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1. INTRODUCTION

Algebraic process calculi are a well-known formal
model for the specification of computing systems and
analysis of their behavior. In such process algebras
(PAs), systems and processes are specified by formu-
las, and verification of their properties is accomplished
at a syntactic level via equivalences, axioms, and infer-
ence rules. In the last decades, stochastic extensions of
PAs were proposed and widely used. Stochastic pro-
cess algebras (SPAs) do not just specify actions that
can occur (qualitative features), like ordinary process
algebras, but they associate some quantitative param-
eters with actions (quantitative characteristics). The
best-known SPAs are MTIPP [1], PEPA [2], and
EMPA [3].

Petri box calculus (PBC) [4, 5, 6] is a flexible and
expressive process algebra, which is based on the CCS
calculus [7] and was developed as a tool for specifica-
tion of structure of Petri nets (PNs) and their interre-
lations. Its goal was also to propose a compositional
semantics for high level constructs of concurrent pro-
gramming languages in terms of elementary Petri nets.
The PBC has a step operational semantics in terms of
labeled transition systems, which is based on rules of
structural operational semantics. The denotational
semantics of PBC was proposed via a subclass of PNs
equipped with an interface and considered up to iso-
morphism, which is called Petri boxes.

A stochastic extension of PBC, called stochastic
Petri box calculus (sPBC), was proposed in [8]. Only a
finite part of PBC was initially used for the stochastic
enrichment; i.e., in its former version, SPBC has nei-
ther refinement nor recursion nor iteration opera-
tions. The calculus has an interleaving operational
semantics in terms of labeled transition systems. Its
denotational semantics was defined in terms of a sub-
class of labeled continuous-time stochastic PNs
(LCTSPNSs), which is called stochastic Petri boxes (s-
boxes). In [9], the iteration operator was added to
sPBC. In sPBC, performance is evaluated by analyz-
ing the underlying stochastic process, which is contin-
uous-time Markov chain (CTMC).

In [10], sPBC with iteration was enriched with
immediate multiactions. We call the resulting calculus
generalized stochastic PBC (gsPBC). gsPBC has an
interleaving operational semantics based on labeled
transition systems. The denotational semantics of
such an sPBC extension was defined via a subclass of
labeled generalized SPNs (LGSPNSs), which is called
generalized stochastic Petri boxes (gs-boxes). The per-
formance analysis in gsPBC is based on the underlying
semi-Markov chains (SMCs).

In [11, 12], a discrete-time stochastic extension
dtsPBC of finite PBC was presented. A step opera-
tional semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denota-
tional semantics was defined in terms of a subclass of
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labeled discrete-time stochastic PNs (LDTSPNs),
based on DTSPNs and called discrete time stochastic
Petri boxes (dts-boxes).

In [13], dtsPBC was enriched with the iteration
operator with a goal of specifying infinite processes.
The underlying stochastic process, which is a discrete-
time Markov chain (DTMC), was constructed and
investigated to analyze performance in dtsPBC.

In this paper, we describe performance evaluation
methods for computing systems in the final version of
the algebra discrete-time stochastic and immediate
PBC (dtsiPBC) introduced in [14]. dtsiPBC is an
extension of dtsPBC with iteration by immediate mul-
tiactions having zero time delay. Immediate multi-
actions improve capabilities of specification: they can
model instant probabilistic choices, as well as activities
whose duration is insignificant compared to that of
others, which allows us to get a simpler and clearer
representation of systems being specified. Thus,
dtsiPBC possess concurrent discrete-time semantics
with geometrically distributed (like in dtsPBC) or zero
delays in the states of algebraic processes. In the con-
tinuous-time semantics used in sPBC and gsPBC,
parallelism is modeled by interleaving, since the prob-
ability that any two events occur simultaneously is
equal to zero by the properties of continuous probabil-
ity distributions. The syntax of algebra dtsiPBC is pre-
sented. Then, its step operational semantics based on
labeled probabilistic transition systems is constructed.
The denotational semantics is constructed on the basis
of a subclass of labeled discrete-time stochastic and
immediate Petri nets (LDTSIPNSs), which is referred
to as discrete-time stochastic and immediate Petri
boxes (dtsi-boxes). To evaluate performance in
dtsiPBC, we find and study a stochastic process, which
is a SMC, corresponding to both semantics. We also
develop an alternative, more optimal, solution method
based on the corresponding DTMC.

This paper is an extended and modified version of
our previous paper [15], which was published in the
proceedings of an international conference on practi-
cal applications of stochastic modeling, enriched with
detailed description of syntax and semantics of algebra
dtsiPBC, as well as with formal definitions and use of
some additional important concepts (for example,
numbering of expressions, numbering function, etc.).
It also includes a new alternative method for perfor-
mance evaluation and supplementary illustrative
examples.

The paper is organized as follows. In Section 2, the
syntax of algebra dtsiPBC is presented. In Section 3,
we construct the operational semantics. In Section 4,
we propose the denotational semantics. The conven-
tional and alternative methods of performance evalua-
tion are described in Section 5. Finally, Section 6 sum-
marizes the results obtained and outlines the research
perspectives.
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2. SYNTAX

In this section, we propose the syntax of dtsiPBC.

A finite multiset M over a set X is a mapping M :
X — N such that [{x € X|M(x) > 0}| < 0. We denote

the set of all finite multisets over a set X by N;(. Let M,

M e N;(. The cardinality of M is defined as |M] =
erxM(x) .We writex € Mif M(x)>0and M c M

if Vx € X M(x) < M'(x). We define (M + M')(x) = M(x)
+ M'(x) and (M — M")(x) = max{0, M(x) — M'(x)}. If
Vx € XM(x) <1, then M can be seen as an ordinary set.

Let Act = {a, b, ...} be a set of elementary actions.

Then, Act = {a, b, ..} is the set of conjugated actions
(conjugates) such that @ #aand a = a. Let A = Act U

Act be the set of all actions, and £ = N;( be the set of

all multiactions. Note that ) € & corresponds to an
internal move, i.e., to the execution of a multiaction
that contains no visible action names. The alphabet of
an multiaction a. € & is defined as A(a) = {x € A |
a(x) > 0}.

A stochastic multiaction is a pair (o, p), where o € £
and p €(0; 1) is the probability of the multiaction c.
This probability is interpreted as that of the indepen-
dent execution of the stochastic multiaction at the
next discrete time moment. Such probabilities are
used to calculate those of execution of (possibly,
empty) multisets of stochastic multiactions after one
time unit delay. The probabilities of the stochastic
multiactions are required not to be equal to 1 to avoid
extra model complexity due to assigning them weights
needed to make a choice when several stochastic mul-
tiactions with probability 1 can be executed from a
state. In this case, some problems appear with con-
flicts resolving. A discussion of a similar situation in
the framework of DTSPNSs can be found in [16]. This
decision also allows us to avoid technical difficulties
related to conditioning events with zero probability.
On the other hand, there is no sense to allow zero
probabilities of multiactions, since they would never
be performed in this case. Let ¥ be the set of all sto-
chastic multiactions.

An immediate multiaction is a pair (o, /), where o € £
and / € N\{0} is a non-zero weight of the multiaction
a. This weight is interpreted as a measure of impor-
tance (urgency, interest) or a bonus reward associated
with the execution of the immediate multiaction at the
current discrete time moment. Such weights are used
to calculate the probabilities to execute sets of imme-
diate multiactions instantly. The immediate multi-
actions have a priority over stochastic ones. One can
assume that all immediate multiactions have priority 1,
whereas all stochastic ones have priority 0. This means
that, in a state where both kinds of multiactions can
occur, immediate multiactions always occur before
stochastic ones. Stochastic and immediate multi-
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actions cannot be executed together in some step
(concurrent execution); i.e., steps consisting of only
immediate multiactions and steps including only sto-
chastic multiactions are allowed. Let &£ be a set of all
immediate multiactions.

Note that the same multiaction oo € & may have
different probabilities and weights in the same specifi-
cation. It is easy to differentiate between probabilities
and weights; hence, stochastic and immediate multi-
actions can also be easily differentiated, since proba-
bilities of stochastic multiactions belong to the interval
(0; 1) and weights of immediate multiactions are non-
zero natural numbers. An activity is a stochastic or an
immediate multiaction. Let $&L =L U $£ be the
set of all activities. The alphabet of a multiset of activ-

ities Y e N7 is defined as s(Y) = Uy, ,, . rl(a).
For an activity (o, k) € S$£, we define its multi-
action part as (o, k) = a. and its probability, or weight,
part as Q(o, K) =K.

Activities are combined into formulas (process
expressions) by the following operations: sequential
execution ;, choice ||, parallelism ||, relabeling [f] of
actions, restriction rs over a single action, synchroniza-
tion Sy on an action and its conjugate, and iferation
[* *] with three arguments: initialization, body, and
termination.

Sequential execution and choice have standard
interpretations, like in other process algebras, but par-
allelism does not include synchronization, unlike the
corresponding operation in CCS [7].

Relabeling functions f: { — 3 are bijections
preserving conjugates; i.e., A, f(x) = ﬁ;) The rela-
beling is extended to multiactions in the usual way: for
a € &£, we define f(a) = Zx cy f(x). The relabeling is

extended to the multisets of activities as follows: for

A
Y e N7, we define f(Y) = Z(Q’K)EY(f(oc), K).
Restriction over an elementary action a € Act
means that, for a given expression, any process behav-
jor containing a or its conjugate a is not allowed.

Let o, B € &£ be two multiactions such that, for
some elementary action a € Act, we have a € o and

a € Bora € oanda e B. Then, synchronization of o
and B by a is defined as o B, B =y, where

1) = {oc(x>+ B(x) -1,

a(x) + B(x), otherwise.

