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ABSTRACT

We consider the problem of transposition and time-warp
invariant (TTWI) polyphonic content-based music retrieval
(CBMR) in symbolically encoded music. For this setting,
we introduce two new algorithms based on dynamic pro-
gramming. Given a query point set, of sizem, to be searched
for in a database point set, of size n, and applying a search
window of width w, our algorithms run in time O(mnw)
for finding exact TTWI occurrences, and O(mnw2) for par-
tial occurrences. Our new algorithms are computationally
more efficient as their counterparts in the worst case sce-
nario. More importantly, the elegance of our algorithms lies
in their simplicity: they are much easier to implement and to
understand than the rivalling sweepline-based algorithms.

Our solution bears also theoretical interest. Dynamic
programming has been used in very basic content-based re-
trieval problems, but generalizing them to more complex
cases has proven to be challenging. In this special, seem-
ingly more complex case, however, dynamic programming
seems to be a viable option.

1. INTRODUCTION

In this paper we study how to search for excerpts of music in
a large database resembling a given query pattern. We allow
both the query pattern and the database to be polyphonic.
Typically the query pattern constitutes a subset of instru-
ments appearing in the database while the database may
represent a full orchestration of a musical piece. The gen-
eral setting requires methods based on symbolic representa-
tion capable of dealing with true polyphonic subset match-
ing; audio-based methods are only applicable to rudimen-
tary cases where queries are directed to clearly separable
melodies.
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Except for some trivial cases, the straightforward CBMR
approach of linear string representation combined with a
string matching algorithm does not properly capture the poly-
phonic CBMR problem. Recently, a more appropriate, geo-
metric modeling of music has been succesfully used by sev-
eral authors [5–7]. This approach models polyphonic music
very naturally, but usually also takes into account another
important feature intrinsic to the problem: the matching pro-
cess ignores extra intervening notes in the database that do
not appear in the query. Extra notes may occur because of
different polyphonic arrangements, musical decorations and
unexpected noise. Recent geometric methods [2, 3, 6] have
challenged different timing problems. In the first setting,
the occurrences may be tranposed and time-scaled copies
of the query [2, 6]. Under the transposition and time-scale
invariance (the TTSI setting), however, the queries need to
be given exactly in tempo. In a realistic application local
time jittering occur in every note-onset in the query, and a
stronger, transposition and time-warp invariance is required
for a successful matching (the TTWI setting). The latter is
the setting for our algorithms to be introduced. The first
solutions for the TTWI setting was recently presented by
Lemström and Laitinen [3].

Our algorithms are based on the pitch-against-time rep-
resentation of note-on information (see Fig 1). The musical
pieces in a database are concatenated in a single geometri-
cally represented file, denoted by T ; T = t0, t1, . . . , tn−1,
where each element tj ∈ R2 for 0 ≤ j ≤ n − 1 and the el-
ements are sorted in the lexicographic order. Any symbolic
music file is convertible in this representation. Later it may
be possible to convert audio files and sheet music by using
audio transcription and optical music recognition. Although
both processes are error prone, it may be the case that the
resulting representations are usable due to the robustness
of our algorithms against noise. In a typical retrieval case
the query pattern P , P = p0, p1, . . . , pm−1; pi ∈ R2 for
0 ≤ i ≤ m− 1, to be searched for is monophonic and much
shorter than the polyphonic database T to be searched; our
algorithms, however, deal equally well with monophonic
and polyphonic input. Sometimes a search window w is
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Figure 1. On top, an excerpt from Schubert’s Der Leiermann.
Below, the related point-set representation. The points associated
with the vocal part are depicted by squares.

applied and typically w ≤ m, i.e. w ≤ m� n.
The problems under consideration are modified versions

of two problems originally represented in [7]. Below we
give the original problems P1 and P2 (pure transposition
invariance, TI), their transposition and time-scale invariant
versions S1 and S2 (TTSI), and the transposition and time-
warp invariant modifications W1 and W2 under considera-
tion (TTWI). For the partial matches in P2, S2 and W2, one
may either use a threshold α to limit the minimum size of
an accepted match, or to search for maximally sized matches
only.

