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Abstract. Currently, medical research for the discovery of new drugs
is increasingly using Virtual Screening (VS) methods. In these methods,
the calculation of the non-bonded interactions, such as electrostatic or
van der Waals, plays an important role, representing up to 80% of the to-
tal execution time. These are computationally intensive operations, and
massively parallel in nature, so they perfectly fit in the new landscape of
high performance computing, dominated by massively parallel architec-
tures. Among those architectures, the latest releases by Intel and Nvidia
- Xeon Phi and K20x (Kepler), respectively - are extremely interesting
in terms of both performance and complexity. In this work, we discuss
the effective parallelization of the non-bonded electrostatic computation
for VS, and evaluate its performance on these two architectures. We
empirically demonstrate that both GPUs and Intel Xeon Phi are well
suited architectures for the acceleration of non-bonded interaction ker-
nels. Further, we observe that single precision calculations for relatively
small sized systems are more suitable for GPUs (K20x completely out-
performs Xeon Phi), while for large systems, they achieve a similar order
of magnitude performance.

Keywords: Drug Discovery, Virtual Screening, GPUs, Intel Xeon Phi,
HPC

1 Introduction

The discovery of new drugs can enormously benefit from the use of Virtual
Screening (VS) methods [1]. The approaches used in VS methods differ mainly
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in the way they model the interacting molecules, but all of screen databases of
chemical compounds containing up to millions of ligands [2].

Larger databases increase the chances of generating hits or leads, but the
computational time needed for the calculations increases not only with the size
of the database but also with the accuracy of the chosen VS method. Fast dock-
ing methods with atomic resolution require a few minutes per ligand [3], while
more accurate molecular dynamics-based approaches still require hundreds or
thousands of hours per ligand [4]. Therefore, the limitations of VS predictions
are directly related to the available computational resources: the lack of such
resources eventually prevents the use of detailed, high-accuracy models for VS.

In most of the VS methods, the biological system is represented in terms
of interacting particles. For the calculation of the interaction energies, classical
potentials are commonly used, separated into bonded and non-bonded terms.
The latter describe interactions between all the elements of the system. The
relevant non-bonded potentials used in VS calculations are the Coulomb and
the Lennard-Jones potentials, since they accurately describe the most important
short and long range interactions between protein and ligand atoms.

In VS methods the most intensive computations are spent in the calculation
of non-bonded kernels. For example, in Molecular Dynamics, this computation
takes up to 80% of the total execution time [5] of the application, thus becom-
ing a computation bottleneck. It has been shown that the parallelization and
optimization of the calculation of non-bonded kernels [6] permits VS methods
to deal with more complex systems, simulate longer time scales or screen larger
databases.

High Performance Computing (HPC) solutions [7, 8] have demonstrated they
can increase considerably the performance of the different VS methods, as well
as the quality and quantity of the conclusions we can get from screening. In
addition, HPC platforms such as Graphics Processing Units (GPUs) [9], and
more recently Intel Xeon Phi [10], provide unprecedented chip-level performance,
with increased parallelism and peak performance.

GPUs have been widely applied in many different fields of applications [11,
12], and concretely in VS methods [13] [14]. Moreover, driven by the video game
market, their prices and energy consumption are very low. All Nvidia GPU
platforms can be programmed using the Compute Unified Device Architecture
(CUDA) programming model, essentially allowing GPUs to operate and be seen
as highly parallel computing devices.

As Intel’s Xeon Phi is a much newer platform, there are no studies concern-
ing its applicability for accelerating VS calculations. In this work, we show a
performance evaluation for a VS method on these two emerging massively par-
allel architectures: Intel Xeon Phi and Nvidia Kepler-based GPUs, aiming to
recommend the scenarios (if any) for which each platform is better suited.
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2 Background

This Section introduces the particularities of the targeted architectures and pro-
gramming models we have used to develop our VS simulations.

2.1 The CUDA Programming Model

All GPGPU platforms from Nvidia can be programmed using CUDA. In this
way, the GPU becomes, to the programmer, a massively parallel processor to be
used for highly parallel workloads.

