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ABSTRACT

This work introduces Mutual Proximity, an unsupervised
method which transforms arbitrary distances to similarities
computed from the shared neighborhood of two data points.
This reinterpretation aims to correct inconsistencies in the
original distance space, like the hub phenomenon. Hubs are
objects which appear unwontedly often as nearest neighbors
in predominantly high-dimensional spaces.

We apply Mutual Proximity to a widely used and stan-
dard content-based audio similarity algorithm. The algo-
rithm is known to be negatively affected by the high number
of hubs it produces. We show that without a modification
of the audio similarity features or inclusion of additional
knowledge about the datasets, applying Mutual Proximity
leads to a significant increase of retrieval quality: (1) hubs
decrease and (2) the k-nearest-neighbor classification rates
increase significantly.

The results of this paper show that taking the mutual
neighborhood of objects into account is an important aspect
which should be considered for this class of content-based
audio similarity algorithms.

1. INTRODUCTION

A number of audio similarity algorithms which have been
published so far are affected by the so called “hub prob-
lem” [1, 4, 6, 16]. Hubs are over-popular nearest neighbors,
i.e. the same objects are repeatedly identified as nearest
neighbors. The effect is particularly problematic in algo-
rithms for similarity search, as the same “similar” objects
are found over and over again. In 2010 Radovanović et
al. [19] published an in-depth work about hubs, showing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

© 2011 International Society for Music Information Retrieval.

that they are yet another facet of the curse of dimension-
ality. Radovanović also showed that “bad hubs” (objects
which are a bad retrieval result, in addition to being a hub)
can degrade the retrieval quality of algorithms significantly.

The work of this paper was inspired by these problems
and presents a straightforward method to reduce the “hub
problem” significantly. In the case of the standard audio
similarity algorithm we use in this work we can show how to
reduce its number of hubs while simultaneously increasing
its retrieval quality.

2. RELATED WORK

Nearest neighbor search (NNS) is a well defined task: given
an object x find the most similar object in a collection of
related objects. In the simplest case the problem is solved
by a linear search, computing a distance/similarity between
x and all other objects, sorting the distances/similarities to
return the top k-nearest neighbors.

A natural aspect of nearest neighbor relations is that they
do not need to be symmetric: that is, object y is the nearest
neighbor of x, but the nearest neighbor of y is another object
a (a 6= x). This behavior is problematic if x and y belong
to the same class but a does not, thus it is said a violates the
pairwise cluster stability [3]. Although a is, in terms of the
distance measure, the correct answer to the nearest neighbor
query for y, it may be beneficial to use a distance measure
enforcing symmetric nearest neighbors. Thus a small dis-
tance between two objects would be returned only if their
nearest neighbors concur. Figure 1 illustrates this effect.

Repairing sometimes contradicting, asymmetric nearest
neighbor information in a similarity measure was already in-
vestigated in a number of works. The first publication which
exploits common near neighbor information dates back as
far as 1973. Jarvis and Patrick [11] propose a “Shared Near
Neighbor” similarity measure to improve the clustering of
non-globular clusters. As the name may suggest the Shared
Near Neighbor (SNN ) similarity is based on computing the

79



Poster Session 1

(a)

(a) Original nearest neigh-
bor relations

(b)

(b) Desired nearest neigh-
bor relations

Figure 1: Schematic plot of two classes (black/white filled
circles). Each circle has its nearest neighbor marked with
an arrow: (a) violates the pairwise stability clustering as-
sumption, (b) fulfills the assumption. In many applications
(b) would be the desired nearest neighbor relation for the
dataset.

overlap between the k nearest neighbors of two objects x, y:

SNNk(x, y) = |NNk(x) ∩NNk(y)|. (1)

Shared Near Neighbor similarity was also used by Ertöz
et al. [5] to find the most representative items in a set of
objects. Jin et al. [12] use the Reverse Nearest Neighbor
(RNN) relation to define a general measure for outlier de-
tection.

Other work which takes advantage of the asymmetry of
nearest neighbors to correct the distance space was per-
formed by Pohle et al., who propose a method named Prox-
imity Verification (PV ) [17]. Two objects are considered
similar if both objects have a low nearest neighbor rank
according to their counterpart. An unsupervised technique
using the local neighborhood of objects to improve the re-
trieval accuracy of cover song detection systems is proposed
by Lagrange and Serrà [13].

