
TOWARDS MORE ROBUST GEOMETRIC
CONTENT-BASED MUSIC RETRIEVAL

Kjell Lemström
Department of Computer Science

University of Helsinki

ABSTRACT

This paper studies the problem of transposition and
time-scale invariant (ttsi) polyphonic music retrieval
in symbolically encoded music. In the setting, music
is represented by sets of points in plane. We give two
new algorithms. Applying a search window of size w
and given a query point set, of size m, to be searched
for in a database point set, of size n, our algorithm for
exact ttsi occurrences runs in O(mwn log n) time; for
partial occurrences we have an O(mnw2 log n) algo-
rithm. The framework used is flexible allowing devel-
opment towards even more robust geometric retrieval.

1. INTRODUCTION

Query-by-humming type problems have been under
study for over fifteen years. First, the music under
investigation was assumed to be monophonic [3], later
the term has been used with a wider meaning address-
ing problems where the task is to search for excerpts
of music, resembling a given query pattern, in a large
database. Moreover, both the query pattern and the
database may be polyphonic, and the query pattern
constitutes only a subset of instruments appearing in
the database representing possibly a full orchestra-
tion of a musical piece. Although current audio-based
methods can be applied to rudimentary cases where
queries are directed to clearly separable melodies, the
general setting requires methods based on symbolic
representation that are truly capable of dealing with
polyphonic subset matching.

To this end, several authors have recently used geo-
metric-based modeling of music [1, 7–9]. Geometric
representations usually also take into account another
feature intrinsic to the problem: the matching process
ignores extra intervening notes in the database that do
not appear in the query pattern. Such extra notes are
always present because of the polyphony, various noise
sources and musical decorations. There is, however, a

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or com-

mercial advantage and that copies bear this notice and the full

citation on the first page.

c© 2010 International Society for Music Information Retrieval.

notable downside to the current geometric methods:
they do not usually allow distortions in tempo (ex-
cept for individual outliers that are not even discov-
ered) that are inevitable in the application. Even if
the query could be given exactly on tempo, the occur-
rences in the database would be time-scaled versions
of the query (requiring time-scale invariance). If the
query is to be given in a live performance, local jit-
tering will inevitably take place and a stronger invari-
ance, namely the time-warping invariance [4], would
be a desired property for the matching process.

In this paper, new time-scale invariant geometric
algorithms that deal with symbolically encoded, poly-
phonic music will be introduced. We use the pitch-
against-time representation of note-on information, as
suggested in [9] (see Fig 1). The musical works in a
database are concatenated in a single geometrically
represented file, denoted by T ; T = t0, t1, . . . , tn−1,
where tj ∈ R2 for 0 ≤ j ≤ n − 1. In a typical re-
trieval case the query pattern P , P = p0, p1, . . . , pm−1;
pi ∈ R2 for 0 ≤ i ≤ m− 1, to be searched for is often
monophonic and much shorter than the database T
to be searched. Sometimes a search window w is ap-
plied and typically w < m, that is w < m � n. It is
assumed that P and T are given in the lexicographic
order. If this is not the case, the sets can be sorted in
O(m logm) and O(n log n) times, respectively.

The problems under consideration are modified ver-
sions of two problems originally represented in [8].
The following list gives both the original problems and
the modifications under consideration; for the partial
matches in P2 and S2, one may either use a threshold
α to limit the minimum size of an accepted match, or
to search for maximally sized matches only.

(P1) Find translations of P such that each point in P
matches with a point in T .

(P2) Find translations of P that give a partial match
of the points in P with the points in T .

(S1) Find time-scaled translations of P such that each
point in P matches with a point in T .

(S2) Find time-scaled translations of P that give a
partial match of the points in P with the points
in T .

Fig. 2 gives 4 query patterns to be searched for in
the excerpt of Fig. 1, exemplifying these 4 problems.

