
AMUSE (ADVANCED MUSIC EXPLORER) - A MULTITOOL
FRAMEWORK FOR MUSIC DATA ANALYSIS

Igor Vatolkin
Chair of Algorithm Engineering,

TU Dortmund
igor.vatolkin@udo.edu

Wolfgang Theimer
Research in Motion, Bochum
wolfgang.theimer@ieee.org

Martin Botteck
martin.botteck@ieee.org

ABSTRACT

A large variety of research tools is available now for mu-
sic information retrieval tasks. In this paper we present a
further framework which aims to facilitate the interaction
between these applications. Since the available tools are
very different in target domain, range of available meth-
ods, learning efforts, installation and runtime characteris-
tics etc., it is not easy to find software which is optimal
for certain research goals. Another problematic issue is
that many incompatible data formats exist, so it is not al-
ways possible to use output from one tool just as input for
another one. At first we describe some of the available
projects and outline our motivation starting the develop-
ment of AMUSE framework for audio data analysis. Re-
quirements and application purposes are given. The struc-
ture of our framework is introduced in detail and the in-
formation for efficient application is provided. Finally we
discuss several ideas for further work.

1. INTRODUCTION AND MOTIVATION FOR A
NEW FRAMEWORK

During the recent years more and more scientific tools for
music information retrieval and related research areas have
been developed. To name just a few, Marsyas is one of
the oldest available MIR projects for different analysis and
synthesis tasks [12]. jMIR tools refer to different applica-
tions from feature extraction to data mining methods [7].
MusicMiner established new navigation techniques for lar-
ge music collections based on self-organized maps and three-
dimensional landscapes [9]. MIR Toolbox includes a large
number of different adjustable Matlab functions for extrac-
tion of features from time signal characteristics to com-
plex harmony and major/minor key descriptors [4]. The
Chroma Toolbox provides advanced features related to chro-
ma and pitch [10]. RapidMiner is aimed to solve a wide
range of different data mining tasks (not only for music
and audio classification domain) and supports numerous
methods [8].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

The motivation to start our own project developing a
new software framework arose after the discussion and def-
inition of several promising MIR applications and in-depth
comparison of different above mentioned and further tools.
Typically each existing tool has several main focus points
as well as certain application advantages and disadvan-
tages. Therefore the choice of software to use depends
strongly on the defined scenario. Possible three exam-
ples could be: If the researcher develops own classification
methods, it may be interesting for her/him to gather many
available audio features from the corresponding tools. If
the aim is to run advanced low-level signal analysis and
create the features by himself, the researcher would create
this code and use some ready products, e.g. WEKA tool-
box [13] for the revision, how well the novel features are
suited for audio classification. The last example is that for
different reasons multi-objective evaluation of algorithmic
chain can be significant. Here the focus point is to col-
lect different metrics (confusion matrix-based measures,
runtime and disc space demands etc.) and to run multi-
objective optimization algorithms searching for the best
tradeoff between several solutions.

Another aspect is that many tools which are very help-
ful for MIR research are either too specific and concentrate
on limited audio retrieval domains, e.g. Chroma Toolbox
(so we may need several of them!) or are on the other side
too powerful and generic (e.g. RapidMiner) and it is not
easy to create the appropriate solution. The input and out-
put data formats differ from tool to tool and even the sup-
port of the WEKA ARFF format does not mean, that the
written attributes are the same. Therefore it made sense
for us to develop a multi-tool framework, which provides
own data interchange formats and own evaluation methods.
The integration of further tools and also the extension of
methods with own code belonged to requirements. Further
consideration was that some fields had been underrepre-
sented in many available tools and it was important for us
to emphasize them as independent tasks in music retrieval
chain: feature processing is an intermediate step between
the extracted raw features and ready classifier input. The
way how the labeled vector is built from the frame-based
signal features for training of classification models can be
very different and has a strong impact on classification re-
sult quality. Another issue is the inclusion of optimization
methods, e.g. heuristics, to search for the best parametriza-
tion of the algorithm chain, for example the estimation of

33

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



satisfactory time frame size or pruning of feature set.
The current version of AMUSE made possible to run

different large experiment studies including feature extrac-
tion from several tools, processing with many methods,
classification for user-defined music categories and also
optimization of some parameters [3, 14, 15].

2. FRAMEWORK STRUCTURE

2.1 Background, Requirements and Functionality

AMUSE (Advanced MUSic Explorer) is a GPL-licensed
framework implemented in Java 1 . Therefore the main com-
ponent can be run on any operating system which supports
the Java Runtime Environment. The integrated tools have
no usage restrictions with regard to their source codes. If
they are not available as Java libraries, executable versions
must be provided. In that case it may certainly lead to the
dependence on the running operating system.