An effect of high dimensionality which affects particu-
larly NNS is the hub problem. Berenzweig [4] suspected a
connection between the hub problem and the high dimen-
sionality of the feature space. Radovanović et al. [19] were
able to provide more insight by linking the hub problem to
the property of distance concentration in high dimensions.
Concentration is the surprising characteristic of all points in
a high dimensional space to be at almost the same distance
to all other points in that space. It is usually measured as a
ratio between spread and magnitude, e.g. the ratio between
the standard deviation of all distances to an arbitrary refer-
ence point and the mean of these distances. If the standard
deviation stays more or less constant with growing dimen-
sionality while the mean keeps growing, the ratio converges
to zero with dimensionality going to infinity. In such a case

it is said that the distances concentrate. This has been stud-
ied for Euclidean spaces and other `p-norms. Radovanović
presented the argument that in the finite case, some points
are expected to be closer to the center than other points and
are at the same time closer, on average, to all other points.
Such points closer to the center have a high probability of
being hubs, i.e. of appearing in nearest neighbor lists of
many other points.

Hubs were observed in music information retrieval [2],
image [9] and text retrieval [19] making this phenomenon a
general problem for information retrieval and recommenda-
tion algorithms.

A music similarity algorithm which is adversely affected
by the “hub problem” is the method published by Mandel
and Ellis [15]. The algorithm is widely seen as a standard
method for computing music similarity and its hub prob-
lems have already been noticed and investigated (for exam-
ple by Flexer et al. [6]). The algorithm uses a timbre model
computed from the audio signal for music similarity. In its
core the basic method stores the music similarity informa-
tion for each music piece in a single multivariate Gaussian,
which is estimated from the Mel Cepstrum Frequency Co-
efficients [14] (MFCCs) of the audio signal. To compute the
similarity usually closed form solutions of Kullback-Leibler
related divergences are used.

3. AUDIO SIMILARITY

This work uses the basic algorithm from Mandel and El-
lis [15] to compute audio similarity. To compute the features
we use 25 MFCCs for each 46ms of audio with a 23ms hop
size. This corresponds to a window size of 1024 and a hop
size of 512 audio samples at a sampling rate of 22.05kHz.
A Gaussian model is estimated from the MFCC represen-
tation of each song so that finally a single timbre model is
described by a 25-dimensional mean vector, and a 25× 25-
dimensional covariance matrix. We use the Matlab music
analysis (MA) toolbox 1 to compute the features.

To compute the similarity between two timbre models
we use a Jensen-Shannon approximation (js), a stable sym-
metrized version of the Kullback-Leibler divergence from
the multivariate normal (MVN) toolbox 2 .

4. THE METHOD

In this section we introduce a method that is based on: (i)
transforming distances between points x and y into proba-
bilities that y is closest neighbor to x given the distribution
of all distances to x in the data base, (ii) combining these
probabilistic distances from x to y and y to x via the prod-
uct rule. The result is a general unsupervised method to

1 http://www.pampalk.at/ma/
2 http://www.ofai.at/~dominik.schnitzer/mvn

80



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

transform arbitrary distance matrices to matrices of proba-
bilistic mutual proximity (MP). The first step of transforma-
tion to probabilities re-scales and normalizes the distances
like a z-transform. The second step combines the proba-
bilities to a mutual measure akin to shared near neighbor
approaches. By supporting symmetric nearest neighbors the
method leads to a natural decrease of asymmetric neighbor-
hood relations and as a result, to a decrease of hubs.

4.1 Preliminaries

Given a non-empty set M with n objects, each object mx ∈
M assigned an index x = 1..n. We define MP to be used for
a divergence measure d : M ×M → R with the following
properties:

• non-negativity: d(mx,my) ≥ 0,

• identity: d(mx,my) = 0, ⇐⇒ mx = my ,

• symmetry: d(mx,my) = d(my,mx).

Individual elements mx ∈ M are referenced in the text by
their index x. The distance between two elements refer-
enced by their index is denoted as dx,y .

4.2 Mutual Proximity (MP)

In a first step for each element x the average distance µ̂x

and the standard deviation σ̂x of all its distances dx,i=1..n

in M is computed, estimating a Gaussian distance distri-
bution X v N (µ̂x, σ̂x) for each element x (Equation 2).
This is based on the assumption that our data is normally
distributed due to the central limit theorem. The estimated
normal X thus models the spread of distances from x to all
other elements in M :

µ̂x =
1

n

n∑
i=1

dx,i, σ̂2
x =

1

n

n∑
i=1

(dx,i − µ̂x)2.

Figure 2a shows a schematic plot of the probability den-
sity (pdf) function which was estimated for the distances of
x. The mean distance (µ̂x) is in the center of the density
function. Objects with a small distance to x (i.e. objects
with high similarity in the original space) find their distance
on the left-side of the density function. Note that the left-
most distance in the Gaussian is dx,x = 0.

