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ABSTRACT

The matrix-based representations commonly used in MIR
tasks are often difficult to interpret. This work in-
troduces start-end (SE) diagrams and start(normalized)-
length (SNL) diagrams, two novel structure-based repre-
sentations for sequential music data. Inspired by methods
from topological data analysis, both SE and SNL diagrams
come equipped with efficiently computable and stable met-
rics. Utilizing SE or SNL diagrams as input, we address the
cover song task for score-based data with high accuracy.
While both representations are concisely defined and flex-
ible, SNL diagrams in particular address issues introduced
by commonly used resampling methods.

1. INTRODUCTION

Since Foote’s introduction of the self-similarity matrix
(SSM) in [8], matrix-based representations for music-
based data streams have been commonly used in MIR liter-
ature. Both SSMs and self-dissimilarity matrices (SDMs)
have been used as the starting point for a variety of tasks
including the cover song task [2,10,13,21], the chorus de-
tection task [9], and segmentation task [14, 18, 19].

While straightforward to compute, these matrix-based
representations are challenging to interpret, requiring ex-
tensive post-processing, such as smoothing and resampling
techniques used in [10] or path enhancement applied in
[15–17]. These post-processing steps can also introduce
uncertainty or reduce some of the intuitive explanations
for the resulting visualizations. The aligned hierarchies
from [13] is an intuitive structure-based representation that
is also the result of post-processing SDMs. However, this
representation is rigid as it requires two songs to be the
exactly the same length for comparisons. The aligned sub-
hierarchies attempt to address this rigidity, but many songs
do not have enough structure to have this collection of
structure-based representations for sections of a song [12].
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In this paper, we contribute two new structure-based vi-
sualizations for music-based data streams: Start-end di-
agrams (in Section 3) and Start(normalized)-length dia-
grams (in Section 4). With roots in topological data anal-
ysis, the presented methods are flexible, computationally
efficient, and easily adaptable. Moreover, we present ex-
periments applying these methods to a version of the cover
song task. We discuss contributions of our novel methods
(in Section 6) and share future directions (in Section 7).

2. MOTIVATION AND BACKGROUND

This work builds upon aligned hierarchies developed in
[13]. The aligned hierarchies for a song encodes all pos-
sible hierarchical structure decompositions of that song on
one common time axis. The aligned hierarchies represen-
tation is defined as a collection of three components: a bi-
nary onset matrix BH , a length vector, and an annotation
vector that acts as a key for BH [13]. Each row of BH
corresponds to one kind of repetition, with entries equal to
one denoting where instances of a repeat begins.

Aligned hierarchies have been used to compare songs
under the fingerprint task by leveraging that this represen-
tation can be embedded into a classification space with
a natural notion of distance. This distance computes the
number of dissimilarities between start-times for repeats
of each size and then totals those dissimilarities across all
sizes. Using the aligned hierarchies as the basis of compar-
ison yields precise results, yet the metric is both rigid with
respect to the length of the songs and computationally ex-
pensive as it is based on a binary classification [13].

In this work, we produce novel methods of representing
and comparing songs. Inspired by work in topological data
analysis, our methods extend the aligned hierarchies while
addressing their limitations. Moreover, we offer several
variations of our method, which make our representations
flexible and easily adaptable to many applications such as
cover song and remix detection.

3. START-END DIAGRAMS

Aligned hierarchies represents repeated structures of mu-
sic data. Similarly, topological data analysis (TDA), an
emerging field of mathematics, aims to extract structural,
or topological, information from complex data. The start-
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end diagram is a transformation of the aligned hierarchies
that is reminiscent of persistence diagrams from TDA.

In TDA, data are thresholded via a sequence of param-
eter values. Topological summaries, such as the number
of loops in the data, are then computed for each param-
eter value in the sequence [4, 5, 7]. A common way to
represent this topological information is with persistence
diagrams. Briefly, a persistence diagram is a collection of
points {(bi, di)}Ni=1 ⊂ R2

+, such that (bi, di) corresponds
to a topological structure that appears at some parameter
value bi and disappears at parameter value di ≥ bi [4,5,7].

