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Abstract. The relevance of model identifiability in system biology is
well known. The aim of this paper is to discuss and possibly clarify the
role and differences of two different methodologies of testing identifiabil-
ity of models described by differential equations. One is called structural
identifiability and does not require to use data collected in the exper-
iment which, instead, data-based approaches do. The two methods are
compared and evaluated in the identifiability analysis of a much quoted
biological model, the core model of erythropoietin (Epo) and Epo recep-
tor (EpoR) interaction.
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1 Introduction

Mathematical modeling of biological systems is becoming a standard approach
to investigate complex dynamic, non-linear interaction mechanisms in cellular
processes, like signal transduction pathways and metabolic networks [7]. These
mechanisms are often modeled by ordinary differential equations involving pa-
rameters such as reaction rates. For example, the Michaelis-Menten equation is
often used to describe the internal structure of the biochemistry of the system,
assuming that diffusion is fast compared to reaction rates. The system parame-
ters contain key information but in general they can only be measured indirectly
as it is usually not possible to measure directly the dynamics of every portion of
the system. The recovery of parameter values can then only be approached indi-
rectly as a parameter estimation problem starting from external, input-output
measurements [18]. In this context, the first question is whether the parameters
of the model can be determined, at least for suitable input functions, assuming
that all observable variables are error free. This is the property called a priori
or structural identifiability of the model. It is a property of the model alone
and of course depends on how it is parameterized. Structural identifiability can
(and should) in principle be checked before collecting experimental data. If the
postulated model is not structurally identifiable, the parameter estimates which

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 305



2 M.P.Saccomani

could, nevertheless, be obtained by some numerical optimization algorithms, will
be totally unreliable and random. Obviously, although necessary, structural iden-
tifiability is not sufficient to guarantee an accurate identification of the model
parameters from real input/output data.

Different methods have been proposed to check structural identifiability of mod-
els described by linear and nonlinear differential equations. Some approaches
can test global (structural) identifiability and provide conclusions about identi-
fiability holding for the whole parameter space [8,18,4,9,11,1,16]. Specifically,
structural global identifiability guarantees the possibility of uniquely determining
the model parameters from input-output data, under ideal conditions irrespec-
tive of the admissible parameter values. Nevertheless, often a weaker property
of local (structural) identifiability about some specified parameter value, may be
sufficient in practice.

It should be stressed that identifiability depends also on the experimental con-
ditions. More precisely, for a fixed model structure and measurement schedule,
identifiability does in general depend on the class of admissible input functions
acting on the system. Input functions which do not “excite” the system prop-
erly may render some parameters invisible from the external output. Structural
identifiability analysis is performed under the assumption that the input is per-
sistently exciting, see [9,16] for a precise definition of this condition. Of course
the admissible inputs class must contains such persistently exciting functions.
A concept of practical or data-based identifiability has also been proposed in the
literature [13,7,12]. Given a dynamical model described by

X(t) = f(x(t),u(t),8)  x(to) = (1)
y(t) = h((x(t),u(t),0) +e(t) := ( 6) +e(t) (2)

with state x(¢) € R™, input u(t) € R?, output y(¢) € R™, random measurement
noise g(t) € R™, and unknown parameter vector 8 € RP, assuming a finite set of
N input-output measurements are available, form the average weighted square
prediction error

1 N
Z ¥ (tk, )] Q. [y (t) — 3 (tr, 0)] 3)

k::l

where Q) are positive semidefinite weights. One says that the system (or the
parameter 0) is practically identifiable if Vi (6) has a unique minimum; in other
words there is a unique minimum prediction error estimate

Oy = Arg mein VN () (4)

compare [10]. If the error terms e(t) are assumed to be Gaussian the func-
tion Vi (0) is essentially the likelihood function of the experiment. The relation
between structural identifiability and uniqueness of the minimum has been dis-
cussed in detail in the engineering literature, see e.g. Ljung’s book or [17]. Tt
can be proven that the former is equivalent to the latter only under additional
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assumptions on the data (ergodicity) and only in the limit when the sample
size N tends to infinity. This equivalence cannot be guaranteed for finite data
records.