By estimating a normal distributionX from the distances
dx,i=1..n, it is possible to reinterpret the distance dx,y as the
probability that y is the nearest neighbor of x, given the dis-
tance dx,y and normal X (that is the probability that a ran-
domly drawn element z will have a distance dx,z > dx,y):

P (X > dx,y) = 1− P (X 5 dx,y)

= 1−Fx(dx,y).

Fx denotes the cumulative distribution function (cdf) of
the normal distribution defined by X . The probability of an
element being a nearest neighbor of x increases the more
left its distance is on the x-axis of the pdf (cf. Figure 2a). To
illustrate that Figure 2b plots the probability of y being the
nearest neighbor of x given dx,y (the filled area).

Transforming all original distances into the probability
that a point y is a nearest neighbor of x offers a convenient
way to combine this with the opposite view (the probability
x is the nearest neighbor of y) into a single expression.

Definition 1 Under the assumption of independence, we
compute the probability that y is the nearest neighbor of x
given X (the Normal defined by the distances dx,i=1..n) and
x is the nearest neighbor of y given Y (the Normal defined
by the distances dy,i=1..n). We call the resulting probability
Mutual Proximity (MP):

MP (dx,y) = P (X > dx,y ∩ Y > dx,y)

= P (X > dx,y) · P (Y > dx,y),∀dx,y > 0
(2)

Clearly the assumption of independence of P (X) and
P (Y ) will be violated, still MP has, as we will show empiri-
cally, largely positive effects especially in high dimensional
data spaces with high hubness.

4.3 Properties

MP is symmetric MP (dx,y) = MP (dy,x) and its values
are normalized to the interval [0− 1]. Note that the method
can therefore be easily used to linearly combine multiple
different distance measures.

MP will only be high if both nearness probabilities are
high and thus if their distance indicates a close mutual rela-
tionship in terms of their distance distributions. If this is not
the case, i.e., one of the probabilities is small, their MP will
be small too.

4.4 Matlab

The following Octave 3 /Matlab 4 code snippet demonstrates
the simplicity of the method. It computes DMP for a given
n× n distance matrix D:

m = mean(D);
s = std(D);

for i = 1:n
for j = (i+1):n
D_MP(i, j) =

(1 - normcdf(D(i, j), m(i), s(i))) *
(1 - normcdf(D(i, j), m(j), s(j)));

end
end

3 http://www.gnu.org/software/octave/
4 http://www.mathworks.com/products/matlab/
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(b) The shaded area shows the probability that y is the nearest neighbor of
x based on the distance dx,y and X . The closer y is to x (the smaller dx,y)
the higher the probability.

Figure 2: Schematic plot of the probability density function of a normal distribution X v N (µ̂x, σ̂x) which was estimated
from the distances dx.

5. EVALUATION

To evaluate the effects of using MP for the selected au-
dio similarity algorithm we use eight different music col-
lections (see Table 1 for collection characteristics like col-
lection size or numbers of genres). The collection sizes
range from 100 to 16 000 music pieces. Four collections
(homburg [10], ismir2004-train 5 and ismir2004-dev, ball-
room [7]) are public benchmark sets. The other collections
(DB-S, DB-XL, DB-RBA, DB-L) are private benchmark
collections. Each individual song in the collections is as-
signed to a music genre.

5.1 Metrics

The following metrics are used to evaluate the Mutual Prox-
imity transformation with the music similarities:

5.1.1 Leave-One-Out, k-Nearest Neighbor Genre
Classification (Ck)

We compute the k-nearest neighbor classification accuracy
using a leave-one-out genre classification. The k-NN classi-
fication accuracy is denoted withCk. Higher values indicate
more consistent retrieval quality in terms of the class/genre.
It is one of the standard methods to measure the retrieval
quality of audio similarity algorithms.

5.1.2 Goodman-Kruskal Index (IGK)

To evaluate the impact of the MP transformation, we also
compute the Goodman-Kruskal Index [8]. IGK is a ratio
computed from the number of concordant (Qc) and discon-
cordant (Qd) distance tuples. A distance tuple is concordant
if di,j < dk,l and objects i, j are from the same classes and
k, l from different classes. It is is discordant if di,j > dk,l.

5 http://ismir2004.ismir.net/genre contest/index.htm

IGK is bound to the interval [−1; 1]. The higher it is, the
more concordant distance tuples were found, thus indicating
tighter and better clustering.

5.1.3 Hubness (Sk)

We also compute the hubness [19] for each collection. Hub-
ness is defined as the average skewness of the distribution of
k-occurrences (Nk):

Sk =
E
[
(Nk − µNk

)3
]

σ3
Nk

Positive skewness indicates high hubness (high number
of hub objects), skewness values around zero a more even
distribution of nearest neighbors.

