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ABSTRACT

Human emotion responses to music are dynamic processes
that evolve naturally over time in synchrony with the music.
It is because of this dynamic nature that systems which seek
to predict emotion in music must necessarily analyze such
processes on short-time intervals, modeling not just the rela-
tionships between acoustic data and emotion parameters, but
how those relationships evolve over time. In this work we
seek to model such relationships using a conditional random
field (CRF), a powerful graphical model which is trained
to predict the conditional probability p(y|x) for a sequence
of labels y given a sequence of features x. Treating our
features as deterministic, we retain the rich local subtleties
present in the data, which is especially applicable to content-
based audio analysis, given the abundance of data in these
problems. We train our graphical model on the emotional re-
sponses of individual annotators in an 11×11 quantized rep-
resentation of the arousal-valence (A-V) space. Our model
is fully connected, and can produce estimates of the con-
ditional probability for each A-V bin, allowing us to eas-
ily model complex emotion-space distributions (e.g. multi-
modal) as an A-V heatmap.

1. INTRODUCTION

The development of content-based systems for the predic-
tion of emotion (mood) in music continues to be a topic of
increasing attention in the Music-IR community, but thus
far most approaches apply only a singular rating to a song
or clip [1]. Such generalizations belie the time-varying na-
ture of music and make emotion-based recommendation dif-
ficult, as it is very common for emotion to vary temporally
throughout a song. In this work, we investigate the applica-
tion of conditional random fields (CRFs) to the modeling of
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time-varying musical emotion. CRFs are powerful graphi-
cal models which are trained to predict the conditional prob-
ability p(y|x) for a sequence of labels y given a sequence
of features x. Treating our features as deterministic, we re-
tain the rich local subtleties present in the data, which is
especially promising in content-based audio analysis where
there is no shortage of rich data. Furthermore, the system
provides a model of both the relationships between acous-
tic data and emotion space parameters and also how those
relationships evolve over time.

Human judgements are necessary for deriving emotion
labels and associations, but perceptions of the emotional
content of a given song or musical excerpt are bound to vary
and reflect some degree of disagreement between listeners.
Following from our previous work, we model human emo-
tion responses to music in the arousal-valence (A-V) repre-
sentation of emotion [2–4], where valence indicates positive
vs. negative emotions and arousal reflects emotional inten-
sity [5]. In our prior approaches, we modeled our emotion
space distribution as a single two-dimensional Gaussian dis-
tribution, and trained multivariate regression systems to pre-
dict the parameters of the distribution directly from acoustic
features [3, 4]. Using that representation, we found model-
ing the dynamics of the continuous parameter space to be a
very challenging problem. We considered a Kalman filter-
ing approach, but while this technique provided smooth es-
timates over time, the limited model complexity was unable
to cover a wide variance in emotion space dynamics [4].

In applying CRFs to the problem of predicting emotion
in music, instead of modeling the ambiguity of emotion a-
priori and representing the distribution of our emotion space
parameters as the ground truth, we present the training algo-
rithm with the individual user label sequences, thus allow-
ing the model to learn the range of emotion responses to a
given piece. In our application of the CRF we must also as-
sign emotion space meanings to the states of the model, and
in doing so we discretize each label in our sequences to an
11×11 grid. While this is a significant simplification, our
findings indicate that it provides sufficient granularity. Fur-
thermore, our trained models are fully connected, and can
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be used to model complex distributions in emotion as an A-
V heatmap. These heatmaps can model arbitrary modes and
distributions, in contrast to our previous approach, which
constructed uni-modal Gaussian A-V predictions.

2. BACKGROUND

The general approach to implementing automatic mood de-
tection from audio has been to use supervised machine
learning to train statistical models based on acoustic fea-
tures [1]. Chan et al. recently investigated modeling emo-
tion as a distribution [6]. Their approach investigated mod-
eling the ground truth as a Gaussian distribution as well as a
heatmap and used support vector regression for the distribu-
tion prediction. However, their corpus was limited to only
60 songs, and the work only focused on applying a singular
rating to an entire clip.

Conditional random fields have only just begun to gain
attention as a tool for content-based audio prediction. Re-
cently, Joder et al. successfully applied them to the task
of audio-to-score matching, detecting more than 95% of the
note onset locations to within 100 ms [7].

