JMLR: Workshop and Conference Proceedings 13: 161-176
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8-10, 2010.

An EM algorithm on BDDs with order encoding for
logic-based probabilistic models

Masakazu Ishihata ISHIHATA@MI.CS.TITECH.AC.JP
Yoshitaka Kameya KAMEYA@MI.CS.TITECH.AC.JP
Taisuke Sato SATOQMI.CS.TITECH.AC.JP

Graduate School of Information Science and Engineering, Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

Shin-ichi Minato MINATO@IST.HOKUDAI.AC.JP
Graduate School of Information Science and Technology, Hokkaido University
North14 West9, Sapporo, 060-0814, Japan

Editor: Masashi Sugiyama and Qiang Yang

Abstract

Logic-based probabilistic models (LBPMs) enable us to handle problems with uncertainty
succinctly thanks to the expressive power of logic. However, most of LBPMs have re-
strictions to realize efficient probability computation and learning. We propose an EM
algorithm working on BDDs with order encoding for LBPMs. A notable advantage of our
algorithm over existing approaches is that it copes with multi-valued random variables
without restrictions. The complexity of our algorithm is proportional to the size of a BDD
representing observations. We utilize our algorithm to make a diagnoses of a logic circuit
which contains stochastic error gates and show that restrictions of existing approaches can
be eliminated by our algorithm.

Keywords: binary decision diagrams, EM algorithm, order encoding, propositionalized
probability computation

1. Introduction

Logic-based probabilistic models (LBPMs) (Getoor and Taskar (2007); De Raedt et al.
(2008)) have been developed for over the past two decades as a way to combine probabilistic
models and first-order logic. Probabilistic models can handle uncertainty whereas first-order
logic can represent our knowledge efficiently. Thanks to the expressive power of first-order
logic, they can succinctly deal with various problems in the real world. For instance, Inoue
et al. (2009) proposed an inference system using LBPMs. Their system derives hypotheses
about metabolic pathways from biological data and background knowledge described in
first-order logic and evaluates them using probabilities learned from the data.

In general, an LBPM is defined by a first-order language with a distribution over an
infinite number of possible worlds. Even if we assume finite possible worlds, their size is
exponential in that of ground atoms (random variables). Consequently, probability com-
putation and learning in LBPMs require exponential time. To realize efficient probability
computation and/or learning, most of LBPMs put some restrictions. For example, prob-

(©2010 Maskazu Ishihata, Yoshitaka Kameya, Taisuke Sato, and Shin-ichi Minato.

IsaiaATA, KAMEYA, SATO AND MINATO

abilistic Horn abduction (PHA) (Poole (1993)) assumes the bodies of Horn clauses which
have the same head are mutually exclusive. In stochastic logic programs (SLPs) (Muggleton
(1996)), clauses which define the same predicate must be probabilistically exclusive each
other. PRISM (Sato and Kameya (2001)) also assumes that the disjuncts in formulas are
probabilistically exclusive. Introducing such exclusiveness restrictions surely makes proba-
bility computation simple and efficient, but, it prevents us from enjoying the full expressive
power of first-order logic.

To relax the exclusiveness restrictions, BDD-based probability computation and learning
have been proposed (De Raedt et al. (2007); Ishihata et al. (2008); Gutmann et al. (2010)).
A binary decision diagram (BDD) (Akers (1978)) is a rooted directed acyclic graph that
gives a compact representations of a boolean function. Since probability computation and
learning in LBPMs are based on propositional logic, compressing boolean (propositional)
functions by BDDs accelerates them even if we do not make assumptions like the above.
De Raedt et al. (2007) proposed ProbLog which is a probabilistic extension of Prolog and its
probability computation is based on BDDs. Ishihata et al. (2008) proposed the BDD-EM
algorithm which is a probability learning algorithm working on BDDs. Gutmann et al.
(2010) also proposed a BDD-based learning algorithm for ProbLog called the CoPrEM
algorithm. However, both learning algorithms still have a serious problem that they cannot
deal efficiently with multi-valued random variables (a multi-valued random variable is a
random variable which has a discrete finite domain like dice). This problem is caused by
the following two reasons. One is that they assume a target distribution to be learned
is a product of Bernoulli distributions over boolean variables. The other is that BDDs
expressing multi-valued variables tend to be huge since its compression rules are unfit to
multi-valued variables.

In this paper, we propose a new BDD-based learning algorithm which can deal with
multi-valued random variables. We first introduce a propositional logic-based probabilistic
model My4 which is a pair of a set of boolean variables A and a joint distribution P4 over A.
To handle multi-valued random variables, we define P4 based on a product of categorical
distributions. A Bernoulli distribution is a discrete probability distribution of a boolean
random variable whereas a categorical distribution is that of a multi-valued random vari-
able. To cope with multi-valued variables by BDDs, we introduce order encoding (Tamura
et al. (2006)) which is a way to represent multi-valued variables by boolean variables. The
combination of BDDs and order encoding can compress boolean formulas well even if they
contain multi-valued variables. We propose the BO-EM algorithm which is a probability
learning algorithm for Ma using BDDs and order encoding. BO-EM learns parameters of
Ma, i.e. those of categorical distributions, efficiently thanks to the compression power of
the combination of BDDs and order encoding. As a result, it can eliminate the exclusive
restrictions in the models that contain multi-valued variables.