577

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

In [6], Romming and Selfridge-Field gave a geomet-
ric hashing-based algorithm for S2. Without window-
ing, it works in O(n3) space and O(n2m3) time. This
paper studies another way to solve problems S1 and
S2. The new algorithms to be introduced resemble
Ukkonen et al’s PI and PII algorithms. The algo-
rithm for S1 runs in time O(mn2 log n) and O(mn2)
space; the algorithm for S2 in O(m2n2logn) time and
O(m2n2) space. An advantage of our method over the
one by Romming and Selfridge-Field is that the perfor-
mance can be spedup by applying an index-filter pre-
processing [5]. Our method also seems to be adaptable
to time-warping invariant cases. Thus, the method
is an important step towards more robust geometric
content-based music retrieval.

2. RELATED WORK

Let α denote a similarity threshold for P2, and let
p0, p1, . . . , pm−1 and t0, t1, . . . , tn−1 be the pattern and
database points, respectively, lexicographically sorted
according to their co-ordinate values: pi < pi+1 iff
pi.x < pi+1.x or (pi.x = pi+1.x and pi.y < pi+1.y),
and tj < tj+1 iff tj .x < tj+1.x or (tj .x = tj+1.x
and tj .y < tj+1.y). In our application the elapsing
time runs along the horisontal axes, represented by
x, the perceived height, the pitch, is represented by
y. A translation of P by vector f is denoted P + f :
P + f = p0 + f, . . . , pm−1 + f . Using this notation,
problem P1 is expressible as the search for a subset I
of T and some f such that P + f = I. Note that
decomposing translation f into horisontal and ver-
tical components f.x and f.y, respectively, captures
two musically distinct phenomena: f.x corresponds
to aligning the pattern time-wise, f.y to transposing
the musical excerpt to a lower or higher key. Note
also that a musical time-scaling σ, σ ∈ R+, has an
effect only on the horisontal translation, the vertical
translation stays intact.

Example 2.1. Let p = 〈1, 1〉, f = 〈2, 2〉 and σ = 3.
Then p+ σf = 〈7, 3〉.

A straight-forward algorithm solves P1 and P2 in
O(mn log(mn)) time. The algorithm first exhaustively
collects all the translations mapping a point in P to
another point in T . The set of the collected translation
vectors are then sorted in lexicographic order. In the
case of P1, a translation f that has been used m times
corresponds to an occurrence; in the case of P2, any
translation f that has been used at least α times would
account for an occurrence. Thoughtful implementa-
tions of the involved scanning (sorting) of the transla-
tion vectors, will yield an O(mn) (O(mn logm)) time
algorithm for P1 (P2) [8].

Indeed, the above O(mn logm) time algorithm is
the fastest online algorithm known for P2. Moreover,
any significant improvement in the asymptotic run-
ning time, exceeding the removal of the logarithmic
factor, cannot be seen to exist, for P2 is known to be

a 3SUM-hard problem [2]. It is still possible that P2
is also a Sorting X+Y -hard problem, in which case
Ukkonen et al’s PII algorithm would already be an
optimal solution. In [2], Clifford et al introduced an
O(n log n) time approximation algorithm for P2.

To make the queries more efficient, several index-
ing schemes have been suggested. The first indexing
method using geometric music representation was sug-
gested by Clausen et al. [1]. Their sublinear query
times were achieved by using inverted files, adopted
from textual information retrieval. The performance
was achieved with a lossy feature extraction process,
which makes the approach non-applicable to problems
P1 and P2. Typke [7] proposed the use of metric
indexes that works under robust geometric similar-
ity measures. However, it is difficult to adopt his
method to support translations and partial matching
at the same time. Lemström et al’s approach [5] com-
bines sparse indexing and (practically) lossless filter-
ing. Their index is used to speed up a filtering phase
that charts all the promising areas in the database
where real occurrences could reside. Once a query
has been received, the filtering phase works in time
O(gf (m) logn+n) where function gf (m) is specific to
the applied filter f . The last phase involves checking
the found cf (cf ≤ n) candidate positions using Ukko-
nen et al’s PI or PII algorithm executable in worst-case
time O(cfm) or O(cfm logm), respectively.