• Find pure (P1) / time-scaled (S1) / time-warped (W1)
translations of P such that each point in P matches
with a point in T .

• Find pure (P2) / time-scaled (S2) / time-warped (W2)
translations ofP that give a partial match of the points
in P with the points in T .

Fig. 2 gives six query patterns to be searched for in the ex-
cerpt of Fig. 1, exemplifying the six problems P1, S1, W1,
P2, S2 and W2 given above.

Ukkonen et al. introduced online algorithms for problems
P1 and P2 that run in timesO(mn) andO(mn logm) in the
worst case, respectively, and in O(m) additional space [7].
Lemström et al. [4] showed that the practical performance
can be improved at least by an order of magnitude by com-
bining sparse indexing and filtering. P2 is known to belong
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Figure 2. Example queries. For query A an occurrence in Fig. 1
would be found in all the six problem cases P1-2, S1-2, W1-2; for
B in cases P2, S2, W2; for C in S1-2, W1-2; for D in S2, W2; for
E in W1-2 and for F in W2 only.

to a problem family for which o(mn) solutions are conjec-
tured not to exist. Nevertheless, there is an online approxi-
mation algorithm for it running in time O(n log n) [1].

In [6], Romming and Selfridge-Field gave a geometric-
hashing based algorithm for S2 working in time O(wnm3)
and space O(w2n). Lemström [2] generalized algorithms
P1 and P2 to the time-scaled problems S1 and S2. The
algorithms work in O(mΣ log Σ) time and O(mΣ) space,
where Σ = O(wn) when searching for exact occurrences
and Σ = O(nw2) when searching for partial occurrences.

The first algorithms for W1 and W2 were introduced only
very recently in [3]. The sweepline-based algorithms are
further generalizations of those above. In this TTWI case
the windowing takes an invaluable role; the number of false
positives would grow uncontrollably without it. The asymp-
totic time and space complexities, however, remain the same
as with the solution for S1 and S2.

In this paper we introduce new algorithms for the TTWI
setting. Our algorithms are based on dynamic program-
ming and their asymptotic worst case complexities are lower
than those of the earlier rivals: for the case W1 we have
an O(mnw) algorithm; for the W2 case our algorithm runs
in time O(mnw2). In our experiments, however, in usual
query settings the sweepline-based algorithms often outper-
form our dynamic programming algorithms. The main con-
tribution of the new algorithms is in their simplicity which
makes them easy-to-understand and easy-to-implement. In
addition to this elegance, in the worst-case scenario our new
algorithms clearly outperforms the sweepline-based algo-
rithms.

It is also theoretically very interesting to discover that dy-
namic programming is applicable in the TTWI setting. Ap-
plying dynamic progamming for the more straightforward
problems, including the TTSI setting, has thus far proven to
be too challenging.
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DPW2(P, T,w)

1 M = A four-dimensional array, filled with −1
2 for i = 0 to P.size − 1
3 for j = 0 to T.size − 1
4 FILL-M(M,P, T,w, i+ 1, j + 1, 1, 1)
5 REPORT-RESULTS(M)

FILL-M(M,P, T,w, pcur, tcur, x, y)

1 // Return result if it has been already calculated
2 if M [pcur, tcur, x, y] 6= −1
3 return M [pcur, tcur, x, y]
4 // Bounds checking, base case for recursion
5 if tcur ≥ T.size or pcur ≥ P.size
6 return 0
7 best = 0
8 // Do the notes under investigation match each other?
9 if Ttcur.y − Ttcur−y.y == Ppcur.y − Ppcur−x.y

10 a = FILL-M(M,P, T,w, pcur + 1, tcur + 1, 1, 1)
11 best = max(a+ 1, best)
12 // Can we still extend the search inside the window?
13 if y < w
14 a = FILL-M(M,P, T,w, pcur, tcur + 1, x, y + 1)
15 best = max(a, best)
16 // Finally, find the matches with Pp not included
17 a = FILL-M(M,P, T,w, pcur + 1, tcur, x+ 1, y)
18 best = max(a, best)
19 M [pcur, tcur, x, y] = best
20 return best

Figure 3. Pseudocode illustration for DPW2. In DPW1 lines
17-18 need to be removed.