Each GPU device is a scalable processor array consisting of a set of SIMT
(Single Instruction Multiple Threads) multiprocessors (SM) [9], each of them
containing several stream processors (SPs). Different memory spaces are also
available. The global memory (also called device or video memory) is the only
space accessible to all multiprocessors. It is the largest and the slowest memory
available to the GPU. Moreover, each multiprocessor has its own memory space,
called shared memory. The shared memory and faster, than global memory [15].
The most recent GPUs also feature two levels of caches - per SM and per chip.
Finally, local memory is available per SP.

The CUDA programming model is based on a hierarchy of abstraction layers.
A thread is the basic execution unit that is mapped to a single SP. A block
is a batch of threads which can cooperate together because they are assigned to
the same multiprocessor, and therefore they share all the resources included in
this multiprocessor, including the register file and the shared memory. A grid is
composed of several blocks which are mapped and scheduled (by the hardware)
on the multiprocessors. Finally, the threads included in a block are divided into
batches of 32 threads called warps. The warp is the scheduled unit, so the
threads of the same block are scheduled in a given multiprocessor warp by warp.

The programmer declares the number of blocks, the number of threads per
block and their distribution to arrange parallelism given the program constraints
(i.e., data and control dependencies).

CUDA offers a new parallel programming model that combines several tradi-
tional ones. The warps are executed in a pure Single-Instruction Multiple-Data
(SIMD) fashion, although serialization of threads within a warp is allowed by
the model. This execution resembles somehow a vectorized execution in CMPs
with vector length of 32 [16]. In a coarse-grained execution, different blocks may
execute different instructions at the same time, being executed in a Multiple-
Instruction Multiple-Data (MIMD) fashion. Therefore, the model provides two-
levels of parallelism [17] that should be manage by the programmer. Finally, the
complete execution of a kernel in the GPU is performed in a Single-Program
Multiple-Data (SPMD) fashion, being even possible in the latest generation of
GPUs execute several programs at the same time. In this paper, we use Nvidia
Tesla K20x and CUDA version 5.5.
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2.2 Intel Xeon Phi Programming

Intel Xeon Phi has over 50 cores (the version used in this paper belongs to the
5100 series and has 60 cores) connected by a high-performance on-die bidirec-
tional interconnect (shown in Figure 1). In addition to these cores, there are
16 memory channels (supported by memory controllers) delivering up to 5.0
GT/s [18]. When working as an accelerator, Phi can be connected to a host
(i.e., a device that manages it) through a PCI Express (PCIe) system interface
- similar to GPU-like accelerators. Different from GPUs, a dedicated embedded
Linux µOS (version: 2.6.38.8) runs on the platform.

Each core contains a 512-bit wide vector unit (VPU) with vector register
files (32 registers per thread context). Each core has a 32KB L1 data cache, a
32KB L1 instruction cache, and a core-private 512KB unified L2 cache. In total,
a 60-core machine has a total of 30MB of L2 cache on the die. The L2 caches are
kept fully coherent by the hardware, using DTDs (distributed tag directories),
which are referenced after an L2 cache miss. Note that the tag directory is not
centralized, but split up into 64 DTDs, each getting an equal portion of the
address space and being responsible for maintaining it globally coherent.

Fig. 1. The Intel Xeon Phi Architecture.

In terms of usability, there are two ways an application can use Intel Xeon
Phi: (1) in offload mode - the main application is running on the host, and it
only offloads selected (highly parallel, computationally intensive) work to the
coprocessor, or (2) in native mode - the application runs independently, on the
Xeon Phi only, and can communicate with the main processor or other copro-
cessors [19] through the system bus. In this work, we use Xeon Phi in the native
mode. Being an x86 SMP-on-a-chip architecture, Xeon Phi offers the full capa-
bility to use the same tools, programming languages, and programming models
as a regular Intel Xeon processor. Specifically, tools like Pthreads, OpenMP,
Intel Cilk Plus, and OpenCL are readily available. Given the large number of
cores on the platform, a dedicated MPI version is also available. In this paper,
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Table 1. A comparison of the selected processors.