The rest of this paper is organized as follows. We first formulate our problem in Sec-
tion 2. In Section 3, we briefly review BDDs and order encoding and then propose the
BO-EM algorithm. Experimental results are reported in Section 4. Finally, we conclude
and mention the related work in Section 6.

162

AN EM ALGORITHM ON BDDS WITH ORDER ENCODING FOR LBPMSs

2. Problem settings

Suppose we observe various events in the real world. Probability is useful to express
uncertainty in them whereas logic is useful to describe them. We here introduce a proposi-
tional logic-based probabilistic model Ma = (A, Pa), where A is a set of boolean random
variables and P4 is a joint distribution over A. Probabilistic events are described by boolean
formulas of A and their probabilities are defined by Pa. To deal with multi-valued random
variables by Mg, we define P4 as a product of categorical distributions. We next formalize
the parameter estimation problem of My and introduce the EM algorithm to solve it.

2.1 Propositional logic-based probabilistic models

We here define a My representing a joint distribution over a set of multi-valued random
variables. Suppose X is a set {X1,..., Xn}, where X; is a multi-valued random variable
following a categorical distribution over a finite discrete domain Dx, = {vi(j) | 1<j<Nx,}.
Let « be a sequence {x;};, where x; € Dy, is the assignment of X;. We assume variables in X
are mutually independent and also assume some of them are independent and identically-
distributed (i.i.d.), i.e. they have a common domain and a common distribution. Let
M={m | 1<i<M,m; C X} be a partition of X such that variables in the same subset
are 4.i.d. each other. Thus, vl(]) = vzg,]) and P(X; = vi(J)) = P(Xy = 'UZ(,])) hold for all j
if X; and X; are in the same subset. The partition II can be expressed as a mapping
w:{l,...,N} —{1,..., M} such that Xy €m; < u(i')=1i. Let D; be the common domain
of X €m; and N; be the size of D;. To define Px which is a joint distribution over X, we
introduce parameters 0={0; ; | 1<i<M,1<j<N;} satisfying 0<6; ;<1 and Zj\fz’l 0;;=1.

A probability of Xizvgj) is denoted by 6,),; and Px is defined as follows:

N Nx; o M N;
Px(x;0) = H1 H1 o) = H1 Hle;f;f(”’),
i=1 j= i=1j=

where Px(x;8) is a shorthand for Px(X =x;0) and x(; ;) and oy j(x) are defined by

1 xz-:vgj) y o~
T = oii(x) =12 v)=1, Ty =1}

There are many ways to represent the assignment X = x by boolean variables and
the simplest one is direct encoding which represents an N-valued variable by N boolean
variables. Let A = {4;; | 1 <i < N,1<j < Ny,}, where 4;; is a boolean variable

corresponding to a proposition “Xi:vl(j)”, and also let a = {a;;}ij, where a;; is the
assignment of A; ;. Direct encoding gives a mapping d : 0x — 24, where Qx and 4 are

the set of all possible assignments of X and A, respectively. The mapping d is defined by
d(w) =a < VZ,] (CL(ZJ) :m(w)) s

where a(; ;) is the assignment of A; ; in a. Note that d is an injection but not a surjection.
Let ran(d) be the range of d, i.e. ran(d) = {d(x) | * € Qx}. We represent ran(d) by a
boolean formula. A boolean formula F' of A is an expression of a boolean function from

163

IsaiaATA, KAMEYA, SATO AND MINATO

4 to {0,1}. We use the same symbol F' to indicate its function. Let C'4 be a boolean
formula defined by

N Nx; N Nx;
CAa=LaNMgy, LAE/\\/Ai,j, MAE/\/\ /_'(Ai,j/\Ai,j')'
i=1 j=1 i=1 j=1 ji#j

Then C4 is also a boolean function and ran(d) is represented by {a | a€Qa,Ca(a)=1}.
By the definition of d, a ¢ ran(d) has no inverse image. To attach 0 probabilities to
adran(d), we define Py as follows:

N NXZ- M N;
a(i,j o;5(a
ata:0) = Cato) [T 027 = Cal TTTT#2
i=1j=1 i=1j=1

where 0; j(a)=[{a@ ;) | a@ ;y=1,u(i") =i}|. Ea(A;8) represents the same distribution as
Px(X;0) because P4(A;0) satisfies

Ve eQx (Px(x;0)=PFPa(d(x);0)), Vadgran(d) (Pa(a;0)=0).

Probabilistic events in Ma are described by boolean formulas of A. A probabilistic
event e is a subset of Q4. Let F, be a boolean formula representing e. F, satisfies F.(a)=1
if a €e otherwise F.(a)=0. The probability of e is computed as that of F. defined by

Pa(F;0)= > Pa(a;0) =) TFa(a;0),

a st. Fe(a)=1 ace

where Pj(Fg;0) is a shorthand for Py(F.=1;0).