2. ALGORITHMS

In this section we describe two new algorithms to find ex-
act and partial transposition and time-warp invariant occur-
rences of a pattern P from a given database T . To distinct
our new algorithms from the previous sweepline algorithms
W1 and W2 (solving problems W1 and W2), we shall re-
fer to our dynamic programming algorithms by DPW1 and
DPW2, respectively.

The new algorithms require the input to be given as a list
of notes, where each note is represented by a pair (x, y) in
a two-dimensional coordinate system. The x-component of
the pair represents the note-on time, the y-component rep-
resents the pitch of the note. We assume both P and T to
be lexicographically sorted, i.e. a precedes b if and only if
a.x < b.x or a.x = b.x and a.y < b.y.

Let us next introduce some important definitions. A trans-
lation of P with vector f results in P + f = p0 + f, p1 +
f, . . . , pm−1 + f , where pi + f = (pi.x+ f.x, pi.y + f.y).

This translation captures two significant musical phenom-
ena, as f.x aligns the excerpt time-wise, while f.y trans-
poses the excerpt to a lower or higher key. We also define
musical time-scaling with σ, σ ∈ R+. This time-scaling
only affects horizontal translation, i.e. scales only the time
components.

The following examples and definition illustrate the type
of occurrences we aim at finding with the algorithms.

Example 2.1 Let p = 〈3, 1〉, f = 〈2, 5〉 and σ = 2. Then
p+ σf = 〈7, 6〉.

Definition 2.2 tτ0 . . . tτm−1
, a subsequence of T , is a time-

warp occurrence of pπ0 . . . pπm−1 , a subsequence of P , if
for each i, 0 ≤ i ≤ m− 2, there is a time-scaling σi ∈ R+

such that σi(pπi+1 − pπi) = tτi+1 − tτi and 0 ≤ πj < m,
πj < πj+1, 0 ≤ τj < n and τj < τj+1 for all j.

Let us next illustrate the essence of the definition, where
we have an exact time-warping occurrence of P .

Example 2.3 Let p0 = 〈2, 7〉, p1 = 〈4, 8〉, p2 = 〈6, 8〉, p3 =
〈9, 7〉 and t0 = 〈1, 1〉, t1 = 〈2, 3〉, t2 = 〈3, 2〉, t3 = 〈4, 2〉, t4 =
〈5, 1〉. Then t0, t2, t3, t4 is an exact time-warping occur-
rence of p0, p1, p2, p3 with σ0 = 1, σ1 = 1

2 and σ2 = 1
3 .

Had we had t4 = 〈5, 0〉 in Example 2.3, then t0, t2, t3 would
have been a partial time-warping occurrence of P , matching
p0, p1 and p2.

In [3], Lemström and Laitinen defined two problems:
finding exact and partial translation and time-warp invariant
occurrences of P from T . The exact nature of an occurrence
is captured in definition 2.2. These problems can be de-
scribed followingly: in the exact case, we aim to find a sub-
sequence tτ0 , tτ1 , . . . , tτm−1

so that for each pi, i < m− 1,
pi+1.y−pi.y = tτi+1 .y− tτi .y holds. In the partial case, we
aim to find longest subsequence from P for which we can
find a matching subsequence from T , as in the definition 2.2.

In our setting, it is useful to apply a windowing restric-
tion, which states that two consecutive notes in the database
subsequence cannot be more than w notes away from each
other in the database. The window size w is designed to
limit the number of senseless occurrences, and it is also able
to significantly speed up the algorithms.