Inspired by TDA, we transform aligned hierarchies into
a start-end (SE) diagram. The SE diagram corresponding
to aligned hierarchies with N repeated structures is defined
as a collection of points {(si, ei)}Ni=1 ⊂ R2

+, where si and
ei are the start and end times, respectively, of the ith re-
peated structure. Under this transformation, we adjust the
time scale such that time zero refers to the start of the first
block of the aligned hierarchies and truncate the song to
end where the last block of the aligned hierarchies ends.

SE diagrams are not inherently topological (in a mathe-
matical sense), rather we are adapting data structures from
TDA. While SE diagrams cannot delineate two different
types of repeats of the same length, there are several ad-
vantages of using SE diagrams over aligned hierarchies.
First, they are a more concisely defined structure, as each
diagram is simply a finite collection of points. Second,
leveraging theoretical results from TDA, there are easily
adaptable metrics on the space of SE diagrams (Subsec-
tion 3.1). Third, these metrics are more flexible than those
for the aligned hierarchies while maintaining accuracy and
precision in the cover song task (Subsection 3.2).

3.1 Metrics for SE diagrams

In TDA there are two common metrics for persistence dia-
grams that can be extended to SE diagrams: the bottleneck
metric and the Wasserstein metric. Both metrics measure
the error of an optimal alignment of points in two persis-
tence (or SE) diagrams. The metrics are stable, meaning
small differences between aligned hierarchies will yield a
small SE diagram distance [6, 7, 11]. Moreover, as shown
in [11], these distances can be computed efficiently using
k-dimensional trees. Thus, under either the Wasserstein or
bottleneck notions, SE diagrams are equipped with stable
and computable metrics which facilitate their ability to ad-
dress the cover song task efficiently and accurately.

3.1.1 Intuitive definitions

Intuitively, the Wasserstein and bottleneck metrics attempt
to find the best alignment of points between two SE dia-
grams and then measure cost of the alignment using an lp

metric. When aligning two diagrams for comparison, each
diagram point must have a corresponding aligned point in
the other diagram and no points can be aligned with more
than one point. The aligned points thus form a pair.

Recall, the lp norm for any point ~x=(x1, . . . , xn) ∈ Rn

is given by ||~x||p = (
∑n
i=1 |xi|p)

1
p for 1 ≤ p < ∞, and

the l∞ norm is ||x||∞ = max
i

(|xi|). Norms naturally give
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Figure 1. Optimal alignment of S1 and S2 without align-
ing with ∆ (left), and optimal alignment of S2 and S3

while allowing for alignments with ∆ (right). Note that
∆ ∼ (1, 2) ∈ S3 and the l2 distances between the pairs are{√

1
2 , 0, 1, 0

}
, so d2,1W (S2, S3)= 1+

√
2√

2
, d2B(S2, S3) = 1.

rise to metrics. Specifically, the lp metric dp : Rn×Rn →
R+ between any two points ~x, ~y ∈ Rn is defined for 1 ≤
p ≤ ∞ as dp(~x, ~y) = ||~x− ~y||p. Note that in R2, d2 is the
the straight line distance between two points in the plane,
while d∞ is the maximum of the horizontal and vertical
distance between two points in the plane.

For example, consider two SE diagrams S1 =
{(1, 2), (1, 5), (2, 4)} and S2 = {(1, 3), (1, 5), (2, 3)}.
To find the optimal alignment we pair points in di-
agram S1 with points in diagram S2 in a way
that minimizes the total distance between all pairs.
The best alignment of S1 and S2 is given by
{(1, 2)∼(1, 3), (1, 5)∼(1, 5), (2, 4)∼(2, 3)} (see Figure
1). The corresponding l∞ distances of these pairs are
{1, 0, 1}. The (∞,q)-Wasserstein and ∞-bottleneck met-
rics are then defined as the lq and l∞, respectively, norms
of the l∞ distances of the pairs in the optimal alignment.

In this example, the (∞,2)-Wasserstein distance be-
tween S1 and S2 is d∞,2W (S1, S2) =

√
2, whereas the ∞-

bottleneck distance between S1 and S2 is d∞B (S1, S2) = 1.
Note, the first superscript in d∞,2W corresponds to taking the
l∞ distances between the points in each pair (inner norm),
and the second superscript denotes taking l2 norm of those
l∞ distances (outer norm).