We assume random variables in X are mutually independent. However, we can deal
with variables which depend on other variables. Suppose A and B are boolean random
variables and B depends on A. A joint distribution of A and B is expressed as a product
of the marginal distribution of A and the conditional distribution of B as follows:

P(A=a,B=b) = P(A=a)P(B=b| A=a), a,be{0,1}.
Using the above distribution P, X and Px are defined as follows:
X ={A, By, By}, Px(A=a) = P(A=a), Px(B,=b) = P(B=b| A=a).
By the definition of Px, P(A=a, B=0) is computed as Px(A=a, B,=b):

Px(A:a, Ba:b) = Px(A:a)Px(Ba:b)
= P(A=a)P(B=b| A=a)
= P(A=a,B=b).
Let’s consider a simple example. A student S goes to school by bus and he is sometimes
late for school. There are only two causes of his being late. One is a traffic jam and

the other is his oversleeping. We assume a traffic jam and his oversleeping are mutually
independent but a traffic jam depends on the weather. Let O be a boolean random variable

164

AN EM ALGORITHM ON BDDS WITH ORDER ENCODING FOR LBPMSs

corresponding to the occurrence of his oversleeping. Also let W be a three-valued random
variable representing the weather. W takes one of {s, ¢, 7}, where s, ¢ and r are shorthands
for sunny, cloudy and rainy, respectively. Let J, (w € {s,¢,r}) be a boolean random
variable corresponding to a proposition that a traffic jam happens when the weather is w.
By direct encoding, we get a set of boolean variables A = {“J,=3", “W=w", “O=0" |
w € {s,c,r},j,0€ {0,1}}. Probabilistic events in this example are described by boolean
formulas of A. For example, a probabilistic event “S is late for school” (“S is not late for
school”) is expressed as a boolean formula Fy, (resp. F7):

FL = “02177 \/ \/ ((W:w” /\ “Jw:l” , FI_I = ﬂFL‘

we{s,c,r}

A benefit of using logic is that various probabilistic events can be uniformly described by
boolean formulas. For example, suppose we observe that S is late for school on rainy day
(resp. not rainy day). The observation is represented as F1, A “W =r" (resp. FL A=“W =7r").

Probabilistic events we observe are expressed as a sequence of boolean formulas. What
we want to do in this paper is to estimate 0, a parameter of My, from the sequence. In the
following subsection, we formulate the parameter estimation problem of My, and introduce
an EM algorithm to solve it.

2.2 Parameter estimation

We here formulate our parameter estimation problem of Myu. Suppose we observe
probabilistic events independently each other and describe them by boolean formulas. Let
O={F (t)}g;l be a sequence representing our observations, where F® is a boolean formula
which explains the t-th observation. The probability we observe O is

T
P4(0;0) = [[Pa(F");0).
t=1

The goal of our parameter estimation problem is to find the mazimum likelihood estimate
O\, given by

01, = argmaxg Lo(0), Lo(0) =1n P4(0;0),

where L (0) is the log likelihood function. Note that observations O and assignments {4
are not in one-to-one correspondence. This kind of observations is called incomplete data
and the EM algorithm is known as a way to find the maximum likelihood estimator from
incomplete data. The EM algorithm we develop for My iterates the expectation-step (E-
step) and the mazimization step (M-step) until Lo (0) converges. Each step is defined as
follows.

e E-step: Compute conditional expectations né [i] (1<i<M,1<j<N;) defined by

T
mlil=> " " oij(a)Pa(a] FO;0). (1)

t=1 acQa

IsaiaATA, KAMEYA, SATO AND MINATO

e M-step: Update 0; ; to 0?,;7’“’ by
075 = myli)/ S5y mp li)- 2)

The above EM algorithm still has a serious problem however. It is that the time complexity
of computing conditional expectations n[i] defined by Eq. (1) is exponential in the size of
A. Fortunately, we need not to consider all of a € Q4 since Py(a | F);0) is 0 when a
makes a boolean function F() A C4 false.

In the next section, we introduce BDDs and order encoding to represent F®) A C4
compactly. A BDD is a rooted directed acyclic graph that gives a compact representation
of a boolean function. Order encoding is another way to represent multi-valued variables
by boolean variables. By combining them, we compress our observations as a graph and
propose the BO-EM algorithm which is an EM algorithm for Ma based on the graph.

3. Proposed algorithm

To execute the EM algorithm shown in Section 2.2 efficiently, we introduce BDDs and
order encoding. Their combination compactly represents observations from My, and hence
the probability computation and learning in My are accelerated. In this section, we first
briefly review BDDs and order encoding, then we propose the BO-EM algorithm which is
an EM algorithm working on BDDs with order encoding.

3.1 Binary decision diagrams (BDDs)

Let F' be a boolean function of A and also let Ag be a binary decision diagram (BDD)
for F', which is a rooted directed acyclic graph representing F'. Every nodes in A is labeled
by a variable in A or a constant x € {0, 1}. The label of a node n is denoted by Var(n). If
Var(n)=xz (z€{0,1}), n is called the z-terminal, otherwise a non-terminal. Let Nd(AFp)
be the set of all non-terminals. A non-terminal n€ Nd(Ar) has exactly two child nodes, the
1-child and the 0-child, denoted by Chyi(n) and Chy(n), respectively. Let (n,z) (x€{0,1})
be an edge from n to Chy(n). We call (n,z) the z-edge of n and it indicates an assignment
of Var(n) is . There exists an edge labeled by F', which has no parent node. The edge
is denoted by (F') and called the input edge. A path from (F) to z-terminal represents a
partial assignment of A making F'=x, where the partial assignment is a set of assignments
indicated by edges in the path. A set of all paths from (F) to 1-terminal represents all
possible assignments of A making F'=1.