Our algorithms are recursive in nature, and are very sim-
ilar to each other. We will cover the more complex DPW2
in depth, and pinpoint the differences to DPW1.

In the beginning, the aim of the algorithms is to fill the
M -table by calling function FILL-M (see Fig. 3) with ap-
propriate base states. FILL-M takes 8 parameters, 4 of which
are variables: pcur, tcur, x and y. These variables define the
state FILL-M is currently solving.

FILL-M returns the length of the longest occurrence we
can construct from the state it was given. In the case of
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Figure 4. Time resource performance comparison of W2
and DPW2.

DPW2, the current state is defined by the four parameters.
The parameters define the state followingly: ppcur−x is the
last note chosen from the pattern, ttcur−y is the last note
chosen from the database, whereas ppcur, ppcur+1, . . . , pm−1

and ttcur, ttcur+1, . . . , tn−1 are the notes that can be se-
lected in future from pattern and database, respectively.

In the case of DPW2, FILL-M has at maximum three pos-
sible options in any state. FILL-M evaluates, which of the
options is the best one, and returns the length of the longest
occurrence. If the note under investigation can be legally
added to the pattern, then the algorithm adds the note, and
moves on to find new ones. Also, if we have not yet reached
the windowing limit, then we can move on without adding
any notes, and finding a new candidate further away in the
database. Our third option, which is available in the case of
DPW2, is skipping ppcur altogether and not including it to
the match at all. In the case of DPW1, we can never skip any
ppcur, since otherwise the match being constructed would
not be exact anymore.

The algorithm can legally add notes to the occurrence, if
note pairs (ppcur−x, ppcur) and (ttcur−y, ttcur) match each
other under the translation and time-warp invariances, i.e.
ppcur.y − ppcur−x.y = ttcur.y − ttcur−y.y. Then we can
call FILL-M recursively with a state (pn, tn, xn, yn) where
xn = yn = 1, pn = pcur + 1 and tn = tcur + 1. This
means that in the new state, the previous notes that were
picked from pattern and database, were ppn−1 and ttn−1,
respectively. Naturally, in the new state, we can find new
matching notes from ppn

and ttn onwards.
Also, if the parameters for FILL-M are same that have

been used previously, then the algorithm can avoid calculat-
ing this state again, since every time FILL-M is called with
the same parameters, it has to return the same result. There-
fore every time we have finished calculating a state, we can
store the result, and return the stored result whenever FILL-

Figure 5. Time resource performance comparison of W2
and DPW2. Database used represented the worst case sce-
nario for W2.

M is again called with the same parameters.
The case of DPW1 is very similar to that of DPW2. In

DPW1, however, we cannot allow the algorithm to skip any
notes from the pattern, which means that x will always be 1.
As x is not a variable anymore, we do not have to store it in
the M -table; it is initialized it to be 3-dimensional.

As FILL-M requires that at least one note has been se-
lected from both the pattern and the database, we must ini-
tialize theM -table by calling FILL-M with all possible com-
binations of first notes (see Fig. 3). Once the M -table is
filled, we can construct the matches we are interested in by
investigating the M -table in a similar fashion to the way
FILL-M does. Also, if we are only interested in the length
of the longest occurrence, we do not need to investigate M -
table afterwards at all, as FILL-M itself returns the length of
the longest occurrence.

The time complexities for DPW1 and DPW2 areO(mnw)
and O(mnw2), respectively. The number of states depends
of the possible values of the variables. The variables can
vary followingly: 0 ≤ pcur < m, 0 ≤ tcur < t, 1 ≤ x ≤
w and 1 ≤ y ≤ w. In DPW1 x is not a variable, so there are
O(mnw) states, and in DPW2 we get w times more states,
due to the fact that x can vary. Since the amount of calcula-
tion in each state is constant, the time complexities become
simply the number of states in both cases.