The only non-brute-force solution known for S1 and
S2 is by Romming and Selfridge-Field [6]. It is based
on geometric hashing and works in O(n3) space and
O(n2m3) time. By applying a window on the database
such that w is the maximum number of events that
occur in any window, the above complexities can be
restated as O(w2n) and O(wnm3), respectively.

3. MATCHING ALGORITHMS

Our matching algorithms for the time-scale invariant
problems S1 and S2 resemble somewhat Ukkonen et
al’s PI and PII algorithms in that they all use a prior-
ity queue as a focal structure. Ukkonen et al’s PI and
PII work on trans-set translations, or trans-set vectors,
f = t − p, where p and t are points in a given query
pattern, of length m, and in the underlying database,
of length n, respectively. Let us assume (without loss
of generality) that all the points, both in the pattern
and in the database, are unique. The number of trans-
set vectors is within the range [n+m−1, nm]. In order
to be able to build an index on the database in an of-
fline phase, Lemström et al’s method [5] is based on
intra-set vectors. For instance, translation vector f is
an intra-pattern vector, if there are two points p and
p′ (p, p′ ∈ P) such that p+f = p′. Intra-database vec-
tors are defined accordingly. Naturally, the number
of intra-pattern and intra-database vectors are O(m2)
and O(n2), respectively.

The set of positive intra-pattern vectors include trans-
lations pi′ − pi where in the case of S1: 0 ≤ i < m

578

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

�

Lei

��

�

�

sei

�

ne
�

4
3

�
4
3

�

4
3�

�
und

�

�

�

nim

�
drecht,

���
�

��

�

��

�
ihm

��
�

�
steht

�
er

�

still,

�
mer

 �

��

�

c1

time

pitch

C

c

2 31

Figure 1. On top, an excerpt from Franz Schubert’s song
cycle Winterreise. Below, the related geometric, point-set
representation. The points associated with the vocal part
are represented distinctly (by squares). The depicted 6
intra-database vectors will be discussed later.

and i′ = i + 1, and in the case of S2: 0 ≤ i < i′ ≤
m. The set of positive intra-database vectors include
translations tk′ − tk where, independently of the case,
0 ≤ k < k′ ≤ n. To reduce the search space, one may
apply a window that restates the bounds for i′ (in the
case of S2) and k′ in the obvious way: 0 ≤ i < i′ ≤
min{i+ w,m} and 0 ≤ k < k′ ≤ min{k + w, n}.

For the convenience of the algorithms, we pretend
that there is an extra elements pm in the pattern and
tn in the database. The matching algorithms take
as input intra-set vectors, stored in tables K[i], 0 ≤
i < m. Table K[i] stores intra-database translations
that may match 1 the positive intra-pattern vectors
pi′ − pi, i.e., translation vectors starting at point pi.
See Fig. 3 for an illustration on tables K[i].

The entries in our main data structures will be
sorted in a lexicographic order. We will specify the
underlying order by an ordered set ℵ. ℵ is formed by
members of {a, b, s}, where a, b and s correspond to
the columns named accordingly in tables K[i]. For in-
stance, lexicographic order 〈a, s〉 is firstly based on the
values on column a (the starting point of the associ-
ated intra-database vector), secondly on the values on
column s (the associated scaling value). A main loop
that goes exhaustively through all the possibilities of
positive intra-pattern and positive intra-database vec-
tors to initialise the tables K[i] is needed. To this end,
let a positive intra-database vector g = tk′−tk be such
that there is a positive intra-pattern vector f = pi′−pi

1 Please note the distinction between an occurrence and a
match. An occurrence involves as many matching pairs of intra-
database and intra-pattern vectors as is required.