In general, there exist a lot of BDDs representing the same boolean function since some
nodes in them can be deleted or merged by following two rules:

1. Deletion rule: Delete n if Chy(n)= Chy(n),
2. Merging rule: Merge n and n' if Var(n)= Var(n') and Chy(n)= Ch,(n’) (z€{0,1}),

where n and n/ are non-terminals. Applying these rules to nodes in a BDD never changes
its target function. If n € Nd(Ap) can be applied the above rule, n is called a redundant
node. When a BDD has no redundant node, it is said to be reduced. Also if each variable
appears once in each path from the input edge to the terminal and if the order of the
appearances is common to all these paths, it is said to be ordered. The common order is

166

AN EM ALGORITHM ON BDDS WITH ORDER ENCODING FOR LBPMSs

Fl=) F(L=0)

Figure 1: SBDD + direct encoding Figure 2: SBDD + order encoding

called wvariable ordering of the BDD. A reduced ordered BDD (ROBDD) is known to be a
unique representation of the target boolean function (Akers (1978)).

An ordinary ROBDD represents a single boolean function. However multiple ROBDDs
can be merged into a single diagram called a shared BDD (SBDD) (Minato et al. (1990)).
Let O ={F,}L,, where F; is a boolean function. Also let Ap be an SBDD representing
boolean functions F; € O. Ap has T input edges (F;) and a sub-graph pointed by (F})
corresponds to a ROBDD of F;. Sub-graphs which are complement each other in Ay are
merged by a negative edge. Pointing by a negative edge corresponds to the logical NOT
operation. A path from (F}) to the z-terminal represents a partial assignment of A making
F; ==z if the path includes even number of negative edges and otherwise F;=1—x. When
a path represents F; =x, we say that the path logically reaches the z-terminal. To provide
uniqueness of SBDDs, the use of negative edges is limited to 1-edges or input edges. The
size of an SBDD depends on target boolean functions and the variable ordering. To find the
best variable ordering is NP-hard (Tani et al. (1996)). However, there are many efficient
heuristics for good variable orderings (Minato et al. (1990)).

To execute the EM algorithm for My efficiently, we represent our observations O as an
SBDD Ap and compute conditional expectations 77{0' [i] on it. Sharing common structures in
Ap and computing probabilities/expectations on it correspond to sharing common prob-
abilities/expectations between Fi,..., Fp. As a result, we can avoid computing the same
quantities over and over again. However, there still remains a serious problem that SBDDs
and direct encoding are incompatible. Direct encoding represents a multi-valued random
variable X; using boolean variables A; ; (1<j<Nx,). The values of A;; and A;; (j' # j)
are strongly related to each other. For example, when A; ; takes true, A; j must take false
to make C 4 true. Meanwhile, the deletion rule of BDDs deletes don’t care nodes such that
the value of the node is don’t care in a path. Consequently, the deletion rule cannot delete
nodes labeled by A; ; following nodes labeled by A; ;.

Figure 1 shows an SBDD for F;, AC 4 and F; AC' 4. There are three types of edges, solid
edges, dashed edges and dotted edges corresponding to 1-edges, 0-edges and negative edges,
respectively. We can see that the SBDD is quite large. To simplify SBDDs, we introduce
order encoding instead of direct encoding in the next subsection.

167

IsaiaATA, KAMEYA, SATO AND MINATO

3.2 Order encoding

We here introduce order encoding and re-encode boolean formulas F®) € © by it before
we build up Ap which is an SBDD representing O@. Order encoding represents X; which
has an ordered discrete domain Dx, by Nx, —1 boolean variables. Let us define an order
over Dy, as v < w97 if j < j'. Also let B={B;; | 1<i<N,1<j<Nx,—1}, where B;; is
a boolean variable corresponding to a proposition “X; < vi(j), By order encoding, A4; ;€ A
is re-encoded to a boolean formula of B:

B;1 J=1
A; j is encoded as (\/;,_:11 ﬁBm/) ANB;j 1<j<Nx; .
7 _
V2 —Bigy Jj=Nx,

()

i

(")

The middle formula means that if ; < v;”’ and x; > v;”’ for all j' : 1 < j' < j then x;

must be Uz(]). In other words, when B; j=1 and B, =0 (j' < j), we can say that Xi:vgj)
without checking B; j (j' > j). This property is strongly compatible with the deletion rule
of BDDs. When the order of variables in Ay is decided to be consistent with that over
Dx, (1<i<N), a path p from an input edge to a terminal must satisfy the following two

properties:
nij€p = Vj'<j((ni;,0)€p), (3)
(nij,1yep = Vj">j(nijnép), (4)

where n; ; is a node labeled by B; ;. The property (3) says that a path through n;; must
contain 0-edges of n; j» (j/ < j). The property (4) says that n; j» under n;; (j” > j) must
be a redundant node and deleted by the deletion rule.