In other words, we require that o D, B = o + B —
{a, a}; i.e., we remove one exemplar of a and one
exemplar of a from the multiset sum o + B, since the

synchronization of @ and a produces § . Activities are
synchronized with the use of their multiaction parts;
i.e., the synchronization by a of two activities whose

X =aorx = a;
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multiaction parts o and 3 possess the above-men-
tioned properties results in the activity with the multi-
action part o ©, B. We may synchronize activities of
the same type only: either both stochastic multiactions
or both immediate ones, since immediate multi-
actions have a priority over stochastic ones; hence,
stochastic and immediate multiactions cannot be exe-
cuted together (note also that the execution of imme-
diate multiactions takes no time, unlike that of sto-
chastic ones). Synchronization by a means that, for a
given expression with a process behavior containing
two concurrent activities that can be synchronized by
a, there also exists a process behavior that differs from
the former only in that the two activities are replaced
by the result of their synchronization.

In the iteration, the initialization subprocess is exe-
cuted first, then the body is performed zero or more
times, and, finally, the termination subprocess is exe-
cuted.

Static expressions specify structure of the pro-
cesses. As we shall see, such expressions correspond to
unmarked LDTSIPNs (note that LDTSIPNs are
marked by definition).

Definition 2.1. Let (o, ) € SI£ and a € Act.

A static expression of dtsiPBC is defined as
E:=(o,x)| E,E|E[\E|E|E|E[f]|Ersa]
Esyall|E=* E=*E].

Let StatExpr denote the set of all static expressions
of dtsiPBC.

To avoid technical difficulties with the iteration
operator, we should not allow any concurrency at the
highest level of the second argument of iteration. This
is not a severe restriction though, since we can always
prefix parallel expressions by an activity with the
empty multiaction part. Alternatively, we can use a dif-
ferent, safe, version of the iteration operator, but its
net translation has six arguments. See also [12] for dis-
cussion on this subject.

Definition 2.2. Let (a, ¥) € SIL. A regular static
expression of dtsiPBC is defined as

E:=(o,x)| E,E|E[\E|E|E|E[f]|Ersa]
Esya|lE* D= E],
where
D:=(o,x)|D; E|D[D| D[f]|Drsa|
Dsya|[D=* D= E].

Let RegStatExpr denote the set of all regular static
expressions of dtsiPBC. Dynamic expressions specify
states of the processes. As we shall see, such expres-
sions correspond to LDTSIPNSs (which are marked by
default). Dynamic expressions are obtained from
static ones by annotating them with upper or lower
bars, which specify active components of the system at

the current moment of time. E and E denote the ini-

tial and final states, respectively, of the process speci-
fied by a static expression E. The underlying (base)
static expression of a dynamic one is obtained by
removing all upper and lower bars from it.
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Table 1. Inaction rules for overlined and underlined regular
static expressions

E;F=E; F E;F=E; F
E;F=>EF E[IF= E[IF
EllIF= EI[IF EllF= ENF
ElIF = E[IF ElF=EI|F
EIIF=E|F Elfl=Elf]
Elfl1= Elf] Etsa=Ersa

Ersa= Ersa Esya:fsya

Esya=Esya [E* F* K] = [E* F* K]

|E* FxK|=[E* F*K| | [E*F*K|=[E*F *K|

[E# F*K|=[E*FxK] | [E*Fx*K|=[E*F*K]

Definition 2.3. Let a € Act and E € StatExpr.
A dynamic expression of dtsiPBC is defined as

G:=E | E |G, E|E;,G|G||E| E[IG| G|G | GIf] |
Grsa|Gsya||G*ExE|||ExG=* E|||E* E*Q(].

Let DynExpr denote the set of all dynamic expres-
sions of dtsiPBC.

Note that, if the underlying static expression of a
dynamic one is not regular, the corresponding LDT-
SIPN can be non-safe (though, it is 2-bounded in the
worst case [6]).

Definition 2.4. A dynamic expression is regular if its
underlying static expression is regular.

Let RegDynExpr denote the set of all regular
dynamic expressions of dtsiPBC.

3. OPERATIONAL SEMANTICS

In this section, we define the step operational
semantics in terms of labeled transition systems.

3.1. Inaction Rules

The inaction rules for dynamic expressions
describe their structural transformations that do not
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change states of the specified processes. As we shall
see, the application of an inaction rule to a dynamic
expression does not lead to any discrete time step or
any transition firing in the corresponding LDTSIPN;
hence, its current marking remains unchanged. Thus,
an application of every inaction rule does not require
any discrete time delay; i.e., the dynamic expression
transformation described by the rule is accomplished
instantly.

In Table 1, we define inaction rules for dynamic
expressions in the form of overlined and underlined
static ones. In this table, E, F, K € RegStatExpr and
a e Act.

In Table 2, we present inaction rules for regular
dynamic expressions of an arbitrary form. In this table,

E, F € RegStatExpr, G, H, G, H € RegDynExpr and
a e Act.

Definition 3.1. A regular dynamic expression G is
operative if no inaction rule can be applied to it.

Let OpRegDynExpr denote the set of all operative
regular dynamic expressions of dtsiPBC. Note that any
dynamic expression can be always transformed into a
(not necessarily unique) operative one by using inac-
tion rules. In what follows, we consider regular expres-
sions only and omit the word “regular.”

Definition 3.2. Let ~ = (= U <)* be a structural
equivalence of dynamic expressions in dtsiPBC. Thus,
two dynamic expressions G and G' are structurally
equivalent, which is denoted as G = G', if they can be
reached from each other by applying inaction rules in
a forward or backward direction.

3.2. Action and Empty Loop Rules

The action rules are applied when some activities
are executed. With these rules we capture the prioriti-
zation of immediate multiactions with respect to sto-
chastic ones. We also have the empty loop rule, which
is used to capture a delay of one time unit in the same
state when no immediate multiactions are executable.
In this case, an empty multiset of activities is executed.
The action and empty loop rules will be used later to
determine all multisets of activities that can be exe-
cuted from the structural equivalence class of every
dynamic expression (i.e., from the states of the corre-
sponding process). This information, together with

Table 2. Inaction rules for arbitrary regular dynamic expressions

G=G,° e {5} G=G,o e {5} G=G
GoE=Go°F EoG=>FE°G G|l|H=G| H
_H=H _G=G G=G,o < {rs,sy}
G|H=GI|H Glf]l = GIf] Gea=Goa

G:>é G:>é G:>é
[G* E* Fl=[G* E* F] [E*G+*Fl=[E*G* F] [E* F*G)=[E* F*G)
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that about probabilities or weights of the activities to
be executed from the process state, will be used to cal-
culate probabilities of such executions.

The action rules with stochastic (or immediate,
otherwise) multiactions describe dynamic expression
transformations due to execution of non-empty mul-
tisets of stochastic (or immediate) multiactions. The
rules represent possible state changes of the specified
processes when some non-empty multisets of stochas-
tic (or immediate) multiactions are executed. As we
shall see, the application of an action rule with sto-
chastic (or immediate) multiactions to a dynamic
expression leads in the corresponding LDTSIPN to a
discrete time step at which some stochastic transitions
fire (or to the instantaneous firing of some immediate
transitions) and change of the current marking, unless
there is a self-loop produced by an iterative execution
of a non-empty multiset, which must be one-element,
i.e., a single stochastic (or immediate) multiaction,
since no concurrency is allowed at the highest level of
the second argument of iteration.

The empty loop rule describes dynamic expression
transformations due to execution of an empty multiset
of activities at a discrete time step. The rule reflects a
non-zero probability to stay in the current state at the
next time moment, which is an essential feature of dis-
crete time stochastic processes. As we shall see, the
application of the empty loop rule to a dynamic
expression leads to a discrete time step in the corre-
sponding LDTSIPN at which no transitions fire and
the current marking is not changed. This is a new rule
that has no prototype among inaction rules of PBC,
since it represents a time delay, but no notion of time
exists in PBC.

Thus, an application of every action rule with sto-
chastic multiactions or the empty loop rule requires
one discrete time unit delay; i.e., the execution of a
(possibly, empty) multiset of stochastic multiactions
leading to the dynamic expression transformation
described by the rule is accomplished instantly after
one time unit. An application of every action rule with
immediate multiactions does not take any time; i.e.,
the execution of a (non-empty) multiset of immediate
multiactions is accomplished instantly at the current
moment of time.

Note that expressions of dtsiPBC can contain
identical activities. To avoid technical difficulties,
such as proper calculation of the state change proba-
bilities for multiple transitions, we can always enumer-
ate coinciding activities from left to right in the syntax
of the expressions. The new activities resulted from
synchronization will be annotated with concatenation
of numberings of the activities they come from; hence,
the numbering should have a tree structure to reflect
the effect of multiple synchronizations. Now, we
define the numbering that encodes a binary tree with
the leaves labeled by natural numbers.

Definition 3.3. The numbering of expressions is
defined as 1 ::=n | (1)(1), where n € N.
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Let Num denote the set of all numberings of expres-
sions.

The new activities resulting from synchronizations
in different orders should be considered up to permu-
tation of their numbering. In this way, we shall recog-
nize different instances of the same activity. If we com-
pare the contents of different numberings, i.e., the sets
of natural numbers in them, we will be able to identify

such instances. The confent of a numbering 1 € Num is
: N;
Cont(1) = iy, e
Cont(1,) v Cont(1y), 1 = (11)(1,).

After the enumeration, the multisets of activities
from the expressions will become the proper sets. Sup-
pose that the identical activities are enumerated when
it is required to avoid ambiguity. This enumeration is
considered to be implicit.

Let G'be a dynamic expression. Then, [G]. ={H |G~
H} is the equivalence class of G with respect to the
structural equivalence. G is an initial dynamic expres-

sion denoted by init(G) if IE € RegStatExprG € [ E].,
and G'is a final dynamic expression denoted by fina/(G)
if AF € RegStatExpr G € | E]..