〈0, 7〉 〈0, 12〉 〈2, 15〉 〈0, 5〉 〈2, 8〉 〈4, 4〉
〈2, 3〉 〈4,−1〉 〈4, 2〉 〈2,−4〉 〈2,−1〉 〈4,−8〉
〈0, 3〉 〈2,−4〉 〈4, 3〉 〈2,−7〉 〈4, 0〉 〈6,−14〉
〈2, 7〉 〈4,−7〉 〈4, 0〉 〈2,−14〉 〈2,−7〉 〈2,−2〉
〈0, 7〉 〈0, 12〉 〈0, 24〉 〈0, 5〉 〈0, 17〉 〈1, 24〉
〈0, 12〉 〈1, 19〉 〈2, 17〉 〈1, 7〉 〈2, 5〉 〈3, 8〉
〈1,−2〉 〈2, 1〉 〈3, 0〉 〈1, 3〉 〈2, 2〉 〈4,−14〉
〈1,−1〉 〈3,−17〉 〈3,−8〉 〈2,−16〉 〈2,−7〉 〈4,−18〉
〈0, 9〉 〈2,−1〉 〈2, 11〉 〈2,−10〉 〈2, 2〉 〈4,−12〉
〈0, 12〉 〈2,−2〉 〈2, 13〉 〈2,−14〉 〈0, 1〉 〈0, 15〉

Table 1. The intra-database vectors generated by the
example given in Fig. 1 when ignoring the first bar and
setting w = 3. The first and the last intra-database vectors
under consideration are depicted in Fig. 1 as arrows with
solid and dashed stems, respectively.

for which g.y = f.y (ie. the pitch intervals of the two
vectors match). Because g may be part of an occur-
rence, a new row, let it be the hth, in K[i] is allocated
and the following updates are conducted:

K[i]h.a ← k; K[i]h.b← k′; (1)

K[i]h.s ← tk′ .x− tk.x
pi′ .x− pi.x

; (2)

K[i]h.y ← nil; K[i]h.w ← 1; (3)
K[i]h.c ← i′; K[i]h.z ← 0. (4)

Above, in (1), the associated starting and ending points
of the matching intra-database vector are stored in
K[i]h.a and K[i]h.b, respectively. The required time
scaling for the intra-vectors to match is stored inK[i]h.s
(2); here extra carefulness is needed to avoid zero di-
vision: If both the numerator and the denominator
equal zero, we set K[i]h.s = 1. If only one of them
equals zero or both equal infinity, the whole row is
deleted from the table (they would represent impos-
sible time scalings). Columns y and w, initialised in
(3), are used for backtracking a found occurrence and
storing the length of a candidate occurrence, respec-
tively. The last columns, initialised in (4), will be
needed when searching for partial occurrences (in Sec-
tion 3.2): column c stores the ending point of the as-
sociated intra-pattern vector, z is used for identifying
an occurrence.

Denoting by Σpi the number of rows generated above
for table K[i], 0 ≤ i < m, for the aforementioned ex-
tra elements we set:

K[i]Σpi .a← K[i]Σpi .b←∞;
K[i]Σpi .s← K[i]Σpi .w ← 0; K[i]Σpi .c← i+ 1

As each iteration of the main loop takes constant
time, this exhaustive initialisation process runs in time
O(nmw2). Finally, the columns in K[i] are sorted in
lexicographic order 〈a, s〉. The matching algorithms
have an associated priority queue Qi for each table
K[i], 0 < i ≤ m 2 . For Qi, a lexicographic order
〈b, s〉 is used. As a reminder, the order is given in the
superscript of a priority queue (e.g. Q〈b,s〉i).

2 A single priority queue would suffice, but the algorithm
would become more complicated.

579

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

A
� � � �� ��� �� B

� � ���� �

� � �� � � � � � � �� ��
4
6

C

� � � �� � � � � � �
D �� �

〈6,3〉 〈6,−2〉 〈6,−7〉 〈6, 7〉 〈12,−2〉

Figure 2. On top, 4 example queries. For query A an
occurrence in the excerpt given in Fig. 1 would be found
in all four cases P1, P2, S1 and S2; for B in cases P2, S1
and S2; for C in S1 and S2; and for D in S2 only. At the
bottom, the positive intra-pattern vectors, associated with
the query C in case S1.