Figure 2 shows an SBDD representing F7, and F7 re-encoded by order encoding. We
can see that the SBDD becomes simple and F7, and F} are completely shared thanks to
introducing order encoding. The combination of SBDDs and order encoding compresses
observations from My even if My contains multi-valued random variables. In Section 4,
we will empirically show that using order encoding reduces the complexity of the SBDD
size for hidden Markov models.

3.3 BO-EM algorithm

We here propose the BO-EM algorithm which is an EM algorithm for Ma working on
an SBDD A representing observations O from My re-encoded by order encoding. First,
we attach probabilities on edges in Ap, then we show how to compute PA(F(t);H) and
conditional expectations ng [i] on Ap.

We now define probabilities of edges. Note that B;; and B; j» (j # j') are dependent
each other and we need to express this dependence in Ap. According to the property (3)
in Section 3.2, a path including n;; contains (n;;,0) (j < j). It means that (n;;,x)

(z€{0,1}) is conditioned by /\i, 11 =B, j. Thus, we define the probability of (n; ;,x) as

Py (Bw' A (/\?’_:11 ﬁBl"j/) ;9)
Py (/\§7:11 ~Bi 3 0) |

Pa((nij,1);0) = Ia (Bi,j A2 ﬁBi,j/;9> =

168

AN EM ALGORITHM ON BDDS WITH ORDER ENCODING FOR LBPMSs

—1
1B 0

) Py (/\i ”,,0)

PA(<ni,jaO>; 0)=Fa (_‘Bi,j P </\ i~ _ B 0)
A TP

By the definition of order encoding, boolean formulas of B in the above probabilities are
decoded as follows:

’*J

1
B; REA (/\]/ 1 _'B”) - Am‘, /\J/ 1 _‘Bw’ - \/

By substituting the above into the definition of Pa((n;;,z);0) (x € {0,1}), they are com-
puted as follows:

Pa(Aij;0) 0u6);

Pa <\/NX A s 9) Tu(i) g

Nx,
PA(Vj/f}H Aijrs 9) T pu(i),j+1

PA(V i A 13 0) Ouiiyg

Pa((nij,1);0) =

Fa({ni;,0);0) =

where o; ; EZ;Y;] 0; j» corresponds to the probability of X > vl.(,j) (u(i")=1).
We next define probabilities of paths in Ap. Let p be a path in Ay from an input edge
to a terminal and define its probability as follows:

N
0) EHPA(pZ-;O), A(pi; 0 H Py({n,x);0),
i=1

(n,z)€p;

where p; ={(n,z) | (n,z) € p, Var(n) = B; j,1 <j < N;}. A partial path p; in p indicates
an assignment of X;. When p; = {}, the assignment of X; is don’t care in p. In the

case p; # {}, p; indicates X; = vgj(pi)) if p; has a l-edge otherwise X; > vl(j(pi)), where

J(pi) =max{j | (n,z) € p;, Var(n) = B; ;}. By the definition of probabilities of edges, it
holds that:

1 pi=1}
Pa(pi; 0) = 0,(),5(ps) pi has a 1-edge

Ou(i)j(ps)+1 Pi has no l-edge

Consequently, Pa(p;;0) corresponds to the probability p; indicates, and Pa(p;0) also cor-
responds to that of the assignment p indicates.

A set of paths which logically reach the 1-terminal from an input edge (F(®)) represents
all possible assignments of A making F'*) =1. The sum of their probabilities corresponds to
PA(F®);0). To compute Py(F®);8) on Ap efficiently, we introduce backward probabilities
Bgn] (x € {0,1},n € Nd(Ap)). Bgln] is a probability of paths logically reaching the z-
terminal from n and computed by dynamic programing on Ao (Procedure 1). Let Root(F®)
be a node pointed by (F®). Bg[Root(FM)] is correspond to Pa(F(™);0), where z =1 if
(F®) is not a negative edge otherwise =0. All Py(F®):0) (F®) € ©) are computed by
Procedure 1 all at once and its time/space complexity is O(|Nd(Ap)|).

169

IsaiaATA, KAMEYA, SATO AND MINATO

Procedure 1 Compute backward probabilities Bg[n]

T Byl =1, By =0, By[0] =0, BY0] = 1

2: for i = |[Nd(Ap)| to 1, z€{0,1} do

3: Let n; be the i-th node in the BDD ordered by topological order.

