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ABSTRACT

The capability of the average person to generate digital
music content has rapidly expanded over the past several
decades. While the mechanics of creating a multi-track
recording are relatively straightforward, using the available
tools to create professional quality work requires substantial
training and experience. We address one of the most fun-
damental processes to creating a finished product, namely
determining the relative gain levels of each track to produce
a final, mixed song. By modeling the time-varying mixing
coefficients with a linear dynamical system, we train mod-
els that predict a weight vector for a given instrument using
features extracted from the audio content of all of the tracks.

1. INTRODUCTION

Digital audio production tools have revolutionized the way
we consume, produce and interact with music on a daily ba-
sis. Consumers have the ability to create quality recordings
in a home studio with a relatively limited amount of equip-
ment. Although there exists a myriad of complex software
suites and audio editing environments, they all perform the
same fundamental task of multi-track recording. This pa-
per focuses on one of the most essential steps in music pro-
duction: multi-track mixing. The relative levels between
the various instruments in a song significantly determine the
overall sonic quality of the piece.

In a previous paper we introduced a supervised machine
learning approach for automatically mixing a set of un-
known source tracks into a coherent, well-balanced instru-
ment mixture using a small number of acoustic features [1].
We modeled the mixing coefficients as the hidden states of
a linear dynamical system and used acoustic features ex-
tracted from the audio as the output of the model. After
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estimating the parameters of the model on the training data,
we predicted the time-varying weights of each instrument
for an unknown song using Kalman filtering [2].

We extend that approach in this paper by reducing the
constraints on the model and generalizing it to a larger num-
ber of instruments. One modification to the system includes
modeling the weights of an individual instrument and their
first and second derivatives instead of jointly estimating the
weights for all of the instrument tracks at once. This re-
moves the restriction that the test song must contain all in-
strument types that the model was trained on.

Additionally, we explore an extended feature set within
this framework and analyze the performance of each indi-
vidual feature as well as combinations of features. The fea-
tures are chosen to contain information about the total en-
ergy of the signal, energy within various frequency bands,
spectral shape and dynamic spectral evolution.

2. BACKGROUND

Much research in the area of automatic audio signal mix-
ing is devoted to applications in the context of a live per-
formance or event. Initial research on the subject was ori-
ented toward broadcast, live panel discussion and similar en-
vironments dealing with the human voice as the primary au-
dio source [3]. These systems analyze the amplitude of the
audio signal and apply adaptive gating and thresholding to
each input signal to create a coherent sound source mixture
of the individual tracks in addition to preventing feedback.

More recent work incorporates perceptual features (e.g,
loudness) into systems designed for live automatic gain con-
trol and cross-adaptive equalization [4,5]. The implemen-
tation of the former focuses on adapting the fader level of
each channel with the goal of achieving the same average
loudness per channel. The latter is designed for use in live
settings as a tool for inexperienced users or to reduce equip-
ment setup time. The system attempts to dynamically filter
various frequency bands in each channel so that all channels
are heard equally well.

Structured audio is the representation of sound content
with semantic information or algorithmic models [6]. This
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form of encoding allows for much higher data transmission
rates as well as retrieval and manipulation of audio based
on perceptual models. Currently, professional music post-
production is performed by a highly skilled engineer with
years of training. Using structured techniques, a parameter-
ized, generative version of this process that is applicable to
a variety of source audio is feasible.

More recent efforts focus on determining the parame-
ters used in common linear signal processing effects such
as equalization and reverb as well as dynamic level com-
pression [7]. The authors also present a method for deter-
mining static fader values for an entire song for each track
in a multi-track recording session. An interface for assisting
users in creating mix-downs of user generated content from
examples of mixes produced by professional engineers is
presented in [8].

Other related work seeks to equalize an audio input based
on a set of descriptive perceptual terms such as bright or
warm [9]. Rather than attempt to navigate the complex net-
work of sliders and knobs in an audio interface, a user can
specify a high level term that describes the desired sound
quality, and an appropriate equalization curve will be ap-
plied. The system was developed through collecting user
ratings for audio examples and performing linear regres-
sion to find a weighting function for a particular instru-
ment/timbre pair.