3.1 S1: Time Scaled Exact Matching

Once the tables K[i] have been initialised and their
columns have been sorted in lexicographic order 〈a, s〉,
the transposition-invariant time-scaled exact occur-
rences can be found using the matching algorithm
given in Fig. 4. The algorithm works by observing
piecewise matches between positive intra-database and
intra-pattern vectors

tki′ − tki = σi(pi+1 − pi) (5)

that are stored in the associated K[i]. Above σi ∈
R+ is the time-scaling factor (recall Example 2.1).
The piecewise matches may form a chain Tτ0...τm−1 =
tτ0 , tτ1 , . . . , tτm−1 , where τ0, τ1, . . . , τm−1 is an increas-
ing sequence of indices in T ; tτi+1 − tτi = σ(pi+1− pi)
for 0 ≤ i < m − 1 and σ ∈ R+ is a time-scaling fac-
tor common to all the piecewise matches in the chain.
As such chains represent transposition-invariant, time-
scaled exact occurrences, the task is to look for them.

A chain Tτ0...τm′ m
′ < m − 1, is called a prefix

occurrence (of length m′); Tτm′−1,τm′ is the final suffix
of the prefix occurrence Tτ0...τm′ . Let tτi+1 − tτi (that,
by definition, equals σ(pi+1−pi)) be the final suffix of
a prefix occurrence Tτ1...τm′ . The prefix occurrence is
extensible if there is a piecewise match tk′i+1

− tki+1 =
σ(pi+2 − pi+1) such that

tτi+1 = tki+1 (6)

and scaling factor σ is the one that was used in form-
ing Tτ1...τm′ . The binding in Equation 6 is called the
binding of extension, tτi+1 − tτi the antecedent and
tk′i+1

− tki+1 the postcedent of the binding.

Lemma 3.1. If a prefix occurrence is extensible, its
final suffix is also extensible.

Proof. Immediate.

To be more efficient, at point i + 1, the algorithm
actually considers any piecewise match tk′i − tki =
σi(pi+1 − pi) as an antecedent to the binding and
tries to extend it. Because in this case the piecewise

1 0

LEGEND

i

i’

h: running index on the associated table

a: id of the point in T associated with p

w: cumulative weight; the length of the occurrence thus far

z: running number (id) of an associated occurrence

b: id of the point in T associated with p

y: backward link to be able to construct the match

s: scaling factor of the associated vector

c: i’

 = # of matches (−1) found for p − p

0 12 13 1 1 / 3 1 nil 0

Σp
0

s

K[5]

K[1]

h

K[0]

a b c yw z

14 17 1 2 / 3 1 nil 0

23 24 1 1 / 3 1 nil 0

1

2=

Σp
0

Figure 3. Illustration of tables K[i] when considering
problem (S1) and searching for occurrences for the query
C of Fig. 2 within the two last bars of Fig. 1, w = 3. The
intra-database vectors under consideration are the ones
given in Table 1. Having initialized the tables K in equa-
tions (1-4), K[0] contains the depicted 3 rows.

matches in an occurrence chain have to be consecu-
tive in P , the antecedents of the binding are all found
in K[i] and their possible extensions, postcedents, in
K[i + 1]. To process all the bindings of extension at
point i + 1, therefore, involves going through all the
entries both in K[i] and in K[i+1]. To make this pro-
cess efficient, no entry of either of the tables should be
observed more than once for one iteration. In order
for this to be possible, both sides of the binding of ex-
tension (associated with antecedents and postcedents)
should be enumerated in the same (increasing) order.
However, the lefthand side of the binding involves end
points of the intra-database vectors in K[i] and the
righthand side the start points of the intra-database
vectors in K[i+ 1]. Therefore, we use a priority queue
Q
〈b,s〉
i whose entries are addresses to rows associated

with the antecedents of the binding at i. In this way,
the binding of extension at i can be done efficiently
by enumerating the entries in Qi and K[i]. Note that
the set of piecewise matches extended this way also
includes all the final suffixes, and therefore, according
to Lemma 3.1, also all the prefix occurrences.