Thus far we have defined distances between two SE di-
agrams with the same number of points. By definition,
computing the Wasserstein or bottleneck distance between
two SE diagrams requires both diagrams to have the same
number of points. In practice, however, we want to com-
pare SE diagrams with any number of points, as songs have
varying amounts of repeated structures.

To compare SE diagrams of differing numbers of
points we find the optimal alignment of points in two
SE diagrams, while also allowing diagram points to
match to repeated structures existing for no time, mean-
ing their start and end times are the same. Formally,
we allow points to align with the diagonal, defined as
∆ = {(s, e) : s = e, s ≥ 0} (see Figure 1) [6, 7, 11].

The motivation for allowing points to align with re-
peated structures that exist for no time is two-fold. First,
unlike arbitrary insertions or deletions of points in either
SE diagrams, aligning points with ∆ will give rise to a
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metric that respects the triangle inequality. With the trian-
gle inequality, it is impossible to have the case where songs
B and C are both cover songs of song A so that d(A,B)
and d(A,C) are small, but d(B,C) is large.

Second, pairing unmatched points with ∆ enforces that
two songs will be considered dissimilar when their long-
lasting repeated structures do not have a corresponding pair
under the optimal alignment of points. To see this, observe
that when a point (s1∗, e

1
∗) ∈ S1 does not have a corre-

sponding match in S2 then (s1∗, e
1
∗) ∼ ∆ and this pairing

contributes dp((s1∗, e
1
∗),∆) = 2

1
p−1|e1∗ − s1∗| to the overall

cost of the alignment. Thus, the cost for unmatched points
aligning with ∆ increases as the length (|e1∗ − s1∗|) of the
unmatched repeated structure increases.

In short, the (p,q)-Wasserstein and p-Bottleneck metrics
measure the distances between pairs of points in the opti-
mal alignment of two SE diagrams and ∆. When q = 2,
the Wasserstein distance is the Euclidean norm of the dis-
tances between pairs in the optimal alignment. In contrast,
the Bottleneck distance is to the maximum distance be-
tween pairs in the optimal alignment. In the following sub-
section we provide rigorous definitions of these metrics.

3.1.2 Rigorous Definitions

Let S1 = {(s1i , e1i )}i∈I and S2 = {(s2j , e2j )}j∈J be SE
diagrams, and let φ be a bijection between subsets Ĩ ⊂ I
and φ(Ĩ) ⊂ J . The p-q penalty of φ is defined as:

P pq (φ) =
∑
i∈Ĩ

dp((s
1
i , e

1
i ), (s

2
φ(i), e

2
φ(i)))

q

+
∑
i∈I\Ĩ

dp((s
1
i , e

1
i ),∆)q +

∑
j∈J\φ(Ĩ)

dp((s
2
j , e

2
j ),∆)q,

for 1 ≤ q <∞, and the∞-q penalty of φ is defined as:

P p∞(φ) = max

{
max
i∈Ĩ

dp((s
1
i , e

1
i ), (s

2
φ(i), e

2
φ(i))),

max
i∈I\Ĩ

dp((s
1
i , e

1
i ),∆),

max
j∈J\φ(Ĩ)

dp((s
2
j , e

2
j ),∆)

}
.

These penalties define a cost function for aligning points
in S1 with points in S2 (encoded in the first terms), and for
aligning all unmatched points with ∆ (encoded in the re-
maining terms). The p-bottleneck distance is then defined
as dpB(S1, S2) = min

φ
P p∞(φ) and the (p,q)-Wasserstein

distance is dp,qW (S1, S2) = min
φ
P pq (φ))

1
q [6, 7, 11].

3.2 Applications of SE diagrams

Utilizing the metrics described in the previous section,
there are several ways of comparing songs for the cover
song task. This work explores the efficacy of using the
pairwise p-bottleneck and (p,q)-Wasserstein distances as
input for a mutual nearest neighbor search.