Tesla K20x Phi 5110P

Cores 2688 60
Core Clock (MHz) 732 1053
SP TFLOPS 3.95 2.02
DP TFLOPS 1.31 1.01
Memory Size (GB) 6 8
Mem. Bandwidth (GB/s) 250 320
Price (USD) 3500 2650
Max Power Usage 235 225

we select the native programming model (i.e., OpenMP) for Xeon Phi, and use
Intel’s icc compiler (V13.1.1.163) for Xeon Phi.

2.3 A Comparison of K20x and Phi

We compare the ‘officially’ released numbers of Nvidia K20x and Xeon Phi 5110P
in Table 1 1 2. We note that Tesla K20x run 2× as fast as Xeon Phi in SP
Flops while their performance is similar in DP Flops. Furthermore, they consume
similar amount of power.

3 Methodology

3.1 Sequential Baseline

Algorithm 1 The sequential pseudocode.

1: for i = 0 to nrec do
2: for j = 0 to nlig do
3: calculus(rec[i], lig[j])
4: end for
5: end for

In our study we focus on the particular case of protein-ligand docking, and
concretely, in the calculation of the electrostatic potential kernel show in Al-
gorithm 1. This is the baseline for several methodologies used in VS methods,
such as Molecular Dynamics and protein-protein docking. Both the receptor and
ligand molecules are represented by rec and lig particles, which are specified by
their positions and charges. The system has nrec and nlig atoms of rec and lig,
respectively. The computation inside the double loop calculates the electrostatic

1 Nvidia Tesla K20x: http://www.nvidia.com/object/tesla-servers.html
2 Intel Xeon Phi 5110P: http://ark.intel.com/products/71992/
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potential and is expressed as q[i]q[j]/rij where q[i] and q[j] are related to charges
for individual particles for receptor and ligand, and rij is the distance between
respective receptor and ligand atoms.

3.2 Implementation on the GPU

NREC/X ATOMS

NLIG ATOMS

....

......
Thread 2 Thread i Thread n

......

Thread Block

Thread 0

......

….. ….. …..

Fig. 2. CUDA design for X thread blocks (with X = 1 ) with n threads layout.

Our starting point is a CUDA implementation previously presented in [14].
Figure 2 shows this design. Each atom from the receptor molecule is represented
by a single thread. Then, every CUDA thread goes through all the atoms of the
ligand molecule. The double parallelism within CUDA is exploited by

1. each thread performing the energy calculations with the entire ligand data.
2. having as many threads as nrec atoms.
3. having as many thread blocks as the number of nrec atoms divided by the

number of threads within a block. (a configuration parameter of our appli-
cation).

We also enable a tiling technique to take advantage of the data locality, and
thus increasing the memory bandwidth of our application. Specifically, we group
atoms of the ligand molecule in tiles, facilitating threads to collaborate in order
to bring that information to the shared memory. More details on this tecnique
can be found in [14].

3.3 Intel Xeon Phi Implementation

As mentioned before, our choice for programming the Xeon Phi is OpenMP.
OpenMP is a pragma-based, high level programming model. Typically, pro-
grammers need to identify the potential hotspots (typically, loops) in a compute-
intensive kernel and annotate them with specific parallelization pragmas. In turn,
these regions will be parallelized with the help of the compiler.
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Fig. 3. Vectorization on Xeon Phi: (a) The AOS-to-SOA Scheme for vectorization
((X,Y, Z) represents the coordination of an atom; L represents SIMD lanes and Xeon
Phi has 16 lanes when using single-precision data elements), (b) The performance
(the execution time in seconds and the speedup over the native AOS format) of the
transformed data structures (SOA). Note the Y axis is in log scale.

A straightforward way to parallelize our kernel using OpenMP is to add an
omp parallel construct over the outer loop (Line 1) of Algorithm 1. Further,
we map the inner loop onto the vector core (512-bits), where the distance rij
between atom i and atom j is calculated 3. This first version is, however, naive
in terms of implementation and poor in terms of performance.