3. GROUND TRUTH DATA COLLECTION

In prior work, we developed an online collaborative annota-
tion activity based on the two-dimensional A-V model [8].
In the activity, participants used a graphical interface to in-
dicate a dynamic position within the A-V space to anno-
tate 30-second music clips. Each subject provided a check
against the other, reducing the probability of nonsense la-
bels. The song clips used were drawn from the “uspop2002”
database. 1 Using initial game data, we constructed a cor-
pus of 240 15-second music clips, which were selected to
approximate an even distribution across the four primary
quadrants of the A-V space.

In more recent work we have developed a Mechanical
Turk (MTurk) activity to collect annotations on the same
dataset [9]. The purpose of the MTurk activity was to pro-
vide a dataset collected through more traditional means to
assess the effectiveness of the game to determine any biases
induced though collaborative labeling. Overall, the datasets
were shown to be highly correlated, with arousal r=0.712,
and a valence r=0.846. This new dataset has been made
available to the research community, 2 and is well anno-
tated, containing 16.93± 2.690 ratings per song and 4, 064
label sequences. In this work we demonstrate the applica-
tion of this densely annotated corpus for training our condi-
tional random fields.

1 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
2 http://music.ece.drexel.edu/research/emotion/moodswingsturk

3.1 Statistical Analysis

In applying relational learning methods to data, we gain the
ability to model statistical dependencies from one observa-
tion to the next. To verify that our data collection exhibits
such dependencies, we compute the correlation coefficients
of our label sequences from one frame to the next and from
the first frame of each sequence to the last. In these cases,
we treat the individual discretized user labels as variables,
and each second as observations of those variables. Statis-
tics of the squared correlation coefficients (r2) are provided
for the full dataset in Table 1.

Dimension r2 Frame-Frame r2 First-Last Frame

Arousal 0.944± 0.093 0.507± 0.242
Valence 0.951± 0.097 0.524± 0.235

Table 1. Statistics of ground truth squared correlation co-
efficient (r2) from one second to the next and from the first
second to the last.

Overall, the dataset shows high correlation from one
frame to the next, and lower correlation between the first
frame and last frame. In other words, the current emotion
is highly dependent upon the emotion of the prior second,
and on average each sequence exhibits a significant change
in emotion from beginning to end. As a result, the dataset is
a good match for graphical modeling techniques.

4. ACOUSTIC FEATURE COLLECTION

In previous work we have found there to be no single domi-
nant feature, but rather many that play a role (e.g., loudness,
timbre, harmony) in determining the emotional content of
music [2,3]. Since our experiments focus on the tracking of
emotion over time, we chose to focus solely on time-varying
features. Our collection (Table 2) consists of the two high-
est performing features in prior work, Spectral Contrast and
MFCCs [2, 3], as well as the Echo Nest Timbre (ENT) fea-
tures.

Feature Description

Spectral Contrast
[10]

Rough representation of the harmonic
content in the frequency domain.

Mel-frequency
cepstral coefficients
(MFCCs) [11]

Low-dimensional representation of
the spectrum warped according to the
mel-scale. 20 dimensions used.

Echo Nest Timbre
features (ENTs) 3

Proprietary 12-dimensional beat-
synchronous timbre feature

Table 2. Acoustic feature collection for music emotion pre-
diction.

3 http://developer.echonest.com
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ENTs have been receiving significant attention lately due
to the release of the million song dataset, 4 and we therefore
investigate their utility in musical emotion prediction.

5. CONDITIONAL RANDOM FIELDS

In this section we give a brief overview of conditional ran-
dom fields (CRFs), mainly focused on practical considera-
tions in implementation. The interested reader is directed
to [12, 13] for further details.

5.1 Overview

Traditional approaches for graphical modeling (e.g. hid-
den Markov models) seek to represent the joint probability
p(x,y) between sets of features x and labels y. But in forc-
ing our features into a generative model p(x) we discard
the rich local subtleties present in the data. Furthermore, in
developing models for audio classification tasks, our acous-
tic features are naturally deterministic. With CRFs, as with
logistic regression, we seek to model the conditional proba-
bility p(y|x).

CRFs are trained on sequences, and in the process of
learning them we present the classification system with the
individual user ratings (as opposed to statistics of all users)
recorded in the MTurk task. Using a fully connected model,
we are able to learn a set of transition probabilities from
each class to all others. This means that at each stage in a
testing sequence we can display the transition probabilities
in the form of a heatmap as shown in Figure 1.