4: if (n;,1) is not a negative edge then

5: Bg[ni] = Pa((ni, 0); 0)Bg[Cho(ni)] + Fa((ni; 1); 0)Bg[Chi (1))
6: else if (n;, 1) is a negative edge then

T Bj[ni] = Pa((n, 0); 0)Bg[Cho(ni)] + Fa((ni, 1);8)Bg~"[Cho(n;)]
8: end if

9: end for

At the last, we show how to compute conditional expectations ng [i] on Ap. By the
definition of mp[i], it can be computed as Y~y ¢, 0y Xy, where n}[X;] is defined by

T T
myXil =Y Y agyPala| FY;0) =" Pa(4i; | FD;0),
t=1 a€Na t=1

()

where P5(A;; | F ();9) corresponds to a conditional probability of X; = v,”’ given F @,

Paths in Ap are classified into three types by an assignment of X; in them: (a) X; :vZ(J), (b)
Xi >v£]), (c) X; is don’t care. To compute 772,[2’], we extract Pa(A;; | F®);0) from the above
three types of paths. We introduce forward expectations Fg[n] (x € {0,1},n € Nd(Ap))
computed by dynamic programming on Ao like backward probabilities (Procedure 2). .7-"(3 [n]
(resp. Fg[n]) corresponds to a weighted sum of probabilities of paths from (F®)) to n
including even (resp. odd) number of negative edges, where the weight is the inverse of
Py(F®);0). Using F5[n] and B§[n], we compute various conditional probabilities. For
instance, >, 1y Fg[n]Bg[n] corresponds to a conditional probability of paths including n
given F(®). In a similar manner, conditional expectations né [i] are computed by Procedure 3
and its time/space complexity is O(|Nd(Ap)]|).

Summarizing the above, the E-step of BO-EM consists of the following three steps whose
time/space complexity is O(|Nd(Ap)|).

1. Compute backward probabilities Bg[n] (n € Nd(Ap),x € {0,1}).
2. Compute forward expectations Fgln| (n € Nd(Ao),z € {0,1}).
3. Compute conditional expectations myli] (1<i<N,1<j<N;).

In the M-step, BO-EM updates 6 following Fq. (2). It repeats these two steps until Lo (8)
converges and outputs the final 8 as estimated parameters.

4. Experiments

We first apply BO-EM to learning parameters of hidden Markov models (HMMs) (Ra-
biner (1989)) to show the combination of SBDDs and order encoding compresses observa-
tions from HMMs compactly. We next utilize BO-EM to give a diagnosis for failure in logic
circuits which involve some stochastic error gates.

170

AN EM ALGORITHM ON BDDS WITH ORDER ENCODING FOR LBPMSs

Procedure 2 Compute forward expectations Fg[n]
: Fgln] =0 for all ne Nd(Ap),z€{0,1}
fort=1toT do
n = Root(F®))
if (F(®) is not a negative edge then
Filnl+=1/BY[n)
else if (F() is a negative edge then
Fgn]+=1/Bg[n]
end if
end for
10: for i =1 to |Nd(Ap)|, z€{0,1} do
11: Let n; be the i-th node in the BDD ordered by topological order.
12: Fg[Cho(n)]+= F§[ni]Pa((n;,0);0)
13: if (n;, 1) is not a negative edge then

PN

@

14: F5[Ch(n)]+= Fgni] Fa((ni; 1); 0)
15: else if (n;,1) is a negative edge then
16: Fg[Chi(n)]+= Fg “[ni]lPa((ns, 1); 0)
17 end if

18: end for

4.1 BO-EM for HMMs

We here apply the BO-EM algorithm to learn probabilities of HMMs which define a
probability distribution over strings. An HMM has hidden state S; following a Markov
chain and stochastically outputs a symbol O; depending on S; at time slice t. As the
result of repeating it L times, the HMM generates a string consisting of L symbols. Let
s¢ and o; be values of S; and Oy, respectively. For simplicity, we assume s; € {1,..., N}
and o, € {1,..., M}, where N and M is the number of states and symbols, respectively.
The HMM has three types of parameters m; = P(S1 =1), a;; = P(St=j | St—1 =1) and
bix=P(Or=k | Si=i) (1<i,j<N,1<k<M,1<t<L). Let O={o;}, be a string and
S ={s;}L, be a state sequence. The HMM defines a joint distribution of O and S such
that

L
P(s1,01,...,515,0L) = s, bsy 0, Hashl,stbst’ot.
t=2
The above distribution P can be represented by Px which is a joint distribution over X,
where X is a set of independent random variables. We define X = {5, St(l), Ot(l) |1<i<
N,1<t< L}, Px(S)=1i)=m, PX(St(J) =j)=a;; and PX(O,@ = k) = b; . The above

probability P(s1,01,...,51,0r) is computed as Px(s1, ogsl), e st_l), ogsL)):
L L
PX(SI)PX(OgSI)) H PX(S§SFI))PX(O£&)) = Ts1bs1 0, H sy_1,5¢ 054,005
t=2 t=2
where sgstfl) and ogst) are shorthands for S,fst*l) =s; and O,Est) =04, respectively. Let My

be a propositional logic-based probabilistic model defined by propositionalizing X and Px.

171

IsaiaATA, KAMEYA, SATO AND MINATO

Procedure 3 Compute conditional expectations 7;[i]

1 i) =0, m)[X:]=0, 4/ [X;] =0, D[B;;]=0 for all 1<i<N,1<j<Nx,

2: for all ne Nd(Ap)

3: BiJ‘ = Var(n), B1 = Var(C’hl(n)), B(): VaT(C'ho(n)), BN:next@(Bw)
L ey = FY[nlPa((n, 0); 6)BY[Cho(n)] + F3[n] Ba((n, 0);)BY[Cho(n)]

5: if (n,1) is not a negative edge then

6 ex— FIEa((n, 1):0)B3[Chy (n)] + F3nlPa((n, 1);)B4 Chi ()]

7.