Noting that the presented methods take aligned hierar-
chies as input, we pre-process music-based data in three
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Figure 2. The thresholded SDM (top left), aligned hierar-
chies (bottom left), SE diagram (top right), and SNL dia-
gram with α = 1 (bottom right) corresponding to Mazurka
52 expanded with threshold=0.02, shingle=12. Each dark
block diagonal in the thresholded SDM represents two sec-
tions that are repeats of each other. Repetitions of all sizes
are encoded in the aligned hierarchies as blocks, separated
into rows. Each block in the aligned hierarchies is rep-
resented as a point in both the SE and SNL diagrams. The
smallest repeats are close to the diagonal in the SE diagram
and are near the horizontal axis in the SNL diagram. The
tops of the peaks in the SE and SNL diagrams represent the
longest repetitions, which are the blocks at the bottom of
the aligned hierarchies.

steps: 1) build audio shingles from the concatenated beat-
synchronous chroma features, 2) compute the SDM, and
finally 3) construct the aligned hierarchies for each song’s
SDM (see [13] for more details). After the aligned hierar-
chies are created, the procedure is as follows: 1 :

1. Transform each aligned hierarchies into the corre-
sponding SE diagram as described in Section 3

2. Compute bottleneck or Wasserstein distances be-
tween pairs of SE diagrams using Hera [11] 2

3. Mark a pair of songs as cover songs of each other if
the songs are mutual nearest neighbors

See Figure 2 for a visual example of our method. To
test our method we apply it to 52 Mazurka scores by

1 Code and processed data are publicly available here: https://
github.com/MelissaMcguirl/SE_SNL_analysis.git.

2 Hera is publicly available here: https://bitbucket.org/
grey_narn/hera.
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Threshold 0.01 0.02 0.03 0.04 0.05
Shingle 6 12 6 12 6 12 6 12 6 12

Precision 0.871 0.622 0.848 0.718 0.871 0.800 0.818 0.725 0.824 0.757
d∞B Metric

Recall 0.519 0.538 0.538 0.538 0.519 0.538 0.519 0.558 0.538 0.538
Precision 0.966 0.675 0.879 0.903 0.933 0.824 0.909 0.875 0.875 0.848

d2,2W Metric
Recall 0.538 0.519 0.558 0.538 0.538 0.538 0.576 0.538 0.538 0.538

Precision 1.0 0.683 0.909 0.909 0.933 0.882 0.906 0.906 0.879 0.853
d∞,2W Metric

Recall 0.558 0.538 0.577 0.577 0.538 0.577 0.558 0.558 0.558 0.558

Table 1. Precision and recall values for the mutual nearest neighbor matching of SE diagrams for 104 Mazurka scores.

Chopin downloaded in **kern format from KernScore on-
line database 3 (see [20]). Each score produces two data
elements, an expanded version which includes all repeated
sections as marked in the score, and a non-expanded ver-
sion which has each repeated section played once. In the
cover song task, the goal is to match the expanded and non-
expanded versions of each song.

We construct SE diagrams for all 104 songs in our
dataset and compute their pairwise distances for three met-
rics: d∞B , d2,2W , and d∞,2W . We perform 10 experiment trials
per metric, varying the number of chroma vectors per au-
dio shingle and varying the threshold applied to the SDM.
The precision and recall values are presented in Table 1.

These results show that SE diagrams can accomplish
this challenging version of the cover song task with high
precision and moderate recall values regardless of the met-
ric. It is crucial and exciting to note that the SE diagrams
achieved these results without any resampling to the dia-
grams. Moreover, as we will see in the next section, this
method is easily adaptable to several useful variations.

4. START(NORMALIZED)-LENGTH DIAGRAMS

Since the length of repeats (e-s) is represented diagonally
on SE diagrams, these representations can be difficult to
interpret. In this section we describe a transformation
of SE diagrams called start-length (SL) diagrams, along
with normalizations. SL diagrams are more intuitive to
read than their predecessor and yield stronger experimen-
tal results. While reminiscent of the constellation maps
from [22], SL diagrams encode structural repeats instead
of audio spectrogram peaks.

4.1 Start-Length Diagrams

Consider a SE diagram S = {(si, ei)}Ni=1. The associ-
ated SL diagram is S′={(si, ei − si)}Ni=1, where the x-
coordinate corresponds to the start time of a repeated struc-
ture and the y-coordinate denotes the length of that repeat.
While SE and SL diagrams encode the same information,
SL diagrams emphasize the lengths of repeats. This trans-
formation has also been applied to persistence diagrams for
TDA applications [1].