Arousal Arousal

Va
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e

Figure 1. Heatmap visualization of CRF transition proba-
bilities. Actual discretization is 11×11.

5.2 Feature Functions

CRFs require the specification of feature functions, which
are used to specify the degree of compatibility between the
features x and labels y. These functions are defined over
all examples, and for a single example are non-zero only
for the labeled class. We train our CRFs using CRF++, 5

a highly efficient general purpose CRF toolkit written in

4 http://labrosa.ee.columbia.edu/millionsong/
5 http://crfpp.sourceforge.net/

C++. CRF++ allows the definition of both unigram and
bigram features, where unigram features are related to the
prediction of a single observation in a sequence (first order
Markov) and bigram features are related to the prediction
of pairs of observations (second order Markov). Unigram
features generate a total of L×N distinct features, where
L is the number of output classes and N is the number of
unique features. Bigram features generate L×L×N distinct
features.

6. EXPERIMENTS AND RESULTS

In the following experiments, we investigate the use of con-
ditional random fields for the prediction of musical emo-
tion. As a baseline for comparing performance of the CRF
in modeling the time-dependencies of our data, we addi-
tionally provide the performance for the CRF when trained
on independent observations as opposed to sequences. Fur-
thermore, to provide a baseline for comparison to our prior
work [3, 4], we provide the prediction accuracy of multiple
linear regression (MLR). To compute the heatmap represen-
tations for MLR, we first predict the mean and covariance
of an emotion-space Gaussian density using multivariate re-
gression, and then integrate the probability density function
under each square of our heatmap.

In all experiments, to avoid the well-known “album-
effect,” we ensure that any songs which were recorded on
the same album are either placed entirely in the training
or testing set. Additionally, each experiment is subject to
5 cross-validations, varying the distribution of training and
testing data sets which are split 70%/30%, respectively.

6.1 Acoustic Feature Representation

All features are initially computed using short-time analysis
windows at a much higher rate than our 1-second emotion
label windows. In order to reduce their frame rate to that
of the labels, spectral contrast and MFCCs are simply re-
windowed via averaging from their original analysis rate (∼
23 msec). The ENTs are re-windowed following their non-
linear analysis frame start times to take into account their
beat-synchronous nature.

Additionally, conditional random fields are highly op-
timized to operate on binary features, and given the high
dimensionality of our data, we found it necessary to con-
vert our features to such a representation. In doing so, each
feature dimension is quantized using 10 equal energy bins,
which for the 14-dimensional case of spectral contrast yields
140 binary features. In early experiments, we investigated
the use of higher discretization levels as well as combining
representations from multiple discretization levels (e.g. 5,
10, 20), but overall found 10 levels to offer the best perfor-
mance.
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6.2 Training Sequence Label Jittering

In discretizing our original label sequences to the 11× 11
grid representation, our CRF models are trained on vector-
ized version of that space by assigning 121 classes. As a
result, the neighbor-relationship of the heatmap grid-cells is
lost in the vector-wise representation, and we therefore in-
vestigate how to improve the models ability to learn such
relationships.

In order to ensure that the CRF learns the spatial rela-
tionships of each class, we train it on additional “jittered”
versions of each label sequence. This has two benefits: it
increases the overall size of our dataset, and it helps the
model to learn the spatial relationships between the differ-
ent classes. In applying our jitter we increase the size of our
dataset by a factor of 10, creating 9 additional sequences for
each sequence in our dataset. Each jittered sequence is cre-
ated by adding a small amount of zero mean Gaussian noise,
biasing the whole sequence by a single point. In initial ex-
periments we modified the number of jittered sequences at
multiple levels between 0 and 50, but found 10 to offer the
best performance.

6.3 CRF Parameterization

As previously discussed, the training of CRFs requires the
selection of feature functions. In our experiments, we elect
to use three different types of features: a simple unigram
node feature for each acoustic feature dimension, a unigram
edge feature that models the change in each feature dimen-
sion between nodes, and a simple bigram (second order) fea-
ture that models the joint probability of the next two states
for arbitrary input. The total number of binary CRF features
for a selected training set is described in Table 3.

Additionally, in the case of the CRF trained on indepen-
dent observations, we remove all but node features, so as
to avoid an artificial decrease in performance. When pre-
senting the training algorithm with independent examples
instead of sequences, feature functions that encode time de-
pendencies that cannot be modeled lead to large decreases
in performance.