Definition 3.4. Let G € OpRegDynExpr. We define
the set of all non-empty sets of activities that can poten-
tially be executed from G and denote it as Can(G). Let
(o, k) € SEL, E, F € RegStatExpr, G, H € OpReg-
DynExprand a € Act.

1. If final(G), then Can(G) = 0.

2. If G= (a, k), then Can(G) = {{(a, K)}}.

3. If Y € Can(G), then ¥ € Can(G ° E), Y €
Can(E-G) (> € {;, [1}), Y € Can(G|H), Y e Can(H|G),
f(Y) € Can(G(f)), Y € Can(G rs a) (when a, a ¢
AY)), Y € Can(G sy a), Y € Can(|G * E * F]), Y €
Can([E*G=* F]), Y € Can(|E * F* G]).

4. If Y € Can(G) and 2 € Can(H), then ¥ + E €
Can(G||H).

5.If Y € Can(G sy a) and (a, k), (B, A) € Y are dif-
ferent activities such that ¢ € o and a € P, then (a)
(X +{(a D, B, k- MPH\{(a, ), (B, L)} € Can(G sy a) if
K, € (0; 1); (b) {(ae @, B, k + MH\M(, 1), (B, M)} €
Can(G sy a) if k, A € N\{0}.

When we synchronize the same set of activities in
different orders, we obtain several activities with the
same multiaction and probability or weight parts but
with different numberings having the same content. In
this case, we consider only one of the resulting activi-
ties to avoid introducing redundant elements. For
example, the synchronization of stochastic multi-
actions (o, p), and (B, y), in different orders generates
the activities (o D, B, p - )1y and (B DB, o, % - P)y1)-
Similarly, the synchronization of immediate multiactions
(o, /), and (B, m), in different orders generates the activ-
ities (o D, B, [ + m) ;) and (B D, o, m + ) ;). Since
Cont((1)(2)) = {1, 2} = Cont((2)(1)), in both cases,
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only the first activity (or, symmetrically, the second
one) resulting from the synchronization will appear in
a multiset from Can(G sy a).

Note that, if Y € Can(G), then by the definition of
Can(G),dI=C Y, E # () we have E € Can(G).

Let G € OpRegDyn Expr. Obviously, if there are only
stochastic (or only immediate) multiactions in the sets
from Can(G), then these stochastic (or immediate)
multiactions can be executed from G. Otherwise,
besides stochastic ones, there are also immediate mul-
tiactions in the sets from Can(G). According to the
note above, there are non-empty sets of immediate
multiactions in Can(G) as well; i.e., AY € Can(G) Y

9 . . L.
Ny " \{0}. In this case, no stochastic multiactions can

be executed from G, even if Can(G) contains non-
empty sets of stochastic multiactions, since immediate
multiactions have a priority over stochastic ones and
should be executed first.

Definition 3.5. Let G € OpRegDynExpr. The set of
all non-empty sets of activities that can be executed from
Gis

Can(G), (Can(G)c N;fgg\{(l)})v

Now(G) = (Can(G) < nygg\{@});

Can(G) N Nﬁ"%, otherwise.

An expression G € OpRegDyn Expr is tangible, which

is denoted by tang(G), if Now(G) < N;fg \{0}. Other-
wise, the expression G is vanishing, which is denoted as

vanish(G); in this case, Now(G) € NI \(0}.

In Table 3, we define the action and empty loop rules.
Inthistable, (o, p), (B, 1) € F&L, (a, ), (B, m) € $&F and
(o, ¥) € SI&. Further, E, F € RegStatExpr; G, H

OpRegDynExpr; G, H e RegDynExpr; and a € Act.

Moreover, I'; A € Nﬁfgg\{(l)}; I e N;fg; I, J €

nyég\{(?)}; I' e nygg and Y € Njf&g\{(b}. The first

rule in the table is the empty loop rule El. The other
rules are the action rules describing transformations of
dynamic expressions built by means of certain alge-
braic operations. If we cannot merge a rule with sto-
chastic multiactions and a rule with immediate multi-
actions for some operation, then we get coupled action
rules. In such cases, the names of the action rules with
immediate multiactions have suffix i’.

The preconditions in rules El, C, P1, 12, and I3 are
needed to ensure that (possibly empty) sets of stochas-
tic multiactions are executed only from tangible oper-
ative dynamic expressions, such that all structurally
equivalent operative dynamic expressions are tangible

as well. For example, if init(G) in rule C, then G = F
for some static expression Fand G[]E = F[]E~ F[]E.
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Hence, it should be guaranteed that tang(FI] E), which
holds if and only if fang(E).

Synchronization rule Sy2 establishes that the syn-
chronization of two stochastic multiactions is made by
taking the product of their probabilities, since we are
assume that both must occur for the synchronization
to happen.

In rule Sy2i, we sum the weights of two synchro-
nized immediate multiactions, since the weights can
be interpreted as rewards [17]; thus, we collect the
rewards. Moreover, this means that synchronized exe-
cution of immediate multiactions is more important
than separate execution of each of them. Since execu-
tion of immediate multiactions takes no time, we pre-
fer to execute as many synchronized immediate mul-
tiactions during a step as possible to get more signifi-
cant progress in behavior. Under behavioral progress,
we understand an advance in executing activities,
which does not always imply a progress in time, as in
the case when the activities are immediate multi-
actions. This aspect will be used later, when evaluating
performance via analysis of the embedded discrete
time Markov chains (EDTMCs) of expressions. Since
every state change in EDTMC takes one unit of (local)
time, the greater advance in operation of the EDTMC
allows one to calculate performance indices faster.

Observe also that we do not have self-synchroniza-
tion, i.e., synchronization of an activity with itself,
since all the (enumerated) activities executed together
are considered to be different. This allows us to avoid
many technical difficulties described in [12].

3.3. Transition Systems

Now, we construct labeled probabilistic transition
systems associated with dynamic expressions. These
transition systems are used to define the operational
semantics of dynamic expressions.

Definition 3.6. The derivation set DR(G) of a dynamic
expression G is the minimal set such that [G]. € DR(G),

or, if [H]. € DR(G) and 3T H—— H,[H|. € DR(G).
Let G be a dynamic expression and s, s € DR(G).
The set of all multisets of activities executable in s is
defined as Exec(s) = {Y | 3H € s3H H——~ H}. Note
that, if X' € Exec(s)\{0}, then 3H € s, Y € Can(H).
The state s is tangible if Exec(s) < N?Sf . For tangible
states, we may have Exec(s) = (). Otherwise, the state
s is vanishing, and, in this case, Exec(s) C nygg \{0}.

The set of all tangible states from DR(G) is denoted by
DR {(G), and the set of all vanishing states from DR(G)

is denoted by DR(G). Clearly, DR(G) = DR{(G) &
DR(G) (& denotes disjoint union).
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Let Y € Exec(s)\{0}. The probability that the set of

stochastic multiactions Y is ready for execution in s, or
the weight of the set of immediate multiactions Y that is
ready for execution in s, is

[T~ [1
(,p)eX  {{(B,7)} € Exec(s)|(B,x) & Y}
s € DRHG);

(I_X)’

PF(Y,s) =

z I, se DR/G).

(a,)eY

If Y = 0 and s € DRA{G), we define

I1

{(B, %)} € Exec(s)
1, Exec(s) = {0}.

If s € DR(G) and Exec(s) # {0}, then PF(Y, s) can
be interpreted as a joint probability of independent
events (in the probability theory sense; i.e., the proba-
bility of intersection of these events is equal to the
product of their probabilities). Each such an event
consists in the positive or negative decision to be exe-
cuted for a particular stochastic multiaction. Every
executable stochastic multiaction decides probabilisti-
cally (using its probabilistic part) and independently
(from others) whether it wants to be executed in s. If Y
is a set of all executable stochastic multiactions that
have decided to be executed in s and Y € Exec(s), then
Y is ready for execution in s. The multiplication in the
definition is used because it reflects the probability of
the intersection of independent events. Alternatively,
when Y # 0, PF(Y, s) can be interpreted as the proba-
bility to execute exclusively the set of stochastic multi-
actions Y in s, i.e., the probability of intersection of two
events calculated using the conditional probability for-
mula in the form P (X N Y) = P(X|V)P(Y). The event
X consists in the execution of Y in s. The event Y con-
sists in the non-execution in s of all executable sto-
chastic multiactions that do not belong to Y. Since the
above-mentioned non-executions are obviously inde-
pendent events, the probability of Y is the product of
the probabilities of the non-executions: P(Y) =

— 7). The conditioning of

(I=x%), Exec(s)#{0};

PF(0,s) =

H{{(ﬁ,x)} € Exec(s)|(B,x) £ Y} (1
X by Y makes the executions of the stochastic multi-
actions from Y independent, since all of them can be
executed in parallel in s by the definition of Exec(s).
Hence, the probability to execute Y under condition
that no executable stochastic multiactions not belong-
ing to Y are executed in s is the product of probabilities
of these stochastic multiactions: P(X|Y) =

H (a.py < v P - Thus, the probability that Y is executed

and no executable stochastic multiactions not belong-
ing to Y are executed in s is equal to the probability of
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X conditioned by Y multiplied by the probability of Y-
PA A1 = PENPWD) = []w,erP

T 01 < prectnip e vy (1 =200 - When X 0, PR,

s), can be interpreted as the probability not to execute
in s any executable stochastic multiactions; thus,

PE(0, s) = H{(B,X)}eExec(s)(l—x). When only an

empty set of activities can be executed in s, i.e.,
Exec(s) = {0}, we have PF(Q,s) = 1, since we stay in s
in this case. Note that, for s € DR{G), we have PF(Y,
s) € (0; 1]; hence, we can stay in s at the next time
moment with a certain positive probability.