3 http://kern.humdrum.org/search?s=t\&keyword=
Chopin

4.2 Start(Normalized)-Length Diagrams

In most cases, normalizing SL diagrams before compar-
ison proves to be more effective. We note that simi-
lar normalizations can also be applied to SE diagrams.
The start(normalized)-length (SNL) diagrams are defined
as S′N ={(α(si/M), ei − si)}Ni=1, where α is a positive
scaling factor and M is a normalization factor. Through-
out this paper we will use M = max

i
si, but other normal-

izations may be applied. The vertical coordinate of SNL
diagrams are not normalized in order to maintain the em-
phasis on the lengths of the repeated structures.

Similar to SL diagrams, SNL diagrams encode the
lengths of repeated structures, except the start times in
the normalized diagrams are proportional to the length of
the song. This normalization acts as a kind of resampling
by condensing start times of each song to be on the same
scale, while also preserving the lengths of the found repe-
tition patterns. The α parameter is a hyper-parameter that
imbues a maximum tolerance on our comparisons. The
impact of this parameter is left to Section 4.4.

4.3 Metrics for SNL diagrams

As with SE diagrams, the bottleneck and Wasserstein met-
rics can be used to compare SNL diagrams with one modifi-
cation. Define ∆̃ to be the set {(s, l) : s = 0, (s, l) ∈ R2

+}.
The set ∆̃ is the y-axis of SL and SNL diagrams and it
encodes repeats that start at zero. The SNL p-bottleneck
and SNL (p,q)-Wasserstein metrics, d̃pB and d̃p,qW , are then
the same as the p-bottleneck metric and (p,q)-Wasserstein
metric defined in Section 3.1, except ∆ is replaced by ∆̃ in
the definitions of P p∞ and P pq , respectively. We use a mod-
ified version of Hera to implement these metrics [11].

Pairing unmatched points with repeated structures that
start at zero rather than repeated structures that exist for
no time allows the user to control the penalty for having
unmatched points while maintaining the emphasis on the
length of the repeated structures. To better understand this,
consider a point (s1∗, e

1
∗ − s1∗) ∈ S1 that does not have a

corresponding pair in S2 under the optimal alignment of
points in S1 and S2. In this case we pair (s1∗, e

1
∗− s1∗) with

∆̃ so that dp((s1∗, e
1
∗ − s1∗), ∆̃) = |s1∗|. The penalty for

unmatched points aligning with ∆̃ consequently increases
as the start time of the corresponding repeated structure
increases. It is critical to note, however, that s ∈ [0, α]
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Threshold 0.01 0.02 0.03 0.04 0.05
Shingle 6 12 6 12 6 12 6 12 6 12

Precision 1.0 0.827 1.0 0.818 1.0 0.978 1.0 0.935 0.975 0.936
d̄∞B Metric

Recall 0.788 0.827 0.769 0.865 0.788 0.865 0.750 0.827 0.750 0.846
Precision 1.0 0.833 0.974 0.975 1.0 0.976 0.976 1.0 0.976 1.0

d̄2,2W , d̄∞,2W Metric
Recall 0.731 0.769 0.731 0.750 0.731 0.788 0.788 0.769 0.788 0.788

Table 2. Precision and recall values for mutual nearest neighbor matching using the distance between SNL diagrams with
α = 1 corresponding to 104 Mazurkas. Note, we observe d̄∞,2W and d̄2,2W to be equivalent when the optimal alignment only
requires shifts in the start component so that (|s2 − s1|p + |e2 − e1|p)

1
p = |s2 − s1| = max(|s2 − s1|, |e2 − e1|).

for all start times s under the SNL normalization. Thus, the
penalty for having an unmatched diagram point is bounded
above by α for SNL diagrams with d̃pB or d̃p,qW . We further
explain the choice of α in the following section.

4.4 Choosing α

The hyper-parameter α is a positive scaling factor in the
normalization. For small α, the cost of aligning points
with ∆̃ is low. For example, if α = 0.5, then the cost
of aligning a SNL diagram point with ∆̃ is at most 0.5.
Consequently, when comparing two SNL diagrams, points
within each diagram will be paired only when the differ-
ence between their lengths is negligible. Otherwise, it will
be more effective to pair both points with ∆̃. Thus, a small
value for α induces a strict matching criterion, where re-
peated structures are mostly shifted in the start coordinate
to pair with a repeated structure of similar or equal length,
and structures with unmatched lengths get paired to ∆̃.

