we should also consider the
optimal analysis window length for regression from each
acoustic feature set. In Figure 3 we perform a regression
analysis for each window length from 1 to 45 seconds (in
increments of one second) and plot the average KL diver-

2 MoodSwings Single Player: http:/music.ece.drexel.edu/mssp
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gence from the projections to the collected distributions.
As in previous experiments, the training/testing data is split
70%/30% and cross-validated 50 times. From the window
length analysis in Figure 3, it can be seen that the optimal
window length is not the same for all feature domains. For
MFCCs we obtain the most accurate prediction using 13
seconds of past feature data, also 13 seconds for SSDs, 15
for spectral contrast, and 41 seconds for chroma. We use
these feature window lengths in the regression analysis to
follow.

In moving to short-time labels, it can be seen from Table
3 that our overall KL has increased, but our average dis-
tance ratings have mostly remained the same. This is most
likely attributed to the fact that the underlying label covari-
ance is less consistent due to the smaller quantity of col-
lected A-V labels. Out T-test values have increased as well,
which can be attributed to the overall increase in examples
(from 240 to 3600). Considering our short-time degrees
of freedom (1080 testing examples), our lowest T value
(9.403) produces confidence of statistical significance (vs.
randomly selected projections) higher than 99.999%. To
visualize emotion regression over time, we have chosen
three clips which display a clear shift in emotion distribu-
tion, plotting both the collected and projected distributions
at one second intervals (Figure 4).

6. DISCUSSION AND FUTURE WORK

In working with highly subjective emotional labels, where
there is not necessarily a singular rating for even the small-
est time slice, it is clear that we can develop a more ac-
curate system (in terms of predicting actual human labels)
by representing the ground truth as a distribution. While
accounting for potential dependence between the distribu-
tion parameters in the A-V emotion space seemed to be of
high importance, some of the best performing techniques
assumed total independence of parameters. In particular,
combining MLR in multiple stages produces results com-
parable to more computationally complex methods.

One of our targeted applications, a “virtual annotator”
to be used in MoodSwings, requires real-time calculation
of projections, which also favors the simpler regression im-
plementations. For the activity, the required degree of ac-
curacy is questionable to begin with [11]. In our observa-
tions, we have found that it is more important for a virtual
annotator to behave “realistically” (appropriate movement
when the emotion changes) in order to keep a human par-
ticipant engaged in the activity. But as we implement the



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Emotion Distribution Prediction Over Time
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virtual annotator to facilitate the collection of more human
data, we hope to continue increasing the accuracy of our
regression system.
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