If s € DR(G), then PF(Y, s) can be interpreted as
the overall (cumulative) weight of the immediate mul-
tiactions from Y, i.e., the sum of all their weights. The
summation here is used since the weights can be seen
as the rewards collected [17]. In addition, this means
that concurrent execution of the immediate multi-
actions has more importance than that of every single
one. The weights of immediate multiactions can be
also interpreted as bonus rewards of transitions [18].
The rewards are summed when immediate multi-
actions are executed in parallel, because all of them
“operated” thereby. Since execution of immediate
multiactions takes no time, we prefer to execute as
many parallel immediate multiactions in a step as pos-
sible to get more progress in behavior. This aspect will
be used later, when evaluating performance on the
basis of the EDTMCs of expressions. Note that this
reasoning is the same as that used to define the proba-
bility of synchronized immediate multiactions in rule
Sy2i. Another reason is that our approach is analogous
to the definition of the probability of conflicting imme-
diate transitions in GSPNs [19]. The only difference is
that we have a step semantics and, for every set of imme-
diate multiactions executed in parallel, use its cumula-
tive weight. To get the analogy with GSPNSs possessing
interleaving semantics, we interpret weights of immedi-
ate transitions of GSPNs as the cumulative weights of
the sets of immediate multiactions of dtsiPBC.

Note that the definition of PF(Y, s) (as well as the
definitions of other probability functions to be pre-
sented) is based on the assumed implicit enumeration
of activities.

Let Y € Exec(s). Besides Y, some other sets of
activities may be ready for execution in s; hence, a
kind of conditioning or normalization is needed to
calculate the execution probability. The probability to
execute a multiset of activities Y in s is

PF(Y, s)

z PF(E,s)
= e Exec(s)
If s € DRAG), then PT(Y, s) can be interpreted as

the conditional probability to execute Y in s calculated
using the conditional probability formula in the form

PT(Y,s) =
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PZW) = @-(—Z-Q—E—V) The event Z consists in the
PW)
exclusive execution of Y in s; hence, P (2) = PF(Y, s).
The event W consists in the exclusive execution of any
multiset (including the empty one) = € Exec(s) in s.
Thus, W= U,Z, where, Vj, Z; are mutually exclusive
(incompatible) events (in the probability theory sense,
i.e., intersection of these events is the empty event)

and 3i, Z = Z. We have P(W) = ZQP(Z/) =

Z_ PF(E, s), because the summation reflects
= € Exec(s)

the probability of the union of mutually exclusive

events. Since ZN W= ZN(V,Z) = Z, = Z, we have
pw) = 2D _ PRY.S) _ pRr, s)
Qp( W) Z € Exec(s) PF(:" S)

can be also viewed as the potential probability to exe-
cute Y in s, since we have PF(Y, s) = PT(Y, s) only
when all sets (including the empty one) consisting of
the executable stochastic multiactions can be executed
in s. In this case, all stochastic multiactions mentioned
can be executed in parallel in s, and we have

ZE « Fxee(s) PF(ZE, s) = 1, since this sum collects prod-

ucts of all combinations of the probability parts of the
stochastic multiactions and the negations of these parts.
However, in general, for example, for two stochastic
multiactions (o, p) and (B, %) executable in s, it may
happen that they cannot be executed in s together, in

parallel, i.e., 0, {(a, p)}, {(B, 1)} € Exec(s), but {(a,
P)h {(B, 1)} ¢ Exec(s). Note that, for s € DR{G), we

have PT(0, s) € (0; 1]; hence, there is a non-zero
probability to stay in the state s at the next time
moment, and the residence time in s is at least one dis-
crete time unit.

If s € DR)(G), then PT(Y, s) can be interpreted as
the weight of the set of immediate multiactions Y that
is ready for execution in s normalized by the weights of
all sets executable in s.

The advantage of our two-stage approach to the
definition of the probability to execute a set of activi-
ties is that the resulting probability formula P7(Y, s) is
valid both for (multisets of) stochastic and immediate
multiactions. It allows one to unify the notation used
in what follows for constructing the operational
semantics and analyzing performance.

Note that the sum of outgoing probabilities for the
expressions belonging to the derivations of G is equal

to 1. More formally, Vs € DR(G), ZY  ree PTCL,8)
= 1. This, obviously, follows from the definition of
PT(Y, s) and guarantees that it always defines a proba-
bility distribution.

The probability to move from s to s by executing an
arbitrary multiset of activities is given by

PM(s,5) =Y PT(Y,s).

(Y|3Hes3IHes HY H}
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Since PM(s, s ) is the probability to move from s to

s by executing an arbitrary set of activities (including
the empty one), we use summation in the definition.

We have
Vs € DR(G) Z

(5|3HesIHes Y HYS HY

- 2 2

(5|3HesAHes W HS HY(Y|3HesAH 5 HD HY

= z PT(Y,s) =
Y € Exec(s)
Example 3.1. Let £ = ({a}, p)[1({a}, x). Then,
DR(E) consists of the equivalence classes s, = [ E].

and s, = [ E].. We have DR,(E) = {s, s,}. Let us show
how to calculate the execution probabilities. Since

Exec(s)) = {0, {({a}, p)}, {({a}, x)}}, we obtain
PE({({a}, p)},s1) = p(1 — ), PF({({a}, 1)}, s) = x(1 — p),
and PF(®, s) = (1 — p)(1 — yx). Then,

> e e pesy PFE 1) =p(1 =) + x(1 = p) + (1 =
p)(1 — %) = 1 — pyx. Thus, PT({({a}, p)}, s) =
p“ p’;) PT(a}, 0}, s1>—X( pp) and PT(0 ;) =

PM(s,s)

PT(Y, s)

PM(s,, s)) = (11‘)—)#)() Further, Exec(s,) = {0 };

hence, Z%ERC(”PF(H, s,) = PF0, s,) =1 and

PT(0, s55) = PM(s,, 55) = % = 1. Finally, PM(s,, s,) =

PT({(a}, p)}, s) + PTH{a}, ), 51) = pl(l_gi +

x(1-p) _p+x—2p%
I-py 1-py

Let E' = ({a}, D[1({a}, m). Then, DR(IT?') consists
=[E'].and s, = [E']..
We have DRAE') = {sy} and DRAE') = {s}}. Let us

show how to calculate the execution probabilities.
Since Exec(s,) = {{({a}, D}, {({a}, m)}}, we obtain

PF({({a), D}, 1) = land PR({({a}, m)}, s}) = m. Then,
ZEE Exec(s'])PF(Eﬂ s1) =1+ m. Thus, PT{({a}, D)}, s}) =

L and PTU{a), my),
[+ m

of the equivalence classes s

1) = [+ m
PF(E, s,) = PRO,

. Further,
Exec(sy) = {0 }; hence, ZE

€ Exec(s})

sy)=1and PT(0, s)) = PM(s), 5,) = } = 1. Finally,
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PM(s,, sy) = PT({({a}, D}, 5\) + PT({({a}, m)}, 5\ ) =
/ 4 _m

Il+m [+m

Definition 3.7. Let G'be a dynamic expression. The
(labeled probabilistic) transition system of G is a quadru-
ple 7S(G) = (Sg, Lg, T 6, 56), where

* S; = DR(G) is the set of states;

o Loc NP (05 1] is the set of labels;

« To={(s, (Y, PT(Y, 5)),5) |s, 5 € DR(G),

JHesIH es H—~ ]~{} is the set of transitions;
and
* ¢ = | Gl. is the initial state.

The definition of 7.S(G) is correct; i.e., for every
state, the sum of the probabilities of all the transitions
starting from it is 1. This is guaranteed by the remark
after the definition of P7(Y, s). Thus, we have defined
a generative model of probabilistic processes [20]. This
follows from the fact that the sum of the probabilities
of the transitions with all possible labels, rather than of
only those with the same labels (up to enumeration of
activities they include), like in the reactive models,
should be equal to 1. In addition, we do not have a
nested probabilistic choice as in the stratified models.

The transition system 7.5(G) associated with a
dynamic expression G describes all the steps (concur-
rent executions) that occur at discrete time moments
with some (one-step) probability and consist of sets of
activities. Every step consisting of stochastic multi-
actions or the empty step (i.e., the step consisting of
the empty set of activities) occurs instantly after one
discrete time unit delay. Each step consisting of imme-
diate multiactions occurs instantly without any delay.
Any step can change the current state. The states are the
structural equivalence classes of dynamic expressions
obtained by application of action rules starting from an

expression belonging to [G].. A transition (s,(Y, P), s ) €

T g is written as s L’g}) s and is interpreted as follows:
the probability to change sto s as a result of executing Y

isP.

Note that for tangible states, % can be the empty
set, and its execution does not change the current state
(i.e., the equivalence class), since we have a loop tran-

sition s —0>o} s from a tangible state s to itself. This
corresponds to the application of the empty loop rule
to expressions from the equivalence class. We have to
keep track of such executions, which are called empty
loops, because they have non-zero probabilities. This
follows from the definition of PF((, s) and the fact
that multiaction probabilities cannot be equal to 1
since they belong to the interval (0; 1). For vanishing
states, Y cannot be the empty set, since we must exe-
cute some immediate multiactions from them at the
current moment.
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The step probabilities belong to the interval (0; 1],
with value 1 corresponding to the case where we can-
not leave a tangible state s and there exists only one

transition from it, namely, the empty loop s —0>1 s, or
if there is just a single transition from a vanishing state
to any other one.

. Y ~ . Y ~ ~ .
We write s — s if 3P s —45 5 and s — s if

Irs - 5.

Isomorphism is a coincidence of systems up to
renaming of their components or states.

Definition 3.8. Let G, G' be dynamic expressions and
TS(G) = (Se, Lg, T 65 50), TS(G) = (Sg, L, T g, 5¢7) be
their transition systems. A mapping 3 : S; — S is an
isomorphism between TS(G) and TS(G'), which is
denoted as B : TS(G) = TS(G), if B is a bijection such that

B(sg) = sgand Vs, 5 € S; VY s ——=5 5 < Bls) —5
B(s). Two transition systems 7.S(G) and T'S(G') are iso-
morphic, which is denoted as TS(G) = TS(G') if 3P:
TS(G) = TS(G).