The binding of extension takes place in line (8) of
the algorithm. If a piecewise match is extensible, its
length is updated (line 9) and a backtracking link is
stored (line 10). The latter becomes useful if any of
the extended piecewise matches extends into a proper
occurrence, and the whole occurrence is to be revealed
(instead of just reporting it).

Let us now demonstrate the main idea of the algo-
rithm by using a musical example.

Example 3.2. The vocal line in Fig. 1 ends in a sus-
pension that is dissolved at the beginning of the third

580

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

TimeScaledExactOccurrence(K[i])
(0) K[0]Σp0 .s←∞
(1) for j ← 0, . . . ,Σp0 do
(2) Q

〈b,s〉
1 ← push(&K[0]j)

(3) for i← 1, . . . ,m− 2 do
(4) q ← pop(Q〈b,s〉i)
(5) for j ← 0, . . . ,Σpi − 1 do
(6) while [q.b, q.s] < [K[i]j .a,K[i]j .s] do
(7) q ← pop(Q〈b,s〉i)
(8) if [q.b, q.s] = [K[i]j .a,K[i]j .s] then
(9) K[i]j .w ← q.w + 1
(10) K[i]j .y ← q

(11) Q
〈b,s〉
i+1 ← push(&K[i]j)

(12) q ← pop(Q〈b,s〉i)
(13) K[i]Σpi .s←∞
(14) Q

〈b,s〉
i+1 ← push(&K[i]Σpi)

(15) if K[m− 2]j .w = m− 1 for some 0 ≤ j ≤ Σpm−2

(16) then report an occurrence

Figure 4. Algorithm for finding transposition-invariant
time-scaled exact occurrences.

bar. As the expectation for the dissolution is strong
and the lower part of the accompaniment resides in
the same register as the vocal part, if suitably arranged,
the listener perceives the higher ”a” of the lower part of
the accompaniment to belong to the vocal melody. The
queries in Fig. 2 look for occurrences with such a dis-
solution. To solve S1 with the query C of Fig. 2, the
algorithm first fills Table K[0] with rows corresponding
to the intra-database vectors that match the interval of
the first intra-pattern vector 〈6,3〉 (bolded in the fig-
ure). The matching vectors are depicted in Fig. 1 (ar-
rows with a dotted stem) and given bolded in Table 1.
Note that the vector 〈0,3〉 is not accepted since the
associated scaling would actually squeeze any melody
to a chord. The three accepted piecewise matches are
stored in K[0] (see Fig. 3) and the algorithm contin-
ues by looking for piecewise matches in K[1] that could
extend them.

Analysis. Let us denote by |Qi| and |K[j]| the num-
ber of entries in Qi and K[j], respectively. Clearly,
in this case, |Qi| = |K[i − 1]| for 1 ≤ i ≤ m. More-
over, let Σ = maxmi=1(|Qi|, |K[i− 1]|). The outer loop
(line (3)) is iterated m times. Within the inner loop
(line (5)), all the entries in Qi and in K[i] are pro-
cessed exactly once, resulting in O(Σ) entry processing
steps. The only operation taking more than a constant
time is the updating of the priority queue; it takes at
most O(log Σ) time. Thus, the algorithm runs in time
O(mΣ log Σ). Moreover, the tables K[i] and priority
queues Qi require O(mΣ) space.

In this case Σ = O(wn), because each table K[i]
contains the piecewise matches for the positive intra-

TimeScaledPartialOccurrence(K[i])
(0) `← 0; K[0]Σp0 .s←∞
(1) for i← 0, . . . ,m− 2
(2) for j ← 0, . . . ,Σp0
(3) Q