3. MODELING FRAMEWORK

The dataset we use in our experiments consists of 48 multi-
track songs from the RockBand® video game. Each song
contains both mono and stereo tracks for a basic rock instru-
mentation including guitar, bass, drums and vocals. Many
songs may also include keyboards, horns, percussion, back-
ing vocals, strings or other instruments. Often these backing
instruments are contained in one audio track, making model-
ing each instrument separately rather difficult. To facilitate
comparison between the data of each song, we first prepro-
cess the tracks to obtain a set of five instrument tracks —
bass, drums, guitar, vocals and a backup track that contains
all other instruments. A detailed explanation of this process
is given in [1].

3.1 Weight Estimation

Since we do not have the DAW sessions used to create each
song, the actual fader values of the individual tracks are un-
known and must be estimated. To do this, the digital audio
output of the gaming console was recorded and aligned in a
DAW session with the multi-track data of the corresponding
song. The spectrum of a frame of the output mix is assumed
to be a linear combination of the individual input tracks ac-
cording to

oUr + agiUst + - - - + g Uy = Vi (1
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Figure 1. System diagram detailing the ‘One Vs. All’

method for mixing coefficient prediction.

where V; is the spectrum of the mixed track and Uyy ..k}
represents the spectra of the individual instrument tracks.
We vectorize the spectrogram of each frame and use non-
negative least squares (NNLS) to find the mixing coeffi-
cients. We use NNLS as opposed to unconstrained least
squares estimation because multi-track mixing is an addi-
tive process.

The noise in the weights is reduced through Kalman
smoothing [10]. It is significant to note that while these co-
efficients produce a mix that is perceptually similar to the
original track, they are not the actual ground truth weights.
Audio examples of the original song and the reconstructed
mix using the estimated weights are available online ! .

3.2 Weight Prediction

We use the weights estimated in Section 3.1 as labels in a
supervised machine learning task. We first briefly outline
the previous work we performed using this framework, then
elaborate on a modified version of the model.

In [1] we treat the « values as the hidden states of a linear
dynamical system and our acoustic features as the output of
the system whose mathematical representation is

ar=Aai1 + wy, 2
yi = Cay + vy (3
The dynamics matrix A controls the temporal evolution of
the hidden states and C projects the hidden states into our
observation space (feature domain). The driving and obser-
vation noise sources, w; and vy, respectively are zero mean
Gaussian random variables with covariances Q and R.

! http://music.ece.drexel.edu/research/AutoMix
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Track All Tracks One Vs. All  Best Features
backup 0.0126 0.0110 0.0087
bass 0.0191 0.0163 0.0088
drums 0.1452 0.1283 0.0489
guitar 0.0158 0.0151 0.0115
vocal 0.0188 0.0160 0.0108

Table 1. Results for LOOCV on the database. The MSE
for each track across all songs is shown for the All Tracks
method and the One Versus All approach.The Best Features
column is the result from sequential feature selection.

Our state vector is the weights of each instrument at time
step ¢
“

o = [aag. .. ak]T

and the structure of the output vector is

T
yi=|FY B FE® 2 E® Féf)} 5)

where k indexes the instrument and m is the feature index.

To train the model we estimate A and C through con-
straint generation and least squares, respectively and com-
pute the covariances Q and R from the residuals of A and
C [11]. In this framework, we are constrained in terms of
the number and type of instruments we can use the auto-
matic mixing system for. Since each «y is associated with
a specific instrument, omitting or adding tracks changes the
dimension of the hidden state vector and in turn makes pre-
dicting weights for a set of tracks that are not explicitly in
the form described in (4) and (5) intractable.