Transition systems of static expressions can be
defined as well. For E € RegStatExpr, we set TS(E) =
TS(E).

Definition 3.9. Two dynamic expressions G and G'

are equivalent with respect to the transition systems,
which is denoted as G =, G, if TS(G) = TS(G).

Example 3.2. The expression Stop = ({g}, %) rsg

specifies the non-terminating process performing only

empty loops with probability 1. Let £=[({a}, p) * (({b},

x); (e}, D; (d), O)({et, m); ({f}, 9)))) * Stopl.

DR(E) consists of the elements

s1=1({a}, p) * (b}, ) (e}, D; ({d}, ON((e}, m); (S},
$)))) * stopls,

s, =1[({a}, p) * (16}, ) (e}, D (d}, ON((e}, m); (S},
$)))) * stopls,

s3=[({a}, p) * ({6}, )5 (e}, D; ({dh, ON1I((e}, m); (S},
$)))) * Stopls,

s4=1({a}, p) * (b}, 1) (e}, D (d}, ODI((e}, m); (S},
$)))) * Stopls, L

ss=1[({a}, p) * (({b}, 0); (((e}, D (d}, O)I((e}, m); (S},
$)))) * Stopls,

We have DR (E) = {s;, 5, 54, 55} and DRAE ) = {s3}.

In Fig. 1, the transition system 7.S( F') is presented.
The tangible states are depicted in ovals and the van-
ishing ones are depicted in boxes. For simplicity of the
graphical representation, the singleton multisets of
activities are written without braces.

4. DENOTATIONAL SEMANTICS

In this section, we construct the denotational
semantics in terms of a subclass of labeled discrete
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time stochastic and immediate PNs (LDTSIPNs)
called discrete time stochastic and immediate Petri
boxes (dtsi-boxes).

4.1. Labeled DTSIPNs

Let us introduce a class of labeled discrete time sto-
chastic and immediate Petri nets (LDTSIPNSs), a sub-
class of DTSPNs [16] (we do not allow the transition
probabilities to be equal to 1) extended with transition
labeling and immediate transitions. LDTSIPNs
resemble in part discrete time deterministic and sto-
chastic PNs (DTDSPNs) [21], as well as discrete
deterministic and stochastic PNs (DDSPNs) [22].
DTDSPNs and DTSPNs are extensions of DTSPNs
with deterministic transitions (having fixed delay that
can be zero), inhibitor arcs and guards. In addition,
while stochastic transitions of DTDSPNSs, like those
of DTSPNs, have geometrically distributed delays,
delays of stochastic transitions of DTSPNs have dis-
crete-time phase distributions. At the same time,
LDTSIPNs are not subsumed by DTDSPNs or
DTSPNSs, since LDTSIPNs have a step semantics,
whereas DTDSPNs and DDSPNs have interleaving
semantics. LDTSIPNs are somewhat similar to
labeled weighted DTSPNs (LWDTSPNs) from [23],
but, in LTWDTSPNSs, there are no immediate transi-
tions, all (stochastic) transitions have weights, the
transition probabilities may be equal to 1, and only
maximal fireable subsets of the enabled transitions are
fired.

First, we present a formal definition of LDTSIPNSs.

Definition 4.1. A labeled discrete-time stochastic
and immediate Petri net (LDTSIPN) is a tuple

N: (PNa TN’ WN’ QN’ LNa MN)’ Where

* Pyand Ty = T, & T,yare finite sets of places and
stochastic and immediate transitions, respectively, such
that Py Ty# 0 and Py Ty = 0 ; that

s Wy:(Pyx Ty) U (Tyx Py) — N is a function
providing weights of arcs between places and transi-
tions;

e Qu: Ty — (0; 1) U (N\{0}) is a transition prob-
ability and weight function associating stochastic tran-
sitions with probabilities and immediate transitions
with weights;

« Ly: Ty — & is a transition labeling function
assigning multiactions to transitions;

« Mye N;N is an initial marking.

The graphical representation of LDTSIPNs is sim-
ilar to that of standard labeled PNs supplemented with
indications of probabilities or weights written near the
corresponding transitions. Square boxes of normal
thickness depict stochastic transitions, and those with
thick borders represent immediate transitions. If the
probabilities or weights are not indicated, they are
considered to be of no importance in the correspond-
ing examples.
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Fig. 1. The transition system of E for E = [({a}, p) * (({b},
1); (((et, D; (d}, O)[1((eb, m); ({1, 9)))) * Stop].

Now, we consider the semantics of LDTSIPNs.

Let Nbe an LDTSIPN and M, M € N,

Immediate transitions have a priority over stochas-
tic ones; thus, immediate transitions always fire first, if
they can. Suppose that all stochastic transitions have
priority 0 and all immediate ones have priority 1.

Atransition t € Ty is enabled in M if*t — M and one
of the following conditions holds: 7 € T;yorVu € Ty‘u
M = u € T,y. In other words, a transition is enabled in
a marking if it has enough tokens in its input places
and is immediate, or, when it is stochastic, there exists
no immediate transition with enough tokens in its
input places. Let Ena(M) be the set of all transitions
enabled in M. By definition, it follows that Fna(M)
T,y or Ena(M) < T,y. A set of transitions U ¢ Ena(M)

is enabled in a marking M if *U < M. Firings of transi-
tions are atomic (instantaneous) operations, and tran-
sitions may fire concurrently in steps. We assume that
all transitions participating in a step should differ;
hence, only sets (not multisets) of transitions may fire.
Thus, we do not allow self-concurrency to avoid some
technical difficulties in calculating probabilities for
multisets of transitions, as will be seen after the follow-
ing formal definitions. Moreover, we do not need to
consider self-concurrency, since denotational seman-
tics of expressions will be defined via dtsi-boxes which
are safe LDTSIPNs (hence, no self-concurrency is
possible).

A marking M is tangible, which is denoted by
tang(M), if Ena(M) — T,y, in particular, if Ena(M) =0 .
Otherwise, the marking M is vanishing, which is
denoted by vanish(M) and, in this case, Ena(M) T,y
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and Ena(M) # 0 . If tang(M), then a stochastic transi-
tion t € Ena(M) fires with probability Q,(f) when no
other stochastic transitions conflicting with it are
enabled.

Let U< Ena(M), U+ 0 ,and *Uc M. The probabil-

ity that the set of stochastic transitions U is ready for fir-
ing in M or the weight of the set of immediate transitions
U that is ready for firing in M is

HQN(t) : H (1-Qp(u)),
telU u € Ena(M)\U
PE(U, M) = < tang(M);
ZQN(t), vanish(M).
telU

If U= 0 and tang(M), we define

[T (-Quw). Ena(a)#0;

u e Ena(M)

1, Ena(M) = 0.

Let Uc Ena(M), U# 0 ,and*Uc Mor U= ) and
tang(M). Besides U, some other sets of transitions may
be ready for firing in M; hence, a kind of conditioning
or normalization is needed to calculate the firing prob-
ability. The concurrent firing of the transitions from U

changes the marking M to M — *U + U°, which is

denoted as M —2~4 M, where P = PT(U, M) is the
probability that the set of transitions U fires in M defined

as PT(U, My = — PFCUM)
Z{Vl.ycM}PF(V,M)

Note that, in the case of U = @ and fang(M), we
have M= M.

The advantage of our two-stage approach to defini-
tion of the probability that a set of transitions fires is
that the resulting probability formula PT(U, M) is valid
both for (sets of) stochastic and immediate transitions.
This allows one to unify the notation used further for
constructing the denotational semantics and analyz-
ing performance.

Note that, for all markings of an LDTSIPN N, the
sum of outgoing probabilities (i.e., probabilities to
change the current marking) is equal to 1. More for-
mally, VM e N, 3 . PT(U;M) = 1. This

(U've My
obviously follows from the definition of PT(U, M) and
guarantees that this function defines a probability dis-
tribution.

PF(0, M) =

We write M—L= M if3®P M—L~, M and M— M
ifavmM -4 M.
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The probability to move from M to M by firing an

arbitrary set of transitions is PM(M, M) =

Z{U|M$ M}PT(U’ M).

Since PM(M, M ) is the probability for any (includ-
ing the empty one) transition set to change marking

Mto M, we use summation in the definition.
Py ~
Note that VM e N, Z PM(M, M) =

{M|M— M}

Z{M\Ma&l}Z{U\M&/{/I}PT(U’M) -
Y . PT(UM) =1
(U'Uc M}

Definition 4.2. Let N be an LDTSIPN.

» The reachability set of N denoted as RS(N) is the
minimal set of markings such that My € RS(N) and, if
M e RS(N) and M — M ,then M € RS(N).

* The reachability graph of N denoted as RG(N) is
a directed labeled graph with the set of nodes RS(N)

and arcs between nodes M and M labeled with (U, P)
itM Ly M.
The set of all tangible markings from RS(N) is

denoted by RS;(N), and the set of all vanishing mark-
ings from RS(N) is denoted by RS(N). Obviously,

RS(N) = RSAN) & RS/N).

4.2. Algebra of dtsi- Boxes

Now, we introduce discrete-time stochastic and
immediate Petri boxes and the corresponding alge-
braic operations to define a net representation of
dtsiPBC expressions.

Definition 4.3. A discrete-time stochastic and imme-
diate Petri box (dtsi-box) is a tuple N = (Py, Ty, Wy,
Ay), where

* Py and Ty are finite sets of places and transitions,
respectively, such that Py U Ty# 0 and Py Ty=0;

* Wy:(Pyx Ty) v (Tyx Py) — Nis a function
providing weights of arcs between places and transi-
tions;

* Ay is the place and transition labeling function
such that AN|PN : Py — {e, 1, x} (it specifies entry,

internal, and exit places, respectively); A N’ T, Ty —

elec N_}(Mg x LI} (it associates transitions with

the relabeling relations on activities).