The training of graphical models such as CRFs tends to
have a very high computational cost. We ran our experi-
ments on Amazon’s Elastic Compute Cloud (EC2) 6 using
High-CPU Extra Large Instances (c1.xlarge) which provide
access to a 64-bit platform with 8 virtual cores. Shown in
Table 3 is the computation time for each feature domain the
CRF was trained on as well as the number of binary features
created using the specified feature functions.

6 http://aws.amazon.com/ec2/

Feature # CRF Features Compute Time (hrs)

Contrast 210, 782 11.49± 1.245
MFCC 300, 927 11.81± 1.515
ENT 185, 009 12.04± 0.461

Table 3. Computing time analysis for CRF training on each
cross-validation set.

6.4 Evaluating CRF Performance

We begin our analysis by attempting to predict a singular
A-V point at each second in our sequences. These predic-
tions are taken as the means of the CRF heatmaps, which we
compare to the means of the MLR Gaussian distributions. In
the second stage of analysis we investigate the accuracy of
the CRF heatmaps, which we compare to MLR Gaussian
heatmaps.

6.4.1 A-V Mean Prediction

We compute the heatmap mean as the sum of the weighted
A-V coordinate values of each bin center. For each two-
dimensional heatmap we compute,

µa =
∑

ya,yv

P (ya, yv |x) ya,

µv =
∑

ya,yv

P (ya, yv |x) yv. (1)

where ya and yv are the arousal and valence coordinates of
each bin center. The mean values for the ground truth distri-
bution are computed directly in the continuous A-V space.
These results are available in the third column of Table 4.
Overall we see the best performance (minimum mean `2 er-
ror) of 0.122 using the CRF with MFCCs, which is signif-
icantly improved over the best result with MLR, which is
spectral contrast at 0.140.

6.4.2 Heatmap Prediction Evaluation

As previously stated, because the CRF is a fully connected
model, we can use the transition probabilities to construct an
A-V heatmap. But the ground truth heatmap must be esti-
mated empirically as a two dimensional histogram, which is
a difficult task. In traditional generative estimation the goal
is to fit a probabilistic model to data, and derive a smooth
function, even with a small dataset. But with histograms, a
small amount of data can lead to sparse, blocky estimates,
and a massive amount of data is needed to achieve the true
smooth distribution.

As a result of this we have chosen the earth mover’s dis-
tance (EMD) [14] to be our primary metric for comparing
these histograms, which can be thought of as the minimum
cost of transforming one heatmap into the other. Using this
metric we can take into account the weight of adjacent bins,
which overall provides a more accurate comparison of the
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Acoustic Prediction A-V Mean Heatmap Earth Heatmap Error Heatmap Error Heatmap Error
Feature Method `2 Error Mover’s Distance Unsmoothed (×10−2) Smoothed G.T. (×10−2) Smoothed (×10−2)

Contrast CRF 0.130± 0.007 0.180± 0.007 1.300± 0.007 0.539± 0.002 0.342± 0.0142
MFCC CRF 0.122± 0.004 0.173± 0.004 1.300± 0.000 0.541± 0.010 0.326± 0.008
ENT CRF 0.130± 0.004 0.179± 0.003 1.300± 0.009 0.510± 0.010 0.337± 0.009

Contrast CRF-I 0.138± 0.006 0.188± 0.005 1.323± 0.007 0.452± 0.012 0.355± 0.011
MFCC CRF-I 0.135± 0.004 0.186± 0.003 1.319± 0.006 0.459± 0.007 0.350± 0.008
ENT CRF-I 0.144± 0.005 0.194± 0.004 1.331± 0.005 0.446± 0.007 0.367± 0.009

Contrast MLR 0.140± 0.005 0.213± 0.009 1.082± 0.010 0.580± 0.018 0.460± 0.018
MFCC MLR 0.141± 0.005 0.208± 0.008 1.076± 0.009 0.570± 0.021 0.448± 0.021
ENT MLR 0.153± 0.005 0.204± 0.007 1.068± 0.009 0.560± 0.018 0.440± 0.018

Table 4. Emotion prediction results for conditional random fields (CRF) trained on sequence examples as well as independent
examples (CRF-I). Multiple linear regression (MLR) provided as baseline.

two heatmaps. These results are in the fourth column of Ta-
ble 4, where we find the CRF to be the best performer with
an EMD of 0.173, which is significantly better than the CRF
trained on independent samples at 0.186 and MLR at 0.213.