The goal of this paper is to discuss and compare the two different methods. It
should be said however that the comparison can only be made on the issue of
uniqueness of the parameters obtainable from the admissible input-output data.
Practical identifiability, is based on actual experimental data and consists of
procedures based on the analysis of the minima of a likelihood-type function.
These methods in general compute numerical parameter estimates. Structural
identifiability tests are instead run purely on the model equations and do not
provide numerical parameter estimates based on real data. The computation of
estimates based on real data, which makes sense only if the model is structurally
identifiable, is left to a successive optimization algorithm which is a conceptually
different issue.

2 Structural vs Practical Identifiability

Data-based methods seem to be the only choice when collected data, perhaps
obtained in a unrepeatable or very expensive experiment, are already at hand.
Then the experimenter may want to check if the model parameters can in fact
be recovered uniquely from the given data. However practical identifiability tests
based on a specific data set cannot give exact answers about structural identifi-
ability and one should therefore resort to heuristics and extensive simulations in
order to produce a representative data set to figure out the shape of the function
Vn(0) and verify the presence of a unique minimum experimentally [13]. There
are some caveats and some important consequences:

1. If the model happens to be structurally non-identifiable then it is also prac-

tically non-identifiable. In fact, if the parameters of the postulated model
are not a priori identifiable, then there is no way that the parameters could
be uniquely identified in a real-life situation, with a fixed observed input
function (perhaps not even sufficiently exciting), when noise in the data is
inevitably present and possibly with insufficient data length.
In principle, for a large family of models, structural identifiability or non-
identifiability can be checked by suitable mathematical procedures directly
on the model, without the need of collecting experimental data. This may
avoid waste of resources for doing useless experiments, given the high costs,
not only in economic terms, of biological experiments.

2. If the model is structurally identifiable, it may nevertheless turn out to be
practically non-identifiable. However, only by first checking structural identi-
fiability it is possible to know for sure if the problem lays on the experimental
data or on the model structure.

3. If the model turns out to be practically non-identifiable, it may be very hard
or impossible to assess the causes from practical identifiability tests. The
fact may be due to structural non-identifiability or to the paucity the exper-
imental data or to an imprecise reconstruction due to noise of the locus of
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the minima of the function Vy(0). In general practical identifiability tests
can hardly suggest alternative experimental strategies to follow in order to
obtain identifiability of the model.

This instead may be revealed, in analytic terms, by structural methods.
These methods can provide guidelines to simplify the model structure or in-
dicate, before performing the real experiment, when more information (mea-
sured outputs) is needed to guarantee unique identifiability [1]. In fact, a
priori structural identifiability analysis can be helpful in the design of the
experiment. Since when dealing with biological /physiological systems, severe
constraints exist on experiment design, it is of great interest to check for min-
imality (i.e. non redundancy) of the input-output configuration. There are
available tools for checking structural identifiability by which one can also
check if the number of inputs and outputs are necessary and sufficient to
guarantee a priori unique identifiability [15].

4. Some structural approaches allow to distinguish between global and local
identifiability. Traditional tests based on computing the rank of a matrix
(e.g the Hessian or Fisher information matrix) at a point [14] are essentially
local. Even if it is true that in many applications it may be sufficient to
work in a parameter neighborhood specified by experimental data, there
are many biological models, where, say, two distinct values of a parameter
can discriminate a pathological from a normal state. In these cases a local
analysis may be insufficient [5].

5. Finally, one should also be aware of the limitations of the analytic procedures
for checking structural identifiability. When the model is very complex, with
complicated nonlinearities and a large number of states or unknown param-
eters, and/or few measurement equations, most algorithms take a very long
time to terminate or may even not terminate at all due to computational
complexity problems. Some algorithms based on differential algebra, like the
one employed in the example below, require the model differential equations
to be of polynomial or rational form.