Moreover, Vt € Ty t= 0 #¢°. Further, for the set of
entry places of N defined as °N = {p € Py| Ay(p) =€}
and the set of exif places of N defined as N° = {p € Py

| Ap(p) = x}, the following condition holds: °N # @ #
NO, .(ON) — 0 — (NO).‘
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‘ zé] v g; . g . M;l '
A ¢ 5
”[1‘ Qid\@)}d |”n Y ‘ E?é ‘ ‘ éz:) ‘”H °

Fig. 2. The plain and operator dtsi-boxes.

A dtsi-box is plain if Vt € Ty Ap() € I, ie.,
ApN(?) is a constant relabeling relation to be defined
later. A marked plain dtsi-box is a pair (N, M), where

P’V . . .
Nis a plain dtsi-box and My € N," is its marking. We

will use the following notation: N = (N, °N)and N =
(N, N°). Note that a marked plain dtsi-box (Py, Ty,
Wi, An, My) can be interpreted as the LDTSIPN (Py,
Ty, Wi, Qu, Ly, My), where functions Q2 and L, are
defined as follows: Vi € Ty Qu(1) = Q(Apn()) and Lpy() =
FL(A\(D). Behavior of marked dtsi-boxes follows from
the firing rule of LDTSIPNs. A plain dtsi-box N is

n-bounded (n € N) if N is bounded, i.e., YM € RS(N)
Vp € Py M(p) <n, and it is safe if it is 1-bounded. A

plain dtsi-box Nis clean it VM € RS(N)°Nc M=
M =°Nand N° c M = M = N°; i.e., if there are
tokens in all its entry (exit) places, then no other places
have tokens.

The structure of the plain dtsi-box corresponding
to a static expression is constructed like in PBC [5, 6];
i.e., we use simultaneous refinement and relabeling
meta-operator (net refinement) in addition to the
operator dtsi-boxes corresponding to the algebraic
operations of dtsiPBC and featuring transformational
transition relabelings. The operator dtsi-boxes specify
n-ary functions from plain dtsi-boxes to plain dtsi-
boxes (we have 1 <n <3 in dtsiPBC). Thus, the result-
ing plain dtsi-boxes are safe and clean. In the defini-
tion of the denotational semantics, we will apply stan-
dard constructions used for PBC. Let ® denote an
operator box and u denote the transition name from the
PBC setting.

The relabeling relations P < N}if%g

defined as follows:

x PPF are
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c 0= {{(a, ¥}, (o, X)) | (o, k) € SIL} is the

identity relabeling keeping the interface as is;

* P 1D, (0, 1))} is the constant relabeling that
can be identified with the activity (o, k) € P& itself;

* P = (e, 0}, (fla), ©)) | (o, %) € FIELY

* Bro=1({(0, 10}, (0, 1)) (o, ) € FIL, 0, a ¢ a);

* Py, is the least relabeling relation containing P,
such that, ifa € o, a € B, and (Y, (o, ¥)), (E, (a1, ¥)) €
Psyq then

— (Y +E{(a D, B, k- N)}) € Py, if i, & € (0; 1);

— (Y +E{(aD, B,k +M)}) € Py, ifc, A € N\{0}.

The plain dtsi-boxes N, ,,, , N, and operator

dtsi-boxes are shown in Fig. 2. The label i associated
with internal places is usually omitted.

In the case of the iteration, a decision is to be made
on the selection of the operator box that will be used
for it, since we have two proposals in plain PBC for
that purpose [6]. One of them provides us with a safe
version with six transitions in the operator box, but
there is also a simpler version, which has only three
transitions. In general, in PBC with the latter version,
we may generate 2-bounded nets, which only occurs
when a parallel behavior appears at the highest level of
the body of the iteration. Nevertheless, in our case,
this particular situation cannot occur due to the syn-
tactical restriction introduced for regular terms.
Therefore, the net obtained will be always safe.

To construct the semantic function that associates
a plain dtsi-box with every static expression of
dtsiPBC, we introduce the enumeration function Enu :
Ty — Num, which associates the numberings with
transitions of a plain dtsi-box N in accordance with
those of activities. In the case of synchronization, this
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function associates with the resulting new transition
the concatenation of the parenthesized numberings of
the transitions it came from.

Now, we define the enumeration function Enu for
every operator of dtsiPBC. Let Box,(E) = (P, Tp,
Wy, Ap) be a plain dtsi-box corresponding to a static
expression E, and let Enuy : Ty — Num be the enu-
meration function for Box,(£). We will use similar
notation for static expressions Fand K.

° Boxdtsi(Eo F) = ®°(B0xdtsi(E)’ BOde(F)), ° € {n
[1, |I}. Since we do not introduce new transitions, we
preserve the initial numbering

EnuE(t)a
Enul’(t)a

te Ty
te Ty

Enu(t) = {

* Box,(Elf]) = O,(Boxy(E)). Since we only
replace the labels of some multiactions by a bijection,
we preserve the initial numbering: Enu(f) = Enug(?),
te Ty

* Box;(E rs a) = O, (Box,(E)). Since we
remove all transitions labeled with multiactions con-
taining @ or a , this does not change the numbering of
the remaining transitions: Enu(t) = Enug(t),t € T, a,
a ¢ L(AL)).

* Boxy(E sy a) = O ,(Box,,(E)). Note that Vv,
w € Tgsuch that Ag(v) = (o, x), Ag(v) = (B, L), and a
ca,ae B, the new transition ¢ resulting from synchro-
nization of vand w has the label A(Y) = (a D, B, - ) and
the numbering Enu(f) = (Enug(v))(Enug(w)). Thus, the
enumeration function is defined as

Enug(t), te Tg
(Enug(v))(Enug(w)),

synchronization if v and w.

Enu(t) = t results from

According to the definition of P ,, the synchroni-
zation is possible only when all transitions in the set
are stochastic or when all of them are immediate. If we
synchronize the same set of transitions in different
orders, we obtain several resulting transitions with the
same label and probability or weight but with the dif-
ferent numberings having the same content. Then, we
only consider a single transition from the resulting
ones in the plain dtsi-box to avoid introducing redun-
dant transitions.

For example, if transitions 7 and u are generated by
synchronizing v and w in different orders, we have
A = (oD, B, x - L) = A(u) for stochastic transitions
or A(t) = (o D, B, ¥ + A) = A(u) for immediate ones,
Enu(®) = (Enug(v))(Enug(w)) # (Enug(w))(Enug(v)) =
Enu(u), whereas Cont(Enu(t)) = Cont(Enu(v)) U
Cont(Enu(w)) = Cont(Enu(u)). Then, only one transi-
tion 7 (or u) will appear in Box,,;(E sy a).
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* Boxy(LE * F* K]) = ®[* *](Boxdtsi(E)v Boxdtsi(F)s
Box,,,(K)). Since we do not introduce new transitions,
we preserve the initial numbering:

Enug(t), te Ty,
Enu(t) = { Enug(t), te Ty,
Enui(t), te Ty

Now we can formally define the denotational
semantics as a homomorphism.

Definition 4.4. Let (o, k) € SPL, a € Act, and E,
F, K € RegStatExpr. The denotational semantics of
dtsiPBC is a mapping Box,,; from RegStatExprinto the
domain of plain dtsi-boxes defined as follows:

1. Boxdtsi((aa K)l)z N(a, K), 5

2. Box s E° F) = Oc(Box s E), Box4i(F)),° € {;, [1[[};

3. Box,(Elf1) = O(Box(E));
4. Boxy(E © a) = O,,(Box,,(E)), © € {rs, sy};

5. Boxdtsi([E * Fx K]) = ®[* *](Boxdtsi(E)a Boxdtsi(F)a
BOde(K)).

The dtsi-boxes of dynamic expressions can be
defined as well. For F € RegStatExpr, we set

Boxdtsi(E) = Boxdtsi(E) and Boxdts[(E) = Boxdrsi(E) .

Note that any dynamic expression can be decomposed
into overlined or underlined static expressions or those
without any lines. The definition of dtsi-boxes for
arbitrary dynamic expressions should also be compo-
sitional. Hence, it is required to apply the net opera-
tions to the dtsi-boxes of the three above-specified
types in which the only places with tokens are input
and output ones or the places do not contain tokens at
all. The operations are applied to the dtsi-boxes with
tokens in the same way as to those that do not contain
tokens, but the composed dtsi-boxes will retain the
tokens in their places.

Let = denote isomorphism between transition sys-
tems and reachability graphs that binds their initial
states. The corresponding definitions are omitted
since they are similar to the isomorphism of the tran-
sition systems. Names of transitions of the dtsi-box
corresponding to a static expression can be identified
with the enumerated activities of the latter.

Theorem 4.1. For any static expression F,

TS(E) = RG(Box( E)).

Proof. As for the qualitative (functional) behavior,
we have the same isomorphism as in PBC.

The quantitative (probabilistic) behavior is the
same by the following reasons. First, the activities of
any expression have the probability or weight parts
coinciding with the probabilities or weights of the
transitions belonging to the corresponding dtsi-box.
Second, we use analogous probability or weight func-
tions to construct the corresponding transition sys-
tems and reachability graphs. [J
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Example 4.1. Let E be the expression from Exam-

ple 3.2. In Fig. 3, the marked dtsi-box N = Box,(E)
and its reachability graph RG(N) are depicted. It is

easy to see that 7.S(E') and RG(N) are isomorphic.

5. PERFORMANCE EVALUATION

In this section, we demonstrate how Markov chains
corresponding to the expressions and dtsi-boxes can
be constructed and used then for performance evalua-
tion. The standard technique for analyzing Markov
chains consists in studying their transient and stable
behavior and on subsequent calculation of the perfor-
mance indices (measures) based on the transient or
steady-state probabilities.