8

else if (n,1) is a negative edge then
: e1 = Fg[n]Pa((n, 1);0)Bg[Chi (n)] + Fg[n| Pa((n. 1); 0)Bg[Cha(n)]
9: end if

10: 77§ [(Xi]+=e1 /* Add the expectation of (a). */
1 X]+= eo, ¥ [Xi]—= eo+e /* Store the expectation of (b). */

12: D[Bn]+=eo+e1, D[Bi]—=e1, D[Bg]—=-e€o9 /* Store the expectation of (c). */
13: end for

14: tmp=0

15: for k =2 to |B| do

16: Let B®™ be the k-th variable in the variable order of Ao.

17: tmp+= D[BW]

18: if B® = B, then

19: YHX;]) = tmp

20: end if

21: end for

22: for i =1to N do

23: tmp=0

24: for j=1to Nx, do

25: tmp+= ' [Xi] /o

26: Mg Xil+= tmp x 0,,(;) ; /* Add stored expectation of (b) & (c). */
27: end for

28: end for ‘ .

29: mplil4+= np[X;] for all X, em;, 1<j <Ny, /* Sum up [X,/] in npld]. */

M represents the HMM and a string O is explained as a boolean formula Fp:

FO = \/i\;l ((451:i77 /\ “Ogl) :0177 /\ Fé277/)> ,

F(t,i) _ \/j\/:1 <“St(i):j” A “Ogj):Ot” A F(()t+17j)> 2<t<L
© true t>1L

We now fix M =2 and L =25. Then, the number of possible strings generated by the
HMM is 32. We build up two SBDDs representing these 32 strings, one uses order encoding
and the other uses direct encoding. Figure 3 depicts the sizes of them as a function of N.
Variable ordering is decided by expanding the best one in the case L =2 and N =2. The
graph shows the ratio between (a) and (b) is proportional to N. More precisely, the size
of the SBDD representing Fp decreases from O(N3L) to O(N2L) by using order encoding.
Consequently, the time/space complexity of BO-EM for HMMs also become O(N?2L) and
it is the same as that of the EM algorithm specialized for HMMs.

172

AN EM ALGORITHM ON BDDS WITH ORDER ENCODING FOR LBPMSs

140000 T T T T 1
(a) SBDD + direct encoding ——

zerror ga{es % —
error gates = 2 ==
error gales 3 ==
120000 | (b) SBDD + order encoding ——x----

08
100000 [

0.6 [

nodes
F-measure

04r

40000

02
20000 [

10 10 100 1000 10000
hidden states # observations
Figure 3: SBDD size Figure 4: F-measure

4.2 BO-EM to give a diagnosis for failure in logic circuits

We here utilize BO-EM to give a diagnosis for failure in a logic circuit involving error
gates. The task is to find error gates in the logic circuit from observations which are pairs
of its input and output values. We assume an error gate is stochastically stuck-at 0 or
1. To handle stochastic errors, we introduce a random variable st(G) representing a state
of the gate G which takes one of {ok, stkQ, stkl}. st(G)= ok means G works well. And
st(G)=stk0 (resp. stkl) means its output is stuck-at 0 (resp. 1). We learn probabilities of
st(G) from observations using BO-EM and give a diagnosis that G is an error gate if the
probability of st(G)=ok is low.

To get boolean formulas explaining observations, we use PRISM (Sato and Kameya
(2001)) which is a logic-based probabilistic modeling language for generative modeling. A
logic circuit can be defined by two predicates, type(G,T) and conn(P, Q). type(G,T) means
that G’s gate type is T. conn(P, Q) represents P and () are connected. As an illustrative
example, let’s consider a circuit C' representing (11 A Iz) V I3. Let i(IN) be the N-th input
In. Also let o(c) be the output of C. Then, C is defined as follows:

type(gl, and). conn(i(1),in(1,gl)) conn(out(gl),in(2, g2)).
type(g2, or). conn(i(2),in(2, gl)). conn(out(g2),o0(c)).
conn(i(3),in(1, g2))

where in(I, Q) is the I-th input of G and out(G) is the output of G. We next define values
of gates. To handle probabilistic events, PRISM has a particular predicate msw with arity
2. For example, msw(st(G),S) represents that a random variable st(G) takes a value S.
We define a predicate val(P, V') which represents the value of P being V' as follows:

,al(Q, V).

val(Q,V) : —conn(P, Q)
(st(G), S), (S=ok,normal(G,V); S=stk0,V =0; S=stkl,V=1).

val(out(G), V) : —msw
normal(G, V) : —type(G,T), (T =or,or(G,V); T=and,and(G,V)).
or(G,V) : —(val(in

(in(1,G),1),V=1; val(in(2,G),1),V =1
;val(in(1, G),0),val(in(2,G),0), V =0)

and(G,V) : —(val(in(1,G),0),V =0; val(in(2,G),0),V =0
;val(in(1,G),1),val(in(2,G), 1),V =1)

IsaiaATA, KAMEYA, SATO AND MINATO

Using the above PRISM program, we can derive boolean formulas which explain probabilis-
tic events in the circuit. For example, a probabilistic event val(out(g2),1) is expressed as
the following formula:

val(out(g2),1) & msw(st(g2), stkl) V (val(in(1, g2),1) A msw(st(g2), ok))
vV (val(in(2,¢2),1) A msw(st(g2),ok)) .