The AMUSE core provides different functionalities. With
own sound processing methods mp3s can be converted to
waves. Downsampling and stereo to mono conversion meth-
ods are included as well. It is possible to split automaticly
the wave files (we had experiences that very long songs
supplied to some tools led to memory problems or unac-
ceptable running time). Scalability is supported either us-
ing multi-threading on one machine or providing the tasks
to grid systems like Sun Grid Engine or LSF Batch. Ef-
ficient data set management which directly supports the
WEKA ARFF format (well-established for various data
mining tasks) and a logger component are integrated.

Several user interfaces are available: Definition and ap-
plication of tasks can be easily done within a graphical user
interface, see Figure 5 for screenshots. In command-line
mode AMUSE runs one or more tasks from given configu-
ration files. In loop mode AMUSE is pre-loaded in mem-
ory and waits for new tasks by scanning for corresponding
configuration files in a task folder.

Project packages are organized in the way so that the
core and extendable components are strictly separated. In-
tegration of external tools requires writing of adapter classes
which take care of input / output conversion and start these
tools as library or by system call. AMUSE plugins allow
to create such integrations without changes on the main
project and be easily installed and deinstalled.

2.2 Music Retrieval Chain and Integrated Methods

We distinguish between subtasks in a MIR chain. Figure 1
gives a complete overview. The rectangles correspond to
AMUSE tasks which are run by the related node compo-
nent. Each task can adhere to the larger number of AMUSE
jobs which can be calculated on several processing units -
e.g. a feature extraction task for a hundred music files can
be distributed to several machines as one hundred jobs.

2.2.1 Feature Extraction

Feature extraction provides low-level or high-level numer-
ical descriptors from the audio signal. It can be a com-

1 http://amuse-framework.sourceforge.net

plete task (melody extraction) or a part of a longer chain,
where audio files are categorized using the extracted fea-
tures. AMUSE provides a generic mechanism to select the
features which must be extracted by external tools. For
each tool a so called base script must exist which allows
to extract all supported features. After the AMUSE extrac-
tion task is loaded into memory, some parts of these base
scripts are omitted, if the corresponding transforms or fea-
tures should not be extracted this time.

2.2.2 Feature Processing

Feature processing is an intermediate step between raw ex-
tracted features and ready-labeled input for classification.
Starting with a matrix of M features over N time frames at
the beginning, different methods change this matrix. Some
of them extend the dimensionality (e.g. calculating the
derivations for all features) or reduce the dimensionality
(pruning the features or deselecting time frames using spe-
cific information like temporal structure of a song). The
last step is the conversion of the feature matrix to a vec-
tor which can be labeled for supervised classification. This
can be done e.g. by Gaussian, histogram or autoregres-
sive models. Since the source time frames may differ be-
tween features, the matrix is automaticly adjusted using
the smallest existing time frame. For example if the first
feature is calculated from 1024 sample frames and the sec-
ond one from larger windows (number of beats per minute)
and the third from the complete song (music track length),
N will be set to the number of 1024 sample frames in the
complete song. A music track length feature will then have
the same values for all corresponding matrix entries.

2.2.3 Classification and Training

Supervised classification training creates models from given
data and requires the ground truth information. Classifica-
tion applies the previously learned models and computes
the list of relations to the given categories for the provided
music tracks. Unsupervised classification techniques cate-
gorize data without any given information by e.g. cluster-
ing. It is possible to run preprocessing before the classi-
fication, for example removing the outliers. Since Rapid-
Miner [8] and WEKA [13] are also Java-based projects,
they are integrated into AMUSE directly as libraries. It is
also possible to connect to Matlab or R engines starting
further classification methods.

2.2.4 Validation

The classification validator is responsible for evaluation
of classification results. Confusion matrix-based metrics
and error rates are well known and measure the quality
of classification results. Other measures relate to the bal-
ance aspect - if a data set contains too much positive in-
stances, accuracy may be high inspite of the poorly de-
signed algorithm which tends to categorize everything as
positive. Further it is possible to measure correlation be-
tween ground truth and predicted category relationships.
All these metrics can be either calculated on the lower data
level (measuring the classification success for smaller au-
dio intervals as data instances) or on the higher data level

34

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Figure 1. AMUSE task chain.

(evaluating classification averaged for the complete music
tracks). Other metric group (data reduction rate) calculates
the amount of data used for training related to the size of
the original feature matrix.

2.2.5 Optimization

Each of the above mentioned tasks has more or less param-
eters and it is obviously, that it is not a simple task to find
an optimal combination of them. For example the larger
time frames for low-level feature extraction allow a more
precise frequency resolution up to the Nyquist frequency.
But if they are too long, different notes are mixed together
and it becomes harder to learn anything. The optimization
of the music data analysis chain is very rarely supported
by related MIR tools. Indeed many optimization toolboxes
exist (e.g. CILIB [11], SPOT [1] etc.) but the application is
often too generic and must be adapted to the MIR domain.
Therefore the goal of the optimization node is to run meth-
ods searching for optimal parameter settings. Currently
several evolution strategies [2] are directly implemented in
AMUSE and can be used for optimization.