5. 1. Analysis of the Underlying Stochastic Process

For a dynamic expression G, a discrete random
variable is associated with every tangible state s €
DR {G). The variable captures a residence time in the
state. One can interpret staying in a state at the next
discrete time moment as a failure and leaving it as a
success of some trial series. It is easy to see that the
random variables are geometrically distributed with
the parameter 1 — PM(s, s), since the probability to
stay in s for kK — 1 time moments and leave it at the
moment k > 1 is PM(s, s)*~ (1 — PM(s, s)) (the resi-
dence time is k in this case, and this formula defines
the probability mass function (PMF) of residence time
in s). Hence, the probability distribution function
(PDF) of residence time in s is 1 — PM(s, s)*~ (k> 1)
(the probability that the residence time in s is less than
k). The mean value formula for the geometrical distri-
bution allows us to calculate the average sojourn time
_
1—-PM(s,s)
in a vanishing state is zero. Let s € DR(G).

The average sojourn time in the state s is

ins as . Clearly, the average sojourn time

1
1—PM(s,s)
1, se DR/G).

SI(s) = s € DR;(G);

The average sojourn time vector of G, which is denoted
by S/, has the elements SJ(s), s € DR(G).

The sojourn time variance in the state s is

LS)Z, s € DRA(G);
VAR(s) = < (1 - PM(s,s))
0, se DR/G).

The sojourn time variance vector of G, which is denoted
by VAR, has the elements VAR(s), s € DR(G).

To evaluate performance of the system specified by
a dynamic expression G, we should investigate the sto-
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Fig. 3. The marked dtsi-box N = Boxd,S,-(E ) for E = [({a},

p) * ({6}, )5 (e, D; (db, O)({e}, m); ({f}, 0))) *
Stop] and its reachability graph.

chastic process associated with it. This process is the
underlying semi-Markov chain SMC(G) [17], which
can be analyzed by extracting from it the embedded
(absorbing) discrete-time Markov chain EDTMC(G)
corresponding to G. The construction of the latter is
similar to that used in the context of the generalized
stochastic PNs (GSPNs) in [19], as well as in the
frameworks of discrete-time deterministic and sto-
chastic PNs (DTDSPNs) in [21] and discrete deter-
ministic and stochastic PNs (DDSPNs) in [22]. The
EDTMC(G) only describes state changes of SMC(G),
while ignoring its time characteristics. Thus, to con-
struct the EDTMC, we should abstract from all time
aspects of behavior of the SMC, i.e., from the sojourn
time in its states. The (local) sojourn time in every
state of the EDTMC is equal to one discrete time unit.
It is well-known that every SMC is fully described by
the EDTMC and the state sojourn time distributions
(the latter can be specified by the vector of PDFs of the
residence time in the states) [24].

Let G be a dynamic expression and s, s € DR(G).
The transition system 7.5(G) can have self-loops, i.e.,
loops going from a state to itself, that have a non-zero
probability. Obviously, the current state remains
unchanged in this case.

Lets — s . The probability to stay in s due to k (k> 1)
self-loops is (PM(s, s)).
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Let s — s and s # s . The probability to move from

sto's by executing an arbitrary multiset of activities after
possible self-loops is

PM(s, s)

PM(s,5) " (PM(s,s))" = T PMis 5

k=0
PM(s,s), otherwise;

= SL(s)PM(s,s),

— S,

where

1
1—-PM(s,s)

1, otherwise;

-,

SL(s) =

is the self-loops abstraction factor. The self-loops
abstraction vector of G, which is denoted by SL, has the
elements SL(s), s € DR(G). The value k£ = 0 in the
summation above corresponds to the case where no
self-loops occur. Note that Vs € DRHG) SL(s) =

1 -
——— =5J(s); hence, Vs € DR PM*(s, s) =
PGS (s); hen s € DR{G) (s, s)

SJ(s)PM(s, s ), since there always exists an empty loop

(which is a self-loop) s 2. s from every tangible state s.
Empty loops are not possible from vanishing states;

wro <y PM(s,s)
hence, Vs € DR (G) PM*(s, s) T PM (s 5 PM(s. 5)
there are non-empty self-loops (produced by itera-
tion) from s, or PM*(s, 5 ) = PM(s, s ), when there are
no self-loops from s.

Note that, after abstraction from the probabilities of
transitions that do not change the states, the remaining
transition probabilities are normalized. In order to cal-
culate transition probabilities P7(Y, s), it is required to
normalize PF(Y, s). Then, to obtain transition probabil-
ities of the state-changing steps PM*(s, s), we now

have to normalize PM(s, s). Thus, we arrive at two-
stage normalization.

Note that PM*(s, s ) specifies a probability distribu-
tion, since, Vs € DR(G) such that s is not a terminal state,
i.e., there are transitions to differrent states after possible

self-loops from it, we have Z{ PM*(s,s) =

1 ~ 1
1= PM(s, ) Diitsrisen M) = 1o PM(s, s)
(1 —PM(s,s)) =1.

We consider self-loops followed only by a state-
changing step just for convenience. Alternatively, we
could take a state-changing step followed by self-loops
or a state-changing step preceded and followed by self-
loops. In all these three cases, our sequence begins
or/and ends with the loops that do not change states.

, when

S|s—>5s,s#5}
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At the same time, the overall probabilities of the evo-
lutions can differ, since self-loops have positive proba-
bilities. To avoid inconsistency of definitions and too
complex description, we consider sequences ending
with a state-changing step, which resembles in some
sense a construction of branching bisimulation [25]
taking self-loops instead of silent transitions.
Definition 5.1. Let G'be a dynamic expression. The
embedded (absorbing) discrete-time Markov chain
(EDTMC) of G, denoted by EDTMC(G), has the state
space DR(G), the initial state [G]., and the transitions
s —»g s ifs— s ands# s, where P = PM*(s, 5 ).

The underlying SMC of G denoted by SMC(G) has
the EDTMC EDTMC(G) and the sojourn time in every
s € DR{(G) is geometrically distributed with the param-

eter 1 — PM(s, s), while the sojourn time in every s €
DR,(G) is equal to zero.

EDTMCs and underlying SMCs of static expres-
sions can be defined as well. For E € RegStatExpr, let

EDTMC(E) = EDTMC(E) and SMC(E) = SMC(E).

Let G be a dynamic expression. Elements 9}),7- (1<,

J < n) of the (one-step) transition probability matrix
(TPM) P* for EDTMC(G) are defined as

s - {PM*(S,., 5;),

0, otherwise.

S;—> 8,8, %58},

The transient (k-step, &k € N) PMF y*[k] =
(W*[k](sy), .., W*[k](s,)) for EDTMC(G) is a solution
of the equation system y*[k] = y*[0](P*)*, where
w*[0] = (y*[0](s)), ..., y¥[0](s,)) is the initial PMF
defined as

15 Si = [G]:a

y*[0](s;) = .
0, otherwise.
Note also that y*[k + 1] = y*[k]P* (k € N).
The steady-state PMF y* = (y*(sy), ..., y*(s,)) for
EDTMC(G) is a solution of the equation system

{\v*(P*—I) =0
\V*IT =1,

where I is the identity matrix of order » and 0 is the row
vector of n zero values, and 1 is the #-dimensional row
vector of ones.

When EDTMC(G) has a single steady state, we have
w* =1lim, ¥ (k).

The steady-state PMF for the underlying semi-
Markov chain SMC(G) is calculated via multiplication
of every y*(s;) (1 £i < n) by the average sojourn time
SJ(s;) in the state s;, after which we normalize the
resulting values. Recall that, for a vanishing state s €
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SMC(E)

SMC(N)

100000 '
1

001000 |0

D I=

/

[+ m
000100
1

Fig. 4. The underlying SMC of E and N = Box,,(E) for E = [({a}, p) * ({8}, 1); ((c}, D; ({d}, O)((e}, m); (Lf}, §)))) *

Stop].

DR(G), we have SJ(s) = 0. Thus, the steady-state
PMF ¢ = o(sy), ..., 0(s,) for SMC(G) is

Y *(s)SI(s;)
o(s;) = z v*(s;,)SJ(s))

j=1

0, s,€ DRAG).

. s,€ DR/(G);

Thus, to calculate ¢, we apply abstracting from
self-loops to get P* and y* followed by weighting by
SJ and normalization. EDTMC(G) has no self-loops,
unlike SMC(G); hence, the behavior of EDTMC(G) is
stabilized faster than that of SMC(G) (if both possess
single steady states), since P* has only zero elements
at the main diagonal.

Example 5.1. Let E be the expression from Exam-

ple 3.2. In Fig. 4, the underlying SMC SMC(E) is pre-
sented. The average sojourn time in the states of the
underlying SMC is indicated next to them in bold font.

The average sojourn time vector of E is
b O’ l b l) .

0 ¢
The sojourn time variance vector of E is

VAR=(1_2p, 1_X,O, 1—9’ 1—(|)).

pr 0’ ¢’

SJ = (1,

1
P

The TPM for EDTMC(E) is
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010 O 0
001 0 0

P* = ()()()LL
l+ml+m

010 0 0
010 0 0

The steady-state PMF for EDTMC(E) is

11 / m
\I"* = 07_)_’ 5 .
33 30+m)y 3 +m

The steady-state PMF w* weighted by SJ is

(0. L0, 1 m
"3y’ U301+ m) 30([+my
It remains to normalize the steady-state weighted
PMF by dividing it by the sum of its components:
WS = 00(/+m)+ yx(o/+0m) .
3v00(/+m)
Thus, the steady-state PMF for SMC(E) is ¢ =

1
0, 00(/ + m), 0, yd/, .
G0+ m) 7 1 o1+ oy - 00U+ m). 0.0 xm)
If/=m and 6 = ¢, we have
1
0,26,0, %, %)-
e e)( x> %)
Let G be a dynamic expression and s, s € DR(G),
S, § < DR(G). The following standard performance

indices (measures) can be calculated based on the
steady-state PMF for SMC(G) |26, 27].