3 A Model of Erythropoietin (EPO) Receptor

In this section we consider a recently proposed dynamic model, [2], addressing
the nonlinear processes of ligand-receptor (Epo-EpoR) interaction and traffick-
ing kinetics. In particular, the core model is a development of a previous pub-
lished model [7] describing the endocytosis of the erythropoietin receptor, that
is the process of engulfing substances outside the cell with a membrane and
transporting them into cytoplasm. Six species are incorporated in the model, z;
1 = 1,...,6 being the relative concentrations, and all interactions are modeled
by mass-action kinetics. The detailed description of the biochemical processes
underlying the EPO endocytosis is reported in the referenced paper.

The core model is described by the following nonlinear system of ordinary dif-
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ferential equations:

T5(t

Zbﬁ t) = kdex4

y1(t) = w2 + 6

y2(t) = 3

y3(t) = x4 + x5
The initial conditions are assumed to be zero, except for x1(0) = by, and
x2(0) = idco which need to be estimated from the experimental data. 8 =

k1, kons kD kexs key kdis Kdey bmaz] is the unknown parameter vector, and y =
[y1 y2 y3] is the measured output of the model.

Before checking identifiability of the model, it is convenient to check some math-
ematical properties in terms of system and control theory. One can first observe
that the model is not in minimal form. In fact, by looking at the system equa-
tions (5), some state variables appear to be dependent. One can simplify the
model by observing that, for example, #¢ = (kge/kai)&5 which, integrated by
using the known initial conditions, gives: x¢ = (k4e/kar)xs and by substituting
xe where it appears (only in the first measurement equation). In a similar way,
the variable x3 can be eliminated. In this way the model can be described by
only four differential equations, as reported in the input file below. This is done
not only for the sake of mathematical simplification, but in order to satisfy sys-
tem theoretic properties, such as minimality (and accessibility) [16] in absence
of which spurious identifiability results may follow. These structural properties
must be always investigated beforehand.

4 Identifiability of the Erythropoietin Receptor Model

The question to be addressed is whether the unknown parameter vector € in
the above (simplified) model is globally identifiable from the experiment. In the
recent literature, the practical identifiability of the model (5) has been analyzed
with data-based methods based on statistical criteria. In particular, in [13] the
profile likelihood [12] approach is used, based on the idea of detecting flatness of
the likelihood function Viy(€) by exploring the parameter space in the direction
of least increase in the objective function for each parameter component. The au-
thors actually examine a more complex model of the model (5) described above.
The profile likelihood method allows them to study the behavior of the function
around a nominal parameter value (see for ex. Fig 3,4,5 of [13]). As mentioned
by the authors ”a structural nonidentifiability can be visualized by a perfectly
flat valley that is infinitely extended along the corresponding functional relation.
In theory however this flatness does detect non-identifiability only under the
assumptions of ergodicity of the data and number of experimental data tending
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to infinity. To approximate this ideal situation a very extensive simulation is
needed by generating a large number of artificial samples. On the other hand, to
check practical identifiability, that is to visualize numerically the "relative flat
valley infinitely extended”, a threshold has to be assessed. Thus the result is
intrinsically approximate as it depends on the choice of the threshold value and
may still provide results depending on the particular set of experimental data.
In essence, some judgement has to be exercised to properly interpret the results
of the simulations.

Anyway, by applying this data-based method, the original model turns out to
be non-identifiable. By looking at the shape of the flat valley of the likelihood
function, the authors cleverly establish that some parameters satisfy an algebraic
equation and therefore cannot be identifiable (called structurally non-identifiable
in the paper [13]) while the others are found to be (practically) identifiable ex-
cept for one (k) where the minimum is so flat to be declared “practically non-
identifiable”. They conclude that the structural non-identifiability is a result of
missing information about absolute concentration in the experimental setup. To
resolve this structural non-identifiability they enrich the experiment, so as a scale
factor parameter becomes known, and to resolve the practical non-identifiability
of k¢, a new measurement equation is added. In this way the authors define the
identifiable model (5).

A techniques for estimating the equation describing a possible locus of minima
is described in [7]. The algorithm is based on a non parametric nonlinear regres-
sion technique which however can only reveal a very specific functional form of
dependence among the parameters. Unless it is a priori known that the model
parameters may be only related by a GAM relation, the method does not seem
to be able to test global identifiability of the model.