3.3 Modified Prediction Scheme

Instead of modeling the time varying mixing coefficients of
all tracks as the hidden states of the LDS, we consider only
one instrument at a time. Our new state vector consists of the
weight for the jth track and its first and second derivatives
[0 [O&j dj ozj] (6)
The derivatives of the weight vector are used to provide the
model with more information about the dynamic evolution
of the mixing coefficients. Note that only the weights for
one instrument are included in the state vector. By elim-
inating the weight values of the other instruments, we are
training the model to consider only how well the current
instrument ‘sits’ in the mix, not how the weights of all in-
struments evolve together.
The output vector y; is comprised of the feature set for
the instrument we are trying to predict stacked with the av-
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Feature
RMS energy

Description

Root mean square energy

Spectral flux Change in spectral energy

Spectral bandwidth Range of frequencies where most energy lies

Octave-based sub-bands
MFCC

Energy in octave spaced frequency bands

Mel-Frequency Cepstral Coefficients

Spectral centroid Mean or center of gravity of the spectrum

Spectral peaks Energy around a local sub-band maxima

Spectral valleys Energy around a local sub-band minima

Slope/Intercept Parameters of a line fit to the spectrum of a frame

Table 2. Spectral and time domain features used in mixing
coefficient prediction task.

erage of the features from all other instruments

ye = |FY . F 2

T
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(N
If j = 1, then we are using m features associated with
the first track and averaging the features associated with the
tracks k # j, reducing the dimensionality of the feature vec-
tor from km to 2m. Comparing (5) to (7), we observe that in
(7) there is no dependency on which position (k) the features
for a given instrument are located. The only prior knowl-
edge the model requires is the type of the jth instrument for
which we are predicting time-varying weights. As a result,
in this framework there is no limitation on the number or
type of instruments that can be mixed using the system, pro-
vided that there exists training data for the target instrument
j. A system diagram showing the new modeling method is
shown in Figure 1.

To evaluate the efficacy of this modified estimation ap-
proach, we perform the same experiment outlined in [1] and
compare the results of the two methods. Using the 48 songs
in our dataset, we perform leave-one-out cross-validation
(LOOCYV), training an LDS on 47 tracks and predicting the
weights for the remaining track. We repeat the process us-
ing each track as a test song only once and average the mean
squared error (MSE) between our estimated ground truth
values and our predictions from the LDS. The results are
shown in Table 1. We refer to the method described in Sec-
tion 3.2 as All Tracks (AT) and the modified approach in this
section as One Versus All (OVA). The OVA results are are
computed using the same feature set {centroid, RMS, slope,
intercept} that was used in the previous experiment [1].

The table shows an average improvement of 11.66% in
terms of MSE for all instrument types in the dataset. The
OVA method provides increased performance in terms of
the MSE of the weight predictions as well as increased flex-
ibility. The new topology enables the system to mix songs
that do not have the same number of tracks as the normal-
ized RockBand dataset we compiled.
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Backup Bass Drums Guitar Vocal
Feature Error | Feature Error ‘ Feature Error | Feature Error | Feature Error
Bandwidth 0.0511 | Flux 0.0590 | Centroid 0.7322 | Bandwidth 0.0756 | Flux 0.1183
Flux 0.0526 | Bandwidth 0.0590 | RMS 0.8415 | Valley 0.0878 | Centroid 0.1240
Sub-Bands  0.0580 | Slope 0.0618 | Slope 0.8713 | Intercept 0.0908 | Bandwidth  0.1251
Intercept 0.0587 | Intercept 0.0622 | Bandwidth  0.8861 | Slope 0.0920 | Valley 0.1262
Slope 0.0589 | RMS 0.0716 | Intercept 0.8932 | Flux 0.0936 | Peak 0.1302
Peak 0.0607 | Valley 0.0741 | Peak 0.9260 | Sub-Bands 0.0974 | Intercept 0.1316
RMS 0.0629 | Sub-Bands  0.0743 | Valley 0.9381 | RMS 0.0987 | Sub-Bands 0.1317
Centroid 0.0636 | Peak 0.0752 | Sub-Bands 0.9649 | Peak 0.1019 | Slope 0.1318
MFCC 0.0659 | Centroid 0.0801 | MFCC 1.1785 | Centroid 0.1095 | RMS 0.1320
Valley 0.0680 | MFCC 0.0821 | Flux 3.5767 | MFCC 0.1127 | MFCC 0.1373

Table 3. Mean squared error for all features and individual instruments. Features for each instrument are listed in order of best
performance to worst performance. The best combination of features for each instrument is in boldface.