〈b,s〉
K[i]j .c

← push(&K[i]j)
(4) for i← 1, . . . ,m− 2 do
(5) q ← pop(Q〈b,s〉i)
(6) for j ← 0, . . . ,Σpi − 1 do
(6,5) if [q.b, q.s] > [K[i]Σpi .a,K[i]Σpi .s] break
(7) while [q.b, q.s] < [K[i]j .a,K[i]j .s] do
(8) q ← pop(Q〈b,s〉i)
(9) if [q.b, q.s] = [K[i]j .a,K[i]j .s] then
(10) while min(Q〈b,s〉i) = [q.b, q.s] do
(11) r ← pop(Q〈b,s〉i)
(12) if r.w > q.w then q ← r
(13) K[i]j .w ← q.w + 1
(14) K[i]j .y ← q
(15) if K[i]j .w = α then
(16) `← `+ 1
(17) K[i]j .z = `
(18) κ[`]← &K[i]j
(19) if K[i]j .w > α then
(20) K[i]j .z = q.z
(21) κ[q.z]← &K[i]j
(22) Q

〈b,s〉
K[i]j .c

← push(&K[i]j)
(23) K[i]Σpi .s←∞
(24) Q

〈b,s〉
i+1 ← push(&K[i]Σpi)

(25) ReportOccurrences(κ)

Figure 5. Algorithm for finding transposition-invariant
time-scaled partial occurrences. The optimizer at line (6,5)
can be omitted without breaking functionality; it can also
be used to optimize the previous algorithm (as line (5,5)).

pattern vector pi+1 − pi, and there are O(wn) possi-
bilities to this end. Naturally w = n if no windowing
has been applied.

3.2 S2: Time Scaled Partial Matching

In order to be able to find transposition-invariant time-
scaled partial occurrences, we need the two extra columns
c and z, that were initialised in Equation 4, for tables
K[i]. Recall that K[i]h.c stores the ending point i′ for
an intra-pattern vector pi′ − pi that is found to match
an intra-database vector tk′−tk with some scaling fac-
tor σi. Column z is used for storing a running number
that is used as an id, for a found partial occurrence.
Furthermore, we use an extra table, denoted by κ, for
storing all the found occurrences.

The structure of the algorithm (see Fig. 5) is sim-
ilar to the previous algorithm. Again, at point i, the
antecedents in Qi are to be extended by postcedents
found in K[i]. However, as we are looking for par-
tial occurrences this time, we cannot rely on piecewise

581

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

matches that are consecutive in P but any piecewise
match associated with a positive intra-pattern vector

tki′ − tki = σi(pi′ − pi) (7)

has to be considered. Here 0 ≤ ki < ki′ ≤ min{ki +
w, n}; 0 ≤ i < i′ ≤ min{i+w,m} and σi ∈ R+. Given
a threshold α, a chain Tτ0...τβ−1 , such that tτj−tτj−1 =
σ(pπj − pπj−1), for 0 < j ≤ β − 1, β ≥ α, where
τ0 . . . τβ−1 and π0 . . . πβ−1 are increasing sequences of
indices in T and P , respectively, would constitute for a
transposition-invariant time-scaled partial occurrence
(of length β).

That piecewise matches can now be between any
two points in the pattern makes the problem some-
what more challenging. This has the effect that, at
point i, pushing a reference to a priority queue (lines
(2) and (21) of the algorithm) may involve any fu-
ture priority queue, from Qi+1 to Qm, not just the
successive one as in the previous case; the correct pri-
ority queue is the one that is stored in K[i]j .c (recall
that it stores the end point of the intra-pattern vec-
tor associated with the piecewise match). Conversely,
the antecedents at point i (stored in Qi) may include
references to any past tables within the window size,
expanding the size of the priority queue Qi.

The two remaining differences to the algorithm above,
are in lines (11) and (14-20). In line (11), the algo-
rithm chooses to extend the piecewise match that is
associated with the longest prefix occurrence. This is
a necessary step, once again, because we are no more
dealing with piecewise matches that are consecutive in
P . In lines (14-20) the algorithm deals with a found
occurrence. Lines (14-17) deal with a new occurrence:
generate a new running number, `, for it (that is used
as its id) and store a link to the found occurrence to
the table of occurrences κ. Lines (18-20) deal with
extending a previously found occurrence.