We shall now describe a structural identifiability test based on differential al-
gebra and on the software DAISY (Differential Algebra for Identifiability of
SYstems) [3]. This a priori analysis seems to be done here for the first time. The
reader is referred to [1,16] for a detailed documentation of the theory behind
the software tool and to [3] for the algorithm. The underlying algorithm permits
to eliminate the non-observed state variables from the system and to find the
input-output relation: a set of polynomial differential equations involving only
the variables (u,y) and thus describing all input-output pairs satisfying the orig-
inal dynamic system. The coefficients of the input-output relation provide a set
of (nonlinear) algebraic functions in the unknown 6, These functions form the
erhaustive summary of the model and can be easily extracted. Identifiability is
tested by checking injectivity of the exhaustive summary function with respect
to the parameter 6. By applying a computer algebra algorithm; i.e. the Buch-
berger algorithm, it is possible to compute a Grébner basis of the system which
shows if the parameters satisfy algebraic relations or have one and only one so-
lution, in which case the model is globally identifiable.

DAISY checks the global identifiability of the original complex model [14] with
the original two measurement equations. In 2-3 seconds, it is found that all the
model parameters are globally identifiable except the same five that were found
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to be non-identifiable in [13]. This result actually shows that, just by looking
at the Grobner basis computed analytically by the algorithm, it is sufficient to
know just one of the five non-identifiable parameters (not necessarily the scale
factor parameter) to make the model globally identifiable. This allows for dif-
ferent choices in the design of the experiment, where many constraints exist
especially in the biological experimental setup.

The structural test guarantees that, in fact, parameter k., is identifiable. This
result reveals that the practical non-identifiability of k., found in [13] is there-
fore due only to data problems.

In this case, our approach to structural identifiability has proven in an analytical
way the results obtained in [13], and has provided some additional information
helpful for the experiment design.

In practice, to check the global identifiability of this model with DAISY, the user
has to write the input file in a given format. In the following the input file for
the model (5) with the simplification above presented to eliminate redundancy
is reported: Input File of DAISY

WRITE "CORE MODEL (simplified) Becker et al. SCIENCE 2010 Suppl.
Mat. pg.17, with y1 and y2."$

% B_ IS THE VARIABLE VECTOR

B_:={y1,y2,x3,x4,x5,x1}$

FOR EACH EL_ IN B_ DO DEPEND EL_,T$

%B1_ IS THE UNKNOWN PARAMETER VECTOR
B1_:={k1,kon,kD,kex,ke,kd]l,kde,bmax,ic2}$

%NUMBER OF STATES

NX_:=4$
%NUMBER OF OUTPUTS
NY_:=2$

%MODEL EQUATIONS
c_:={df (x1,t)=bmax*k1-k1l*x1-kon*x1*(-x3-x4-x5-(kde/kdl)*x5+ic2)+
konxkon*kD*x3+kex*x4,
df (x3,t)=kon*x1* (-x3-x4-x5-(kde/kdl) *x5+ic2) -kon*kon*kD*x3-ke*x3,
df (x4,t)=ke*x3-(kex+kdl+kde) *x4,
df (x5,t)=kd1l*x4,
y1=-x3-x4-x5+ic2,
y2=x3,
% y3=x4+x5}$
SEED_:=70$
DAISY()$
%VALUES OF INITIAL CONDITIONS ARE GIVEN
IC_:={x1=bmax,x2=ic2,x4=0,x5=0}$
CONDINIZ()$
END$

Due to space limitations the output file is not reported here but the reader
can directly run the above input file and see that DAISY provides the required
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structural identifiability answer in just 2-3 seconds. This computer algebra tool
does not require expertise on mathematical modeling by the experimenter.

5 Conclusions

The goal of this paper is to make the researcher in system biology aware of the
relevance of checking identifiability of the dynamic model under study and to
show the differences between structural and practical (data-based) identifiability
studies. We have discussed benefits and pitfalls of the two approaches by provid-
ing a practical example of a system biology model. A differential algebra based
software tool able to check structural global identifiability in a fully automatic
way, called DAISY [3] has been used.
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