4. FEATURE ANALYSIS

Having shown that the OVA method outperforms the AT
method, we proceed to investigate which features are the
most informative. We explore an extended feature set within
the framework described in the previous section and ana-
lyze the performance of each individual feature as well as

Error Performance for Stacked Features
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Figure 2. MSE versus the number of stacked features used
in training an LDS for each track. Note that the scale of each
sub-plot varies. The minimum is indicated for each track.
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combinations of features. Table 2 lists the array of spec-
tral and time domain features we selected for our experi-
ment [12—-14]. The features are chosen to contain informa-
tion about the total energy of the signal, energy within var-
ious frequency bands, spectral shape and dynamic spectral
evolution. All experiments are performed using LOOCYV on
the entire dataset. In the first experiment, we test the per-
formance of each individual feature using the average MSE
over all songs as our error metric. Table 3 shows the results
for each feature for each track type in the dataset. There
is no single feature that appears to be dominant for mixing
coefficient prediction.

Using these results, we employ sequential feature se-
lection to increase the performance of our system [15].
The best performing feature for each instrument in Table
3 is stacked with each remaining feature, and the MSE for
LOOCYV is computed for each combination. The best fea-
ture from this result is retained and the process is repeated
until all features have been used. The results of this analy-
sis are depicted in Figure 2. The best performing number of
features for each instrument is indicated with a diamond.
Since some of our features may contain similar informa-
tion, adding additional features eventually becomes redun-
dant and the increase in the size of the parameter space out-
weighs the gain in information.

5. RESULTS

The overall results for using the best performing feature en-
semble are detailed in Table 1. The table shows that the
OVA approach more accurately models the mixing coeffi-
cients and the addition of more features greatly improves the
results. Mean squared error does not provide any intuition
about where each model fails or performs well. Figure 3
shows a comparison between the AT and OVA models. Both
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Figure 3. Comparison of ground truth (black) values with AT (gray) and OVA (orange) models. Left: ‘More Than A Feeling’

by Boston. Right: ‘Hammerhead’ by The Offspring.

models were trained with the feature set used in [1]. There is
relatively small deviation in the bass and guitar predictions
for each method on both songs. The most significant differ-
ence is in the ability of the OVA model to track the vocal
weights as evidenced by the relatively flat predictions from
the AT model contrasted with the OVA model predictions
that follow the contour of the ground truth weights.

In Figure 4 we observe the effect of increasing the num-
ber of features used to train the model. The predictions us-
ing the best feature for each instrument from Table 3 are
shown in gray and the highest performing ensemble of fea-
tures is depicted in orange. Adding features creates the most
improvement in the drum track where the contour and bias
of the predictions closely follows the ground truth for both
songs. Although this is only a small sample of the dataset,
this representation informs us of improvements that can be
made to the system.

6. CONCLUSION

Our automatic multi-track mixing system predicts a set of
weighting coefficients for an instrument given an ensem-
ble of acoustic features extracted from audio content. We
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improve upon our previous modeling framework by train-
ing a separate LDS for each instrument rather than model-
ing all weight vectors within a single system. Applying the
One Versus All method of training removes the restrictions
imposed by the All Tracks model and yields better perfor-
mance in predicting the weights for all instruments.

Moreover, we investigate the accuracy of an array of
spectral and time-domain features on predicting the mixing
coefficients. The improved modeling scheme and feature
ensemble chosen through sequential feature selection illus-
trate marked improvement over our previous results. While
this approach to automatic multi-track mixing works well
for our small dataset, in the future we plan to develop a
larger and more varied corpus of songs to explore how ro-
bust the model is.
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