Next, we took a closer look at the calculus in Algorithm 1, and found
that the kernel uses data structures in the form of Array of Structure (AOS).
Specifically, the coordinates (X,Y, Z) of each atom are stored contiguously (shown
in Figure 3(a)). Consequently, a vector thread first loads 16X values (X1, X2, ..., X16)
and then 16 Y values (Y1, Y2, ..., Y 16), and then 16 Z values (Z1, Z2, ..., Z16). In
other words, it needs to gather non-contiguous data from memory (i.e., 16 single-
precision floating-point data elements located far from each other in memory).
The required data elements may even fall into separate cache-lines. This non-
contiguous pattern can lead to inefficient cache/bandwidth usage, and therefore
limits the performance of vectorization. To tackle this issue, we transformed the
data structures into the more parallelism-friendlier Structure of Array (SOA)

by storing the data elements of the same dimension contiguously (Figure 3(a)).
Consequently, the same operations of calculating the distance between atoms
are performed on data elements within a single cache-line.

The execution time (when nrec = 10240000 and nlig = 8192) of the na-
tive kernel and the transformed kernel is shown in Figure 3(b). When using 240
threads, the native version performs the best (6848 ms) and we note that the

3 When enabling the auto-vectorization module (using the -O2/-O3 option), the inner
loop can be successfully vectorized by the compiler.
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execution decreases linearly with the number of threads, indicating a good scal-
ability on the VS application. After using the SOA data structure on Phi, the
performance has double - the code runs 2× faster (on average) than the first
version: 4159 ms when using 240 threads.

4 Results and Discussion

Figure 4 presents a comparison of the performance of our application on the
NVIDIA K20x and the Intel Xeon Phi. Note that we use the compact thread
affinity with 240 threads on Xeon Phi, and we record the kernel execution time
for both K20x and Xeon Phi. Overall, we see that K20x performs better than
Xeon Phi.

When the data sets are small, the performance gap is very large. This is
because the code running on Xeon Phi includes the parallelization overhead,
which can be quite large when launching over 200 threads - e.g., it takes around
350 ms when nrec ≤ 17. On the other hand, for larger data sets (e.g., nrec = 226

and nlig = 216), the code on Phi runs only 3× slower than that on K20x. As
shown in Table 1, K20x has a much higher peak SP performance (4 TFlops,
2× more than the Phi), which explains a part of the observed slowdown. The
remaining 1.5× optimization space on Xeon Phi is left for further exploration.
Further, we expect that the performance when using DP computation (i.e., on
double-precision data elements) will be much closer.
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Fig. 4. Performance comparison between K20x and Xeon Phi. Note that the Y axis is
in log scale.
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5 Conclusions and Outlook

To summarize, our experience with Virtual Screening on NVIDIA K20x and
Intel Xeon Phi has lead us to the following observations:

– Porting legacy (sequential) code in OpenMP for Xeon Phi comes almost
for free. However, optimizing the outcome is relatively time-consuming, as
a thorough understanding of the architectural features of the processor is
mandatory.

– On Xeon Phi, it is essential to select suitable data structures (SOA instead
of AOS, for caching) to enable the full utilization of the SIMD units. By
comparison, GPUs like Nvidia K20x prefer the AOS-style data structures.

– Nvidia K20x significantly outperforms Intel Xeon Phi on Virtual Screen-
ing when using single-precision floating-point data elements. We expect the
performance for double precision computations to be much closer.

– Comparing different implementations in native programming models is ex-
cellent for providing performance numbers for the end-users, but provides
limited insight for a head-to-head comparison of the two platforms. A com-
mon solution, in a common programming model (e.g., OpenCL or OpenACC)
is necessary for such a detailed analysis.

For further studies, we plan to evaluate the double precision computation for
both the GPU and the Xeon Phi. Further, aiming to use a unified programming
model, we will evaluate an OpenCL solution for VS on both GPUs and Xeon
Phi, thus evaluating the impacts of the chosen programming model [20] on the
overall performance of the application.
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