(P:
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» The average recurrence (return) time to the state s
(the number of discrete time units required for this) is

1

o(s)
* The fraction of residence time in the state s is @(s).
* The fraction of residence time in the set of states

S < DR(G), or the probability of the event determined by
a condition that is true for all states from S, is

D s90).

» The relative fraction of residence time in the set of

D500

states S with respect to that in S is — .
5 € §$(S)

* The rate of leaving state s is 9(s) .
SJ(s)

* The steady-state probability to perform a step with an
activity (o, x) is zs . o(s) Z{Y\(a, oer PTCL).

* The probability of the event determined by a
reward function r on the states is zs < DR(P) o(s)r(s).

Let N=(Py, Ty, Wy, Qu, Ly, My) be an LDTSIPN

and M, M e N;N. Then, the average sojourn time
SJ(M), the sojourn time variance VAR(M), the probabili-

ties PM*(M, M), the transition relation M—»4 M, the
EDTMC EDTMC(N), the underlying SMC SMC(N),
and the steady-state PMF for it are defined like the
corresponding notions for dynamic expressions.

As we have mentioned earlier, every marked plain
dtsi-box can be interpreted as the LDTSIPN. There-
fore, we can evaluate performance with the LDT-
SIPNs corresponding to dtsi-boxes and, then, transfer
the results to the latter.

Let = denote isomorphism between SMCs that
binds their initial states.

Proposition 5.1. For any static expression FE,
SMC(E) = SMC(Box,,(E)).

Proof. The proposition is proved by means of The-
orem 4.1 and definitions of the underlying SMCs for
dynamic expressions and LDTSIPNs and by taking
into account the following argumentation. First, for
the associated SMCs, the average sojourn time in the
states is the same, since it is defined via similar proba-
bility functions. Second, the transition probabilities of
the associated SMCs are sums of those belonging to
the transition systems or reachability graphs. [J

Example 5.2. Let E be the expression from Exam-
ple 3.2. Figure 4 shows the underlying SMC SMC(N).

Clearly, SMC(E ) and SMC(N) are isomorphic.

5.2. Alternative Solution Methods

Let us consider DTMCs of expressions based on
the state change probabilities PM(s, s ).
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Definition 5.2. Let G be a dynamic expression. The
discrete-time Markov chain (DTMC) of G, which is
denoted as DTMC(G), has the state space DR(G), the

initial state [G]., and transitions s —g § , where P =
PM(s, s).
DTMC s of static expressions can be defined as
well. For E € RegStatExpr, let DTMC(E) = DTMC(E).
Let G be a dynamic expression. The elements 973,-1-

(1<i,j<n=|DR(G)|) of the (one-step) transition proba-
bility matrix (TPM) P for DTMC(G) are defined as
PM(s;, s)),

0, otherwise.

5;—> 8}

The steady-state PMF y for DTMC(G) is defined
like the corresponding notion for EDTMC(G). Let us
determine a relationship between steady-state PMFs
for DTMC(G) and EDTMC(G). The following theorem
proposes the equation that relates the above-men-
tioned steady-state PMFs. First, we introduce some
helpful notation. For a vector v = (v, ..., v,), let
Diag(v) be the diagonal matrix of order » with the ele-
ments Diag,(v) (1 <i,j<n) defined as

0, otherwise.

(1<i,j<n)

Theorem 5.1. Let G be a dynamic expression and
SL be its self-loops abstraction vector. Then, the
steady-state PMFs y for DTMC(G) and y* for
EDTMC(G) are related as follows: Vs € DR(G)

W*(s)SL(s)
Zg < DR(G) y*(s)SL(s)
Proof. Let PSL be a row vector with the elements
PM(s, s),

0, otherwise.

W(s) =

s>

PSL(s) = {

By the definition of PM*(s, s), we have P* =
Diag(SL)(P — Diag(PSL)). Further, y*(P* — 1) =0
and y*P* = y*. After the replacement of P* by
Diag(SL)(P — Diag(PSL)), we obtain y*Diag(SL)(P —
Diag(PSL)) = wy* and y*Diag(SL)P =
v*(Diag(SL)Diag(PSL) + I).

Note that, Vs € DR(G), we have

SL(s)PSL(s)+ 1

SL(s)PM(s,s) + 1 = M9 4
1—-PM(s,s)
=1_ 1 L sos: = SL(s).
1—-PM(s,s)
SL(s)-0+1 =1, otherwise.

Hence, Diag(SL)Diag(PSL) + 1 = Diag(SL). Thus,
y*Diag(SL)P = y*Diag(SL). Then, for v =
y*(Diag(SL), we have vP = vand v(P —1I) = 0.
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In order to calculate y on the basis of v, we must
normalize it by dividing its elements by their sum,
since we should have w17 = 1 as a result, i.e., y =

A 1 \*Diag(SL). Thus, the ele-

v’ v*Diag(SL)1"

ments of y are calculated as follows: Vs € DR(G) y(s) =
Y*(s)SL(s)

D ok VI ISL(S)

. It is easy to check that vy is a

. . y(P-I) =10 .
solution of the equation system ; ; hence, it
vl =1,
is indeed the steady-state PMF for DTMC(G). (O

The following proposition relates the steady-state
PMFs for SMC(G) and DTMC(G).

Proposition 5.2. Let G be a dynamic expression, ¢
be a steady-state PMF for SMC(G), and vy be a steady-
state PMF for DTMC(G). Then, Vs € DR(G),

w(s) ,

> v

s € DRAG)
0, se DR/G).
Proof. Let s € DR{(G). Recall that Vs € DR{G)

SL(s) = SJ(s) and Vs € DR/AG) SJ(s) = 0. Then, by
Theorem 5.1, we have

s € DRHG);

o(s) =

Y*(s)SL(s)
> vEE)SLG)
v(s) - 5 e DR(G)
RG] Y*(5)SL(s)
5 € DR(G) . -
5 e DR(G) . E%(G)W (H)SLE)
Y*(3)SL(5)
yE(s)SL(s) . se%((r’)
> VEESLE) Y v ESLE)
5 e DR(G) 5 € DR(G)
Y*(s)SL(s) _ Y*(s)SJ(s)
S OvESLE) Y vEESIE)
s € DRAG) 5 € DRH{(G)
WY *(s)SI(s) = o(s). O
D wE)SI(s)
5 e DR(G)

Thus, to calculate ¢, it is sufficient to apply nor-
malization to some elements of y (corresponding to
the tangible states) instead of abstracting from self-
loops to get P* and, then, y* followed by weighting by
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SJ and normalization. Hence, using DTMC(G) instead
of EDTMC(G) allows one to avoid such a multistage
analysis. The optimization of the performance esti-
mate we obtained is based on specific features of the
SMCs corresponding to algebraic expressions, with
the residence time in the states of these SMCs being
distributed geometrically or equal to zero.

Example 5.3. Let E be the expression from Exam-

ple 3.5. The TPM for DTMC(E) is

Il-p p 0 O 0
0 1I—-yxx O 0
P=| o o oL _m
l+ml+m
0 6 01-6 0
0 ¢ 0 0 1-9¢
The steady-state PMF for DTMC(E) is
v 1 (0, 09(/ + m),

T 00(1+7)([+m)+ 1 (0l +0m)

100 + m), 0, xOm)).

Recall that DR E) = {sy, $,, 84, S5} and DR/ E) =

fss). Hence, S - w(5) = wsp) +(sy) + (s +
001+ m) +7(dl + Om)

OO(1+)(I+m)+x(dl+0m)’
By Proposition 5.2, we have

o(s;) =0 - 001+ (U +m) +x(d/+06m) _ 0
00(/+m)+x(dp/+0m)

0p(/+m)
O0(L+)(/+m)+y(d/+06m)

001 +0)(U+m) +x(¢p/+0m)
0b(/+m)+y(opl+06m)

_ 00(/+ m)
00(/+m)+x(d!+0m)’
¢(s3) =0,
19!
O00(L+ )/ +m)+y(d/+06m)
000+ ) +m)+x(¢/+0m) _
00(/+m)+y(d/+0m)
19!
00(/+m)+x(d!+0m)’
xom
001 +y)(/+m)+y(d/+0m)
001+ )L+ m) +y(d]+0m)
00/ +m)+ y(d/+06m)
— xom ‘
00(/+m)+y(d!/+6m)

Thus, the steady-state PMF for SMC(E) is

W(ss) =

b

0(sy) =

0(sy) =

o(ss) =

2014



248

B 1
—00(/+m) +x(l+6m)

0, x 7, xom).
This coincides with the result obtained in Example 5.1

with the use of y* and SJ.

® (0, 00/ + m),

6. CONCLUSIONS

In this paper, we have considered a discrete-time
stochastic extension dtsiPBC of algebra PBC enriched
with iteration and immediate multiactions. In
dtsiPBC, simultaneous (concurrent) execution of
activities is possible owing to the step discrete-time
semantics of the calculus; therefore, it is appropriate
for specification and analysis of behavior of concur-
rent systems with random time delays. Standard and
alternative methods for evaluating performance of
modeled systems are described. The latter methods
take into account specific features of the underlying
stochastic process of algebraic expressions, such as
zero delays in vanishing states of the corresponding
SMC. This makes it possible to calculate performance
measures in a simpler and more optimal way, which is
very important in modeling complex large-scale con-
current systems, the state spaces of which grow drasti-
cally when the number of their components increases.

One of the directions of our future work is con-
struction of an equivalence relation that preserves
functionality and performance and is a congruence
with respect to algebraic operations in dtsiPBC, i.e.,
the equivalence that withstands their application to
equivalent subprocesses while bottom-up design of
concurrent systems.. We also plan to extend dtsiPBC
with a recursion operator, aiming to specify and ana-
lyze behavior of a wider class of infinite processes with
a discrete stochastic time.
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