
Abstract
As Semantic Web technologies are getting ma-
ture, there is a growing need for RDF applica-
tions to access the content of huge, live, non-
RDF, legacy databases without having to
replicate the whole database into RDF. In this
poster, we present D2RQ, a declarative lan-
guage to describe mappings between applica-
tion-specific relational database schemata and
RDF-S/OWL ontologies. D2RQ allows RDF
applications to treat non-RDF relational data-
bases as virtual RDF graphs, which can be
queried using RDQL.

1 Introduction
It will be crucial for many real-world Semantic Web
applications to be able to access the content of non-
RDF relational databases used by most legacy systems.
D2RQ is a declarative language to describe mappings
between application-specific relational database sche-
mata and RDF-S/OWL ontologies. Using D2RQ,
Semantic Web applications can:
• query a non-RDF database using RDQL,
• publish the content of a non-RDF database on the

Semantic Web using the RDF Net API,
• do RDFS and OWL inferencing over the content of a

non-RDF database using the Jena ontology API,
• access information in a non-RDF database using the

Jena model API.
D2RQ is implemented as a Jena graph, the basic infor-
mation representation object within the Jena frame-
work [Carroll et al., 2004]. A D2RQ graph wraps one
or more local relational databases into a virtual, read-
only RDF graph. D2RQ rewrites RDQL queries and
Jena API calls into application-datamodel-specific SQL
queries. The result sets of these SQL queries are trans-
formed into RDF triples which are passed up to the
higher layers of the Jena framework.
Figure 1 shows the architecture of a D2RQ usage
scenario, where a relational database is maintained by a
non-RDF legacy application. Using D2RQ, the content
of the database can simultaneously be accessed by an
RDF application or can be published on the Web using
the RDF Net API [Moore and Seaborne, 2003].

Figure 1: Application Architecture

2 The Mapping Language
The D2RQ mapping language builds on experience
gained with D2R [Bizer, 2003]. The central object
within D2RQ is the ClassMap. A ClassMap represents
a class or a group of similar classes from the ontology.
It specifies whether instances are identified by using
URI column values from the database, by using an URI
pattern together with the primary key values or by us-
ing blank nodes. Each ClassMap has a set of property
bridges, which specify how instance properties are cre-
ated and how given URIs or literals are reversed into
database values. There are two types of property
bridges: DatatypePropertyBridges for literals and Ob-
jectPropertyBridges for URIs and for referring to in-
stances created by other class maps. Property values
can be created directly from database values or by us-
ing patterns and translation tables.
D2RQ supports conditional mappings on class map and
property bridge level. It supports the mapping of prop-
erties being used by several classes and the handling of
highly normalized table structures where instance data
is spread over several tables.

3 Example
Figure 2 shows the structure of a D2RQ map relating
the classes ex:Person and ex:Paper to a relational data
model. Papers and Persons are linked by the ex:author
property. Because authors usually have more than one
publication and publications can be written by several
authors, information would typically be stored in three
tables on the database side: One for the persons, one
for their papers and a third one for the n:m relationship
between persons and papers.

D2RQ – Treating Non-RDF Databases as Virtual RDF Graphs

Christian Bizer
Freie Universität Berlin,

Berlin, Germany
chris@bizer.de

Andy Seaborne
Hewlett-Packard Labs,

Bristol, UK
andy.seaborne@hp.com

RDF
Application

RDF
Net API

D2RQ Jena
Graph

Non-RDF
Database

Non-RDF
Application

D2RQ
Map

uses

query
query +
update

Figure 2: Structure of the Example D2RQ Map

In order to find all authors of a given paper, e.g.