3. EXPERIMENTS

We compared the performance of W2 to that of DPW2 in
different scenarios, and also W1 against DPW1 in a typical
scenario. In our experiments, we used music data from Mu-
topia database so that the pieces of music were concatenated
together to form a large database. In the worst case compar-
ison databases and patterns were specifically tailored. In
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Figure 6. Time performance comparison of W1 and DPW1.

all tests, we kept the pattern and window sizes constant,
m = w = 10.

It was expected that in cases where the database size is
small, W2 would be slightly faster than DPW2, since the
complexity difference would not be able to kick in with
smaller database sizes, and the ability of being able to skip
non-compact matches would outweigh the additional loga-
rithmic term. However, it seemed likely that DPW2 would
become gradually faster with larger database sizes when com-
pared with W2.

In our experiments, W2 outpeformed DPW2 in the smaller
cases, as expected. With growing database sizes, however,
DPW2 was not able to catch up, and instead the performance
difference became even larger in favour of W2.

It seems that the fact that W2 calculates only the compact
matches, while DPW2 calculates exactly all matches, is re-
sponsible for the difference. Even though theoretical time
complexity suggests that W2 should eventually be slower
with larger databases, it seems that in a typical setting the
ability of W2 to eliminate matches grows faster than the ad-
ditional logarithmic term, as depicted in Fig. 4. This sug-
gests that the expected complexity of W2 would be signifi-
cantly smaller than its worst-case complexity.

The property of being able to skip non-compact matches
is even more visible in the exact case, where DPW1 is signif-
icantly slower than W1 in a real-world scenario (see Fig. 6).
It seems that the penalty for finding all possible matches is
even larger here.

To further experiment on the effect of getting rid of addi-
tional matches, we constructed the absolute worst case sce-
nario for W2, where all the notes in both the pattern and the
database have the same pitch. In this setting, W2 would not
be able to eliminate many matches, which results in a large
amount of additional work. In Fig. 5, we depict the time us-
age of the two algorithms in the worst case for W2. From the
figure it is evident that W2 uses a significant amount of time
in this type of setting, even with very small databases. It is

also noteworthy that the time usage of W2 grows quickly.

4. CONCLUSIONS

In this paper we presented two new algorithms for the trans-
position and time-warp invariant (TTWI) content-based poly-
phonic music retrieval setting. We used the geometric frame-
work where each note is represented as a point in the Eu-
clidean plane (pitch value against on-set time). The frame-
work has several advantages: it is intuitive, it intrinsically
deals with polyphonic music, transposition invariance and
subset matching. The TTWI setting that allows for local
time jittering makes the approach usable in real-world ap-
plications where queries are always somewhat out of tempo.
Our DPW1 algorithm solves the exact matching problem un-
der the TTWI setting while DPW2 is for the partial matching
problem under the same setting. The algorithms, based on
dynamic programming, have better asymptotic worst-case
time complexities than their only existing rivals [3], here
called W1 and W2, based on the sweepline techique.

Our experiments revealed that in a typical query case W2
is faster than DPW2. This is due to the capability of W2
to eliminate non-compact matches while DPW2 thoroughly
scrutinizes every possible match. The impact of the elimi-
nation, however, was surprisingly strong given that W2 has
an additional logarithmic term in its asymptotic complexity.
Nevertheless, when looking for consistent performance, our
DPW2 is the choice to be taken as in complex query cases
W2 freezes suddenly. The elegance of our new algorithms
lie in their simplicity: they, unlike the rivaling algorithms,
are very easy both to implement and to understand.

As hinted by Fig. 4, with the future very large music
databases, neither W2 nor DPW2 alone would work in an
interactive setting. As a future work, we will study a dis-
tributed calculation process. Even though the sweepline-
based solutions were somewhat faster in typical real-world
queries in our experiments, the distributed setting is pre-
sumed to be significantly different: dynamic programming
algorithms are generally easily distributable, while distribut-
ing sweepline-based algorithms may prove to be very chal-
lenging.
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