But we also investigate the absolute pixel error between
the predicted and ground truth heatmaps. These results are
shown in the fifth column of Table 4, and we find that MLR
appears to be performing slightly better than the CRF. This
result is not surprising given the sparsity that our ground
truth heatmaps exhibit, which is to be expected with 121
histogram bins computed from an average of 16.93 rat-
ings. The MLR method which predicts Gaussian distribu-
tions guarantees a smooth distribution, which will produce a
lower pixel error if the ground truth is sparse or blocky than
the CRF which takes arbitrary shapes. But it can be easily
demonstrated that the CRF is more accurate by applying a
simple smoothing function to the ground truth.

To smooth out the blocking artifacts from sparsity we ap-
ply a simple 2-d Gaussian filter. This process applies a light
smoothing without altering the mean of the data. These re-
sults are shown in the sixth column of Table 4. Here the
CRF performs slightly better, and the performance similar-
ity is most likely because the CRF is producing rough edges
compared to the smooth MLR predictions that are computed
from the Gaussian PDF. An interesting result is that the in-
dependently learned CRFs perform the best here. This is
most likely because they produce more uniform transition
probabilities due to their training method.

To compensate for blocking artifacts in the CRF predic-
tions, we apply a smoothing filter to them as well. Initial
experiments showed applying the same filter to the MLR
heatmaps improved performance there too, so to keep our
analysis consistent we apply the filter them as well. We
examine the differences in heatmaps using mean absolute
error, and these results are shown in the seventh column of
Table 4. In these results we see again that the CRF is per-
forming significantly better than MLR.

6.4.3 Visualizing the Results

Shown in Figure 2 are the CRF heatmap predictions for
eight seconds of the song “Something About You,” by
Boston. The colormap of these heatmaps assigns red to ar-
eas of high density, blue to low, and uses the color spec-
trum to assign colors in between. This clip was selected be-
cause of the large change in emotion that occurs at second
29, where the song transitions from a low-energy, negative-
emotion introduction into a high-energy, positive-emotion
hard-rock verse. The system tracks the transition very accu-
rately, showing a brief amount of uncertainty at second 30
in terms of positive or negative emotion, and finally settles
on positive emotion at second 31. Prediction videos using
the system are also available online. 7

7. DISCUSSION AND FUTURE WORK

We have demonstrated conditional random fields to be a
powerful tool for modeling time-varying musical emotion.
The CRF approach is shown to be superior to MLR both
at predicting single A-V mean values as well as full emo-
tion space heatmaps. Overall, the best performing feature
for CRF prediction is MFCCs, which differs from our MLR
method, where spectral contrast performs best. This perhaps
indicates that there is more information to be gained out of
MFCCs when modeling the temporal evolution of emotion.

Using the earth mover’s distance we are able to better
analyze the similarity between heatmaps by also taking into
account adjacent bin densities. While the MLR method ap-
pears to perform slightly higher when the ground truth dis-
tributions are not smoothed, this is a result of blocking ar-
tifacts in the ground truth. The the Gaussian density is a
smooth function, which is much more likely to be similar
to a sparse ground truth distribution than the CRF predic-
tions, which take on arbitrary shapes and are not necessarily

7 http://music.ece.drexel.edu/research/emotion
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Emotion Space Heatmap Prediction
Boston: Something About You, 25-32 secs 

Figure 2. Emotion space heatmap prediction using conditional random fields. Shown is the predicted emotion from the
beginning of the song “Something About You,” by Boston. These figures demonstrate the system tracking the emotion through
the low-energy, negative-emotion introduction, and through the transition at second 29 into a high-energy, positive emotion
rock verse. In these figures, red indicates the highest density and blue is the lowest.

as smooth. Overall, the ground truth representation could
significantly benefit from more data.

In a future approach, the CRF performance could be im-
proved by developing a model which can encapsulate the
A-V spatial relationships between CRF nodes, which could
potentially produce smoother estimates without any need for
label jittering. In such a model, we could also limit the con-
nections between local heatmap pixels, thus allowing us the
ability to tradeoff model complexity for the flexibility of our
emotion space distribution flexibility.
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