Analysis. Let Σ = maxmi=1(|Qi|, |K[i − 1]|). With
an analogous reasoning to that of the previous anal-
ysis, we arrive at similar complexities: the algorithm
runs in O(mΣ log Σ) time and O(mΣ) space. Let us
now analyse the order of Σ in this case. Still it holds
that for a positive intra-pattern vector, pi+1−pi, there
are O(wn) possible piecewise matches. However, the
table K[i] may contain entries associated with piece-
wise matches with any positive intra-pattern vector
ending at point i + 1. Thus, maxmi=1(|K[i − 1]|) =
O(min{m,w}wn). As |Qi| = |K[i− 1]| for 0 < i ≤ m
and assuming w < m, we conclude that the algorithm
has an O(mnw2 log n) running time and works in a
space O(mnw2).

4. CONCLUSIONS

In this paper we suggested novel content-based mu-
sic retrieval algorithms for polyphonic, geometrically
represented music. The algorithms are both transpo-
sition and time-scale invariant. Given a query pat-
tern P = p0, . . . , pm−1 to be searched for in a music

database T = t0, . . . , tn−1 and applying a search win-
dow of size w, the algorithms run in O(mΣ log Σ) time
and O(mΣ) space, where Σ = O(wn) when search-
ing for exact occurrences under such a setting, and
Σ = O(nw2) when searching for partial occurrences.
Whether this is an improvement in practice over the
existing algorithm by Romming and Selfridge-Field
[6], working in space O(w2n) and time O(wnm3), is
left for future experiments on real data.

However, the framework seems to be very flexible:
it is currently under modification to a more complex
case, where an uneven time deformation is known just
to preserve the order of the notes; there are no known
solutions for this time-warping invariant problem [4].
Moreover, it seems that with some modifications to
the data structures and ideas presented in [5] it would
be possible to adopt the idea of using a three-phase
searching process (indexing, filtering and checking) re-
sulting in a smaller search space and a better running
time to those presented here.

Acknowledgements This work was supported by
the Academy of Finland (grants #108547 and #218156).

5. REFERENCES

[1] M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz.
Proms: A web-based tool for searching in polyphonic
music. In Proc. ISMIR’00, Plymouth, MA, October
2000.

[2] R. Clifford, M. Christodoulakis, T. Crawford,
D. Meredith, and G. Wiggins. A fast, randomised,
maximal subset matching algorithm for document-level
music retrieval. In Proc. ISMIR’06, pp. 150–155, Vic-
toria, BC, October 2006.

[3] A. Ghias, J. Logan, D. Chamberlin, and B. Smith.
Query by humming - musical information retrieval in
an audio database. In Proc. ACM Multimedia, pages
231–236, San Francisco, CA, 1995.

[4] K. Lemström and G. Wiggins. Formalizing invariances
for content-based music retrieval. In Proc. ISMIR’09,
pp. 591–596, Kobe, October 2009.

[5] K. Lemström, N. Mikkilä, and V. Mäkinen. Filter-
ing methods for content-based retrieval on indexed
symbolic music databases. Journal of Information Re-
trieval, 13(1):1–21, 2010.

[6] C. Romming and E. Selfridge-Field. Algorithms for
polyphonic music retrieval: The hausdorff metric and
geometric hashing. In Proc. ISMIR’07, pp. 457–462,
Vienna, September 2007.

[7] R. Typke. Music Retrieval based on Melodic Similarity.
PhD thesis, Utrecht University, Netherlands, 2007.

[8] E. Ukkonen, K. Lemström, and V. Mäkinen. Geomet-
ric algorithms for transposition invariant content-based
music retrieval. In Proc. ISMIR’03, pp. 193–199, Bal-
timore, MA, October 2003.

[9] G. Wiggins, K. Lemström, and D. Meredith.

SIA(M)ESE: An algorithm for transposition invariant,

polyphonic content-based music retrieval. In Proc. IS-

MIR’02, pp. 283–284, Paris, October 2002.

582

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