SELECT ?x
WHERE (<http://www.papers.org/3465>,
 ex:author, ?x)

the following parts of the map are used:

ex:author rdf:type rdf:Property ;
 d2rq:propertyBridge db1:author .
db1:author rdf:type d2rq:ObjectPropertyBridge;
 d2rq:belongsToClassMap db1:Paper ;
 d2rq:refersToClassMap db1:Person ;
 d2rq:join "Papers.PaperID =
 PersonPaper.PaperID" ;
 d2rq:join "PersonPaper.PersonID =
 Persons.PersonID" .

ex:Paper rdf:type rdfs:Class ;
 d2rq:classMap db1:Paper .
db1:Paper rdf:type d2rq:ClassMap ;
 d2rq:uriPattern
 "http://www.papers.org/@@Papers.PaperID@@";
 d2rq:dataStorage db1:Database1 .

ex:Person rdf:type rdfs:Class ;
 d2rq:classMap db1:Person .
db1:Person rdf:type d2rq:ClassMap ;
 d2rq:uriPattern
 "mailto:@@Person.Email@@";
 d2rq:dataStorage db1:Database1 .

The ObjectPropertyBridge db1:author contains the in-
formation that the property ex:author belongs to
ClassMap db1:Paper and that it refers to instances of
the ClassMap db1:Person. The bridge also specifies
how the corresponding database tables should be
joined. Using this information and the uriPattern from
ClassMap db1:Paper, the given URI is reversed into the
database value 3465 and the following SQL statement
is built:

SELECT Persons.Email
FROM PersonPaper, Persons
WHERE PersonPaper.PersonID = Persons.PersonID
AND PersonPaper.PaperID = 3465;

The statement is executed against db1:Database1 and
the SQL result set is transformed into an RDQL result
set using the uriPattern from ClassMap db1:Person.

4 Performance
We performed a series of benchmarks comparing the
performance of D2RQ to the performance of the Jena2
database backend. As benchmarking dataset we used
the descriptions of 200,000 papers from the DBLP
Computer Science Bibliography [DBLP, 2004]. The
data was stored using both an application-specific rela-
tional data model and the Jena database backend (1.6M
triples). Table 3 shows the benchmarking results for
different find(spo) patterns.

 Jena2 DB D2RQ
1. find (s ? ?) 1.83 ms 0.01 ms
2. find (? p o) 1.94 ms 0.97 ms
3. find (? p ?) 42431 ms 72 ms
4. find (? ? o) 1.72 ms 3.23 ms

Table 3: Benchmarking Results

The benchmarks show that D2RQ is competitive to the
Jena database backend for common patterns (pattern 1.
and 2.). Both architectures have different worst cases
(pattern 3. and 4.). The exact queries used for the tests
and more detailed results are found in [Cyganiak,
2004].

5 Conclusion
D2RQ offers a flexible, easy-to-use access mechanism
to non-RDF databases. It allows the integration of leg-
acy databases into the data access architecture cur-
rently standardized by the W3C Data Access Working
Group [W3C, 2004].
D2RQ is available under GNU GPL. The complete
language specification and further examples are found
at http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rq/

References

[Bizer, 2003] Christian Bizer. D2R MAP – A Database
to RDF Mapping Language. Poster at the 12th World
Wide Web Conference, Budapest, May 2003.

[Moore and Seaborne, 2003] Graham Moore, Andy
Seaborne. RDF Net API. W3C Member Submission,
October 2003.

[Carroll et al., 2004] Jeremy J. Carroll et al.: Jena: Im-
plementing the Semantic Web Recommendations. In
Proceedings of the 13th World Wide Web Conference,
New York City, May 2004.

[Cyganiak, 2004] Richard Cyganiak: Benchmarking
D2RQ V0.2. http://www.wiwiss.fu-berlin.de/suhl/
bizer/d2rq/benchmarks, August 2004.

[DBLP, 2004] DBLP: Computer Science Bibliography
Website. http://dblp.uni-trier.de/

[W3C, 2004] W3C: Data Access Working Group Web-
site. http://www.w3.org/2001/sw/DataAccess/

ex:title DatatypePropertyBridge

DatatypePropertyBridge

ObjectPropertyBridge

ex:abstract

rdf:type

owl:sameAs

ex:author

ObjectPropertyBridge

DatatypePropertyBridge

ObjectPropertyBridge

ObjectPropertyBridge

ex:name

ex:eMail

ClassMap db1:Person

uriPattern

db1:Database1

 ClassMap db1:Paper

uriPattern