The penalty for matching points with ∆̃ increases as α
increases. For a large value of α, two SNL diagram points
of slightly different lengths are more likely to be matched
with each other than with ∆̃. Consequently, a larger α
value yields a more flexible length-based matching system.

The choice of α depends on the importance of the length
of the repeated structures. One might consider 0 < α ≤ 1
if repeated structures of different lengths are considered
significantly dissimilar, or α� 1 to allow for flexibility in
length-based matchings. The inclusion of this parameter
further adds to the flexibility of SNL diagrams.

4.5 Applications of SNL diagrams

We apply the same algorithm to the same dataset defined in
Section 3.2 with SL and SNL diagrams using the adapted
bottleneck and Wasserstein metrics for the cover song task.
Again, 10 experiment runs are performed per metric, vary-
ing the number of beats per audio shingle and the thresh-
old applied to the SDM. For SL diagrams, the mean pre-
cision values across the 10 experiments are 0.791, 0.803,
and 0.791 with d̄∞B , d̄2,2W , and d̄∞,2W , respectively. The cor-
responding mean recall values are 0.596, 0.581, and 0.577.

Experiments on SNL diagrams yield a significant in-
crease in accuracy over both SL and SE diagrams on the
cover song task, suggesting that a strict matching criterion
in the length coordinate and flexibility in the start coordi-
nate is the most accurate way to approach the cover song

task with these diagram representations. Across the 10 ex-
periments, the∞-Bottleneck metric yields mean precision
and recall values of 0.947 and 0.808, respectively. The
(2,2) and (∞,2)-Wasserstein metrics yield a mean preci-
sion value of 0.971 and a mean recall value 0.763.

The experimental results for SNL diagrams with α = 1
are presented in Table 2. Separate analyses show that pre-
cision and recall remain constant for 0 < α ≤ 1, and de-
crease monotonically as α increases above 1 for this data.

SNL diagrams are not restricted to the standard start-
normalization presented here. Applying the same method
under the (2,2)-Wasserstein metric with a Chebyshev-
normalized start component yields comparable results with
slightly lower precision values and higher recall values.
This further demonstrates the robustness of SNL diagrams.

To push the limits of SNL diagrams, we applied this rep-
resentation to audio-based data without making any mod-
ifications in the preprocessing steps. We extracted beat-
synchronous chroma feature vectors using librosa tool-
box 4 for a collection of performances of Mazurka 5 and
constructed the corresponding SNL diagrams. Following
the evaluation method in [2], we ranked the songs based
on their pairwise-distances for the cover song task. While
the mean average precision values were less than 0.1 across
a range of metrics and α values, these results demonstrate
that audio-specific preprocessing must be done in order to
mitigate noise and other artifacts on tracks. Since there ex-
ist theoretical guarantees of stability of the SNL diagrams,
we are confident that with the appropriate preprocessing
methods SNL diagrams are suitable for a range of both
score-based and audio-based music.

5. COMPARISON TO PREVIOUS WORK

Previous experiments on this Mazurka score dataset were
done with the aligned hierarchies [13] and with the aligned
sub-hierarchies (AsH) [12]. The metric for aligned hier-
archies only allowed for pairwise comparisons between
songs that were of the same length, meaning that it could
only be used for the fingerprint task [13].

Initial experiments using AsH to address the cover song
task were completed in [12]. Following the same exper-

4 https://librosa.github.io/librosa/
5 The CHARM Project Discography website maintains a list of com-

mercially available Mazurka recordings at http://www.mazurka.
org.uk/info/discography/?
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Mean Median Min. Max.
Precision 0.847 0.873 0.622 1.0

SE
Recall 0.545 0.538 0.519 0.577

Precision 0.963 0.976 0.818 1.0
SNL

Recall 0.778 0.779 0.731 0.865
Precision 0.9511 0.9808 0.840 1.0

AsH
Recall 0.771 0.754 0.692 0.882

Table 3. Summary statistics of the precision and re-
call values for mutual nearest neighbor matching of the
Mazurka score data using SE diagrams, SNL diagrams, and
aligned sub-hierarchies (AsH). The AsH statistics are com-
puted over the 10 combinations of thresholds and shingles,
whereas the SE and SNL statistics are computed over the
30 combinations of thresholds, shingles, and metrics. The
SNL experiments apply to a more complete dataset than the
AsH and still attain similar high precision-recall values.

imental design varying the thresholds between 0.01 and
0.05 and testing shingle widths of 6 and 12, these exper-
iments produced high precision rates (between 0.840 and
1.0) and modest recall rates (between 0.692 and 0.882).

