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A method is proposed for constructing an effective action for fields corresponding
to excitations of the quantized coordinates of extended objects (strings,
membranes, etc.). In the low-energy limit, the effective action includes kinetic
terms for the scalar field, the gravitational field, and the field of an antisymmetric
tensor. The ground state of the theory is determined by the nontrivial vacuum
values of these fields {so that, in particular, the tachyon problem in the theory of a
Bose string is solved).

Attempts to construct a unified theory of the interaction of elementary particles
(which incorporates a quantized gravitation in a noncontradictory manner) based on
the theory of strings' and superstrings” have recently attracted much interest. In the
present letter we propose a new approach to the formulation of such a theory. This
new approach is based not on the amplitudes on the mass shell but on a covariant
effective action of the entire (infinite) set of fields.

The basic idea is that the coordinates of a D-dimensional space-time, M”, consti-
tute a quantized “protofield” in the theory. All the fundamental fields correspond to
elementary “excitations” of this protofield, being local functions of the quantized co-
ordinates (and having a tensor structure corresponding to the spin of the excitations).”
As “coordinate operator” we can take variable strings (or membranes) x’(z),
i = 1,..., D, which correspond to a known covariant action®’ [an integral over a two-
dimensional (or three-dimensional) internal space {z* }]. The classical space-time co-
ordinates y’ appear as “average” quantized coordinates [as a part of x'(z) which does
not depend on the internal coordinates z#]. A covariant effective action I" for the
fundamental fields is defined by a path integral over x’(z) (and also over the metrics on
the internal space). The action I, which appears in an exponent, includes the free
action of the string, I,, and also all possible covariant terms with ‘“‘sources”
[=, §d%dx"...0x"B; . ; (x(z))]. The fields B, , [which are local functions of x'(z)]
are functional arguments of /. The vacuum values of the fields are found from the
condition for the vanishing of the first variation of I" with respect to all fields. The
stability of the vacuum is associated with the second derivative of I'. The higher-order
derivatives of /" at the vacuum point determine the scattering amplitudes against the
background of the stable vacuum. The entire program is extended to the “supercase”
by replacing the coordinates (x') by the supercoordinates (x’, %) (by taking the transi-
tion to a superstring).

Let us examine the calculation of I for the case of closed boson strings with a free
action* I, = (1/4wa’)S d°z\/gg"* 3, x'd,x" (g,, is the metric on the two-dimensional
internal space M % u, v =1, 2). The covariant effective action I is defined by
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where @, G;, and A; are respectively the scalar field, the gravitational field (the
metric), and the antisymmetric tensor field. The leading terms in {2) correspond to
fields with “high spins” (s> 2) (9x"...9x"B; _; ); [dx'] =TI, dx\G, G = det G;;. The
summation runs over the Euler characteristic of the closed compact space M2, i.e.,
over the number of “handles,” n (y = 2 — 2n); o = const. The invariance of (2) under
general covariant transformations in M” and under gauge transformations
04; = d;A; — d;A, renders G; and 4; “massless” in I all other fields are massive.
The action I, is invariant under the substitution x’ — x’ + const, so that the “parti-
tion function” of the free string I"[0, G; = §,,0,...] contains a volume factor § d”y. In
the presence of fields, this integral over the “null mode” is no longer trivial; i.e., I is
given by an integral over the space-time M”. An integral over the classical “coordi-
nates” )’ is selected in the standard way: x'(2) =y’ + u'(2), f dxF[x] = § d”y § [du-
1F [y + ul, [du] = dud® (P'( y,u))Q ( y,u). The value P = 0 violates the u — u -+ const
invariance, and we have @ =det (3 P(u +a)/d a)|._,. As a result, I" becomes

I =[dPy\/Gly] £ @(y), D; (v} .. ; Gyfv) Ry Fyplvh.) )

where D, is a covariant derivative with respect to G, R j, is the curvature tensor of
G;, and F, is the field strength of 4;. An expansion in a'—0 corresponds to an
expansion in the loops of the integral over «'. To obtain a covariant perturbation
theory we can use geodesic coordinates near the point ', replacing u’ by
o =u' —1I', (y)#u* + .., and choosing P’ = J d ’z(go’. Retaining only the first
term (with y = 2) in sum (1) (the “tree approximation” in string theory), and evaluat-
ing the integral over the metrics in the semiclassical approximation (i.e., integrating
over the closed surfaces of M 2, which “differ only slightly” from a sphere), we find

I~ —cQua’)” D/zdey\/-(?{ Q?— a'(al.ﬂ)z(al +a,InQ)

1 . _
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where v = (1/6)(D — 25) if D<26 or v=1if D =26, and 2 = (A ~*v~'® )7, where
y= —{1+v)/2 (A — « is the cutoff in the two-dimensional theory). The ground
state of the theory is determined by the classical equations corresponding to (4). As-
suming a maximum symmetry of the vacuum (2 = const, By, . =0}, we find

1 i ik
R - 21-F,.].kF'/ = u’Ny, DFYE =0,
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The general solution of (5) corresponds to the distinction of three-dimensional sub-
spaces by virtue of F;; ~€;;. (cf. Ref. 6; there are no solutions with a plane space MP).
In this case we have

Ry = N3Gy R, o =WwNyG,y, Fy FI% = a@vy—N,), 4
N3=[4A-(D—2)b2][4A{b2+2A)]—1 : a,b= 11293 s
o,B3=4,...D.

Solutions (6) correspond to an “effective” space-time in the form of a three-dimension-
al (anti-) de Sitter “multiplied” by a (D — 3)-dimensional internal space (e.g., S” ~?).
Equations (5) also allow solutions with an “internal” space in the form of a product of
3-spheres, $*X...X S (in this case we have Fj; ~€;;, for each of the spheres). Some of
solutions (6) are stable, telling us that the tachyon problem in the boson-string theory
can be solved through the formation of nontrivial background values of the scalar,
gravitational, and antisymmetric tensor fields corresponding to the true vacuum of the
theory.

Finding the vacuum values of the fields, we may ask whether the amplitudes
calculated against the background of this vacuum have reasonable physical properties;
i.e., is the theory of a string against the nontrivial background noncontradictory? One
necessary condition for consistency (the absence of “ghosts™) is the conformal invar-
iance of the two-dimensional theory with action (2} taken for the vacuum values @,
G, 4;,... . For the vacuum of the boson-string theory found above (G; ~ metric of
§°*X..., Fy ~€5), action (2) incorporates (for each S factor) an action for the SU(2)-
sigma model with a Wess-Zumino term with a relation among constants correspond-
ing to a zero of the B function, i.e., a conformally invariant theory.” The requirement
of conformal invariance may make it possible to find the ground state without expand-
ing I' in ’—0. An analysis of compactification on the basis of an expansion of I" in o’
is valid only if the size () of the compact dimensions is substantially larger than o'
(the size of the string); i.e., we are dealing with a problem of finding a natural hierarchy
r>\a’'. A method that might be used to calculate I"(1) without an expansion in o’
would be to specify a certain ansatz for the vacuum values of the fields and to expand
I in powers of the deviations of the fields from their vacuum values (the semiclassical
calculation of the corresponding coefficients, which give the amplitudes against the
background of the nontrivial vacuum, would incorporate the coefficients of the expo-
nential functions).

In summary, this new approach makes it possible to correctly formulate and to
solve the problem of finding the ground state in a string theory. It would thus be of
particular interest to generalize this approach to superstring theory,? in which the
ground state should correspond to six compact spatial dimensions.

YThe concept of a noncommutativity of coordinates with fields was first introduced by Markov.?
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