2.3 Database Structure and Data Formats

Information provided by user (ground truth, music tracks)
and the generated output are stored in folders called AMUSE
databases. Most of the data is currently saved as text ARFF
format [13] for several reasons: It is very comprehensible,
is supported by most tools and is much more compact than
XML. However it is an option to support further formats
in future using e.g. MySQL database which requires more
storage place but provides a very fast searching routine.

Music and category folders store the songs provided by
the user and the corresponding ground truth for any related
categories (music genres, information about harmony and
melody etc.). Feature folders save the extracted features,
the folder processed features stores the unlabeled feature

Figure 2. Example ARFF file with extracted features.

vectors for classification. Binary classification models are
placed in the model directory, metric database is used for
evaluation of music data analysis experiments. Optimiza-
tion database contains of optimization logs in search for
optimal parameter settings. Currently AMUSE does not
support any visualization methods, but the data can be eas-
ily read into well-established tools like Gnuplot or Matlab.

An example for a feature file is given in Figure 2. Here
the extended ARFF format is used: AMUSE attributes are
placed as comments after the relation description and store
the information about the data set size, sampling frequency
and time frame size. Since for each feature the correspond-
ing time frame is saved in attribute WindowNumber, it is
simple to detect the time intervals from which the features
have been extracted.

The AMUSE experiments are also saved as ARFFs.

35

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Figure 3. Data flow in AMUSE.

Figure 4. Package structure.

3. DETAILS FOR DEVELOPERS

The data flow during an AMUSE experiment is shortly de-
picted in Figure 3. User starts the main SCHEDULER com-
ponent either from GUI or from the command line. Af-
ter the configuration of the experiment the tasks are com-
pletely described in the corresponding TASKCONFIGURA-
TION objects which are provided to the appropriate TASK-
STARTER component. Here one or more AMUSE jobs are
generated. These jobs are run on the same machine or are
processed to a grid system. During the runtime of a single
AMUSE instance the scheduler counts up the jobs. After
they are ready, the next experiment can be started.

3.1 Package Structure

The most important AMUSE Java packages are shown in
Figure 4. Scheduler and GUI packages interact with user,
the computing of jobs is done in objects which are placed
in nodes package and extend an abstract class NODESCHED-
ULER. Data package handles AMUSE data objects and
ARFF input / output routines. Preferences store different
configuration parameters (database folders, downsampling
rate, path to grid scripts etc.). The util package contains
logger and audio processing methods.

3.2 Guidelines for Tool Integration

Here we give a brief overview for several steps needed to
extend AMUSE with new tools:

• Tool setup: Software which should be integrated into
AMUSE must be tested for execution on the current
operating system. It must be possible to start it either
as Java library or by system call using a previously
configured batch file.

• Writing an adapter class: Here the tool will be started.
The functions which convert input and output data
to AMUSE format must be implemented. If e.g. a
feature extractor program saves the data as XML, it
has to be converted into ARFF format for features as
given in Figure 2.

• Plugin definition: The default way to integrate a new
tool into AMUSE is to create the corresponding plu-
gin. Several plugin installation files (mostly ARFFs)
must describe the changes in AMUSE which will be
applied after the installation. Each feature and each
method used in AMUSE has a unique id number.
The configuration file featureTable.arff lists all cur-
rently available features with given ids. If a new tool
allows the extraction of several new features, this file
must be updated. The same procedure is essential for
further algorithms. There is a list with all available
classification methods, validation metrics, process-
ing and preprocessing algorithms etc.

• Plugin installation and integration should be tested.
After the successful evaluation the job is done!

4. ONGOING WORK

The core framework has been already developed, however
a lot of work remains. In the near future we will provide
comprehensive introduction and developer manuals. Inte-
gration of further tools and extension with own methods
belongs to the current and ongoing activities. Especially
the optimization node will be extended with new methods
related to multi-objective evaluation and computational in-
telligence algorithms.

As further steps we plan to add some visualization pos-
sibilities for experiment results and navigation possibilites
through given music collections. The algorithms for sym-
bolic and community-based retrieval can be also integrated.

5. ACKNOWLEDGEMENTS

We thank the Klaus Tschira Foundation for the financial
support.

36

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Figure 5. AMUSE GUI: Management of experiments (top); Feature extraction experiment setup (middle); Feature pro-
cessing experiment setup (bottom).