Table 3 presents the summary statistics of the precision-
recall values for mutual nearest neighbor matching using
SE diagrams, SNL diagrams, and AsH on the Mazurka
score data. The AsH results are comparable to the
precision-recall values of the SNL experiments, while the
SE experiments yield slightly lower precision-recall rates
than both AsH and SNL diagrams. However, the AsH post-
processing technique requires repetitions to have enough
repeated structure within them to build a smaller aligned
hierarchies for these song sections. Consequently, as many
as 68 songs (depending on the shingle size and threshold)
do not have an AsH representation.

An advantage of the presented methods is that if a song
has an aligned hierarchies representation then it has a SE
diagram and SNL diagram. Thus, the SNL experiments
work with a more complete dataset than the AsH experi-
ments and still attain similar high precision-recall values.

6. DISCUSSION

Both the SE diagrams and the SNL diagrams offer exciting
contributions to the representation of music-based sequen-
tial data streams. These diagrams offer a clear represen-
tation of the relationships between repeated structural ele-
ments and have advantages over previous structure-based
methods. By allowing for two recordings of different
lengths to be directly compared without altering the beat-
synchronized lengths of structural repeats, the SNL di-
agram addresses an issue created by current resampling
methods for music-based data streams.

The SNL diagram provides a new method for resam-
pling music-based data streams. The goal of resampling
is to ensure that all matrix representations are the same
size, which eases comparisons between music-based data
streams. Current resampling methods compress all mu-

sical structures to represent a proportion of the length of
the song, which results in comparing sections of a song
that are proportionally the same length but not actually the
same number of beats. In [10], the proportional compar-
isons of structural elements had issues comparing versions
of Mazurka Op. 68, No. 4, which could be mitigated using
the kind of resampling offered by SNL diagrams.

Structure-based comparisons on resampled representa-
tions of a piece of music are then between proportions of
the song instead of the true lengths of the repeats. This is
especially an issue in cases where one artist plays a song
once through, while another plays the piece through twice
in its entirety. In such an example, a section of 100 beats
long in the piece will look twice as long in the first repre-
sentation when compared to the second representation.

The SNL diagrams balance resampling all representa-
tions to be of the same length with maintaining the lengths
of repeated structures. To accomplish this, the SNL dia-
grams resample only the starting position of each repeated
structure, while leaving the lengths alone. What is excit-
ing about this innovative approach is that it not only allows
for uniform comparisons – as desired by traditional resam-
pling – but it also allows for comparisons between sections
of the same length of time (or beats) instead of sections of
the same proportional length of the song.

7. CONCLUSION

In this paper we present SE and SNL diagrams, two novel,
concisely defined, and flexible representations for music-
based data. Leveraging theory from TDA, these diagrams
come equipped with stable metrics which allow us to apply
a mutual nearest neighbor search for the cover song task.

Experimental results demonstrate that SE and SNL dia-
grams address the cover song task with high accuracy for
score-based data, and these results are robust with respect
to the choice of metric. Moreover, SE diagrams avoid re-
sampling all together, while SNL diagrams resample only
the starting positions of repeated structures.

Overall, SNL diagrams yield the highest accuracy in ad-
dressing the cover song task and they are more flexible.
In addition to the choice of normalization, SNL diagrams
include the hyper-parameter α which allows the user to di-
rectly control the rigidity of the length-matching criterion.

In future work we plan to apply SE and SNL diagrams
to preprocessed audio data, and to extend these diagram
representations so that they are suitable for machine learn-
ing tasks. Theoretical guarantees provide strong evidence
that SE and SNL diagrams will be applicable to both score
and audio data after appropriate preprocessing. Beyond
the method presented here, SE and SNL diagrams can be
mapped into spaces that are more suitable for machine
learning tasks, just as, for example, persistence diagrams
have been transformed to sequences of piecewise-linear
functions and vectors in Euclidean space [1, 3]. Thus, SE
and SNL diagrams open up a range of new opportunities
for applying machine learning methods through the lens of
TDA to music-based tasks.
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