5.2 Results

Table 1 displays the full evaluation results of the selected au-
dio similarity algorithm according to the metrics introduced
in the previous section. In the table each collection spans
two rows, the first row showing the evaluation metrics com-
puted for the original data space and the second row listing
the values when using MP.

The collections listed in the table are sorted by their hub-
ness value in the original distance space. From the high
hubness values (1.93 − 9.29) the hub problem of the audio
similarity algorithm can be clearly seen. For example, a sin-
gle hub song in DB-L is occurring in over 10% of all k = 5
nearest neighbor lists in the collection. On the contrary hub-
ness is sharply decreasing when looking at the values MP
produces, which may indicate that MP creates a more evenly
spread object space. The average hubness values per collec-
tion decrease from 4.6 to 1.2; Figure 4 shows the individual
hubness values in a plot. Another metric which increases
for all collections is the Goodman-Kruskal index(IGK), in-
dicating a better separation of genres in the distance space
after using MP.
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Name, # Collection Genres n Distance Ck=1 +/- Ck=5 +/- Sk=5 IGK

DB-S 16 100 js 57.0% 5.0 42.0% 7.2 1.93 0.59
1 MP 62.0% 49.2% 0.65 0.74
ballroom 8 698 js 54.7% 4.9 46.3% 4.8 2.63 0.16
2 MP 59.6% 51.1% 1.05 0.20
ismir 2004 (tr) 6 729 js 82.9% 3.4 73.6% 3.2 3.61 0.35
3 MP 86.3% 76.8% 1.15 0.41
ismir 2004 (tr+dev) 6 1458 js 86.5% 3.8 80.6% 3.3 4.22 0.37
4 MP 90.3% 83.9% 1.31 0.42
homburg 9 1886 js 46.7% 3.7 43.6% 3.1 4.26 0.30
5 MP 50.4% 46.7% 1.33 0.34
DB-XL 21 16778 js 55.9% 5.1 46.6% 5.5 4.69 0.12
6 MP 61.0% 52.1% 1.37 0.19
DB-RBA 36 3423 js 51.4% 4.7 41.6% 4.8 5.77 0.26
7 MP 56.1% 46.4% 1.69 0.31
DB-L 22 2526 js 77.2% 5.0 68.1% 5.7 9.29 0.47
8 MP 82.2% 73.8% 1.16 0.55

Table 1: The detailed evaluation results comparing the use of MP with a standard variant. The evaluation criteria are described
in Section 5.
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Figure 3: Using MP increases the genre 1/5-NN classifica-
tion rates of each music collection significantly.
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Figure 4: Hubness values decrease when using the MP; a
desirable property for a music recommendation algorithm.

We also compute the Ck=1 and Ck=5 genre classifica-
tion rates. When comparing the two values computed for
the original audio similarity measure and MP, we see that
in all collections the retrieval quality in terms of genre clas-
sification rates increases noticeable when MP is used. For
k = 1 classification increases on average by 4.5%-points,
for k = 5 on average by 4.7%-points. Figure 3 and Table 1
(columns +/-) show the increase in 1/5-NN genre classifica-
tion rates per collection.

5.3 Summary

To summarize the evaluation we can see that all metrics we
computed to evaluate the impact of MP lead to significant
improvements in the retrieval quality of the basic audio sim-
ilarity measure proposed by Mandel and Ellis [15] in 2005.
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In the case of the homburg and ismir 2004 music genre
collections its performance is now very close to the reported
performance of the audio similarity algorithm by Pohle et
al. [18] which ranked top in the 2009/10 MIREX (task: au-
dio similarity and retrieval) evaluations. Their quite sophis-
ticated algorithm uses MFCCs, Spectral Contrast features,
“Harmonicness”, “Attackness” and a Rhythm component
(Table 2).

Collection Pohle [18] Mandel [15] Mandel+MP
homburg 50.9% 46.7% 50.4%
ismir 2004 (tr) 87.6% 82.9% 86.3%
ismir 2004 (tr+dev) 90.4% 86.5% 90.3%

Table 2: Nearest-neighbor (k = 1) leave-one-out- genre
classification accuracy comparison using MP. The numbers
from Pohle are taken from the referenced paper [18].

6. DISCUSSION AND FUTURE WORK

The authors find it very exciting to see the potential for im-
provements that one of the most basic content-based audio
similarity algorithms still offers without any modification
of its MFCC similarity features. Without using any class
information and only by using a simple unsupervised trans-
formation rewarding common neighbors, the long standing
problem of hub songs is alleviated and genre classification
rates for the algorithm can be increased significantly.

As Mutual Proximity can be used with arbitrary distance
measures it is also interesting to study the effects of MP on
datasets from different research areas. Preliminary tests in
that direction show that MP has in fact similar beneficial
effects on any high dimensional dataset suffering from high
hubness in its original distance space.
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