37

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



6. APPENDIX: LIST WITH INTEGRATED TOOLS

Here we give an alphabetically sorted list of currently inte-
grated tools. In AMUSE it is easy to create complex exper-
iments using different algorithms, e.g. extracting features
with jAudio and MIR Toolbox, preprocessing them with
Matlab, classifying with WEKA and validating them with
metrics available in AMUSE.

• Chroma Toolbox: Extraction of different novel chroma
and pitch features [10].

• CMRARE: A set of cepstral modulation ratio regres-
sion (CMRARE) parameters for audio signal [5].

• jAudio: Java application for audio feature extraction
[6].

• Matlab: Corresponding AMUSE adapter allows to
run Matlab code. Path to the installed Matlab ver-
sion must be set in AMUSE configuration.

• MIR Toolbox: A large set of Matlab fuctions for ex-
traction of low-level and high-level audio descrip-
tors [4].

• R: Corresponding AMUSE adapter allows to run R
code. Path to the installed R version must be set in
AMUSE configuration.

• RapidMiner (former Yale): Java framework for data
mining [8]. A large number of different classifi-
cation and data processing algorithms is available,
audio feature extraction is provided by ValueSeries
plugin.

• WEKA: An established framework for machine learn-
ing which is integrated as library in RapidMiner [13].

7. REFERENCES

[1] T. Bartz-Beielstein: Experimental Research in Evo-
lutionary Computation - The New Experimentalism,
Springer Verlag, 2006.

[2] H.-G. Beyer and H.-P. Schwefel: “Evolution Strategies
- A Comprehensive Introduction,” Natural Computing,
Vol. 1, No. 1, pp. 3–52, 2002.

[3] B. Bischl, I. Vatolkin and M. Preuss: “Selecting Small
Audio Feature Sets in Music Classification by Means
of Asymmetric Mutation,” Accepted for the 11th Inter-
national Conference on Parallel Problem Solving from
Nature (PPSN), Krakow, 2010.

[4] O. Lartillot and P. Toiviainen: “MIR in Matlab (II):
A Toolbox for Musical Feature Extraction From Au-
dio,” Proceedings of the 8th International Conference
on Music Information Retrieval (ISMIR) pp. 127–130,
2007.

[5] R. Martin and A. Nagathil: “Cepstral Modulation Ratio
Regression (CMRARE) Parameters for Audio Signal
Analysis and Classification,” Proceedings of the 2009
IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 321–324, 2009.

[6] D. McEnnis, C. McKay and I. Fujinaga: “jAudio:
Additions and Improvements,” Proceedings of the 7th
International Conference on Music Information Re-
trieval (ISMIR), pp. 385–386, 2006.

[7] C. McKay and I. Fujinaga: “jMIR: Tools for Automatic
Music Classification,” Proceedings of the International
Computer Music Conference (ICMC), pp. 65-68, 2009.

[8] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz,
T. Euler: “YALE: Rapid Prototyping for Complex
Data Mining Tasks,” Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD-06), pp. 935–940,2006.

[9] F. Mörchen, A. Ultsch, M. Noecker, C. Stamm:
“Databionic Visualization of Music Collections Ac-
cording to Perceptual Distance,” Proceedings of the 6th
International Conference on Music Information Re-
trieval (ISMIR), pp. 396–403, 2005.

[10] M. Müller: Information Retrieval for Music and Mo-
tion, Springer Verlag, 2007.

[11] G. Pamparà, A.P. Engelbrecht and T. Cloete: “CIlib:
A collaborative framework for Computational Intelli-
gence algorithms - Part I,” Proceedings of the 2008
IEEE World Congress on Computational Intelligence
(WCCI), pp. 1750–1757, 2008.

[12] G. Tzanetakis and P. Cook: “Marsyas: A framework
for Audio Analysis,” Organised Sound, Vol. 4, No. 3,
pp. 169–175, 2000.

[13] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes
and S.J. Cunningham: “Weka: Practical Machine
Learning Tools and Techniques with Java Implementa-
tions,” Proceedings of the ICONIP/ANZIIS/ANNES’99
Workshop on Emerging Knowledge Engineering and
Connectionist-Based Information Systems, pp. 192–
196, 1999.

[14] I. Vatolkin and W. Theimer: “Optimization of Feature
Processing Chain in Music Classification by Evolu-
tion Strategies,” Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature
(PPSN), Dortmund, pp. 1150-1159, 2008.

[15] I. Vatolkin, W. Theimer and G. Rudolph: “Design and
Comparison of Different Evolution Strategies for Fea-
ture Selection and Consolidation in Music Classifica-
tion,” Proceedings of the 2009 IEEE Congress on Evo-
lutionary Computation (CEC 2009), IEEE Press, Pis-
cataway (NJ), 2009.

38

11th International Society for Music Information Retrieval Conference (ISMIR 2010)