PRISM requires the exclusive condition that the disjuncts in formulas are probabilistically
exclusive to make sum-product probability computation possible. However, the first and
the second disjunct in the above formula are not probabilistically exclusive.

As an example of eliminating the exclusiveness condition of PRISM, we give a diagnosis
of a 3-bit adder circuit Cs,q using BO-EM and boolean formulas derived by the above
PRISM program. The circuit consists of 12 gates, and E gates out of them are error gates.
The number of possible circuit states and possible diagnoses are 3'2 and 2'2, respectively.
We give a diagnosis using probabilities of st(G) learned by BO-EM . The detail of experiment
settings is as follows:

1. Generate a 3-bit adder circuit C3,q involving E error gates.

2. Sample N observations from Cs,q and derive boolean formulas explaining them by
the above PRISM program.

3. Learn probabilities of st(G) by BO-EM from formulas generated in Step 2.

4. Give a diagnosis using the learned probabilities: If P(st(G) = ok) < 0.5 then G is
judged as an error gate otherwise a normal gate.

5. Repeat (1)-(4) 100 times and compute the F-measure.

In Step 1, we fix P(st(G) =ok) at 1 if G is a normal gate, otherwise 0. P(st(G) = stk0)
and P(st(G)=stkl) are sampled from a uniform distribution. The F-measure computed in
Step 5 is a harmonic average of recall and precision. Recall is the rate of gates judged as
errors in true error gates. Precision is the rate of true error gates in gates judged as errors.
Figure 4 depicts the F-measure as a function of £ and N. The graph shows diagnostic
accuracy of each F increases with N and BO-EM gives diagnoses with highest diagnostic
accuracy when NN = 10000. The result suggests BO-EM is useful to give a diagnosis for
failure in logic circuits involving stochastic error gates.

5. Related work

A propositional logic-based probabilistic model My can be represented as a discrete
Bayesian network (BN) with parameter tying, and various encoding techniques and BDD-
like data structures for efficient probabilistic inference in BNs have been proposed (Chavira
and Darwiche (2008), Mateescu and Dechter (2007)). The difference between these existing
approaches and BO-EM is that the former specializes in probabilistic inference whereas
the latter focuses on parameter learning where it is required to compute conditional ex-
pectations for parameters. A conditional expectation is calculated as a sum of conditional
probabilities for each observation. However, computations of conditional probabilities for
multiple parameters and observations oftentimes overlap and hence cause redundancy. To
avoid such redundancy, BO-EM computes every conditional expectation all in once on an

174

AN EM ALGORITHM ON BDDS WITH ORDER ENCODING FOR LBPMSs

SBDD sharing their fragments of common probabilities and expectations. Consequently,
BO-EM can make parameter learning for BNs efficiently. Similarly, it is expected that BO-
EM also makes efficient parameter learning in relational Bayesian networks (RBNs) (Jaeger
(1997)) and Bayesian logic programs (BLPs) (Getoor and Taskar (2007)).

There already exist BDD-based probability learning algorithms for LBPMs. Ishihata
et al. (2008) proposed the BDD-EM algorithm and Gutmann et al. (2010) proposed the
CoPrEM algorithm for ProbLog (De Raedt et al. (2007)) which is a recent logic-based
formalism that computes probabilities via BDDs. They assume a target probability dis-
tribution to be learned is a product of Bernoulli distribution. Because of the assumption,
they cannot deal efficiently with multi-valued random variables. BO-EM has two impor-
tant extensions compared to them. The first one is that it copes with multi-valued random
variables by introducing order encoding. The second one is that it adopts SBDDs involving
negative edges not in ordinary BDDs. Using an SBDD and negative edges compresses ob-
servations into a single diagram and makes their common sub-graphs shared. Meanwhile,
BDD-EM adopts decomposed BDDs (DBDDs) which are a kind of hierarchical BDDs to
share common partial functions between BDDs. To realize probability learning on DBDDs,
BDD-EM computes inside probabilities and outside expectations which are similar to those
of probabilistic context free grammars (PCFGs). We can introduce DBDDs to BO-EM and
it enables us to learn probabilities of PCFGs in the same complexity as the EM algorithm
specialized for them.

6. Conclusion

We have proposed the BO-EM algorithm which is an EM algorithm for propositional
logic-based probabilistic models My. It adopts SBDDs and order encoding to compress
observations from My, described by boolean formulas. As a result, they accelerate proba-
bility computation and learning in Ma. BO-EM is generic in the sense that it is applicable
to SBDDs representing any boolean formulas, and at the same time can be efficient thanks
to dynamic programing on the SBDD. Its actual computation time depends on the SBDD
size. For instance, when we learn parameters of an HMM by BO-EM , the SBDD size and
its complexity is O(N2L). It is the same as that of Baum-Welch algorithm which is the
EM algorithm specialized for HMMs.

As shown in Section 4.2, BO-EM can solve a long-standing problem of PRISM. It em-
ploys data structure called explanation graphs representing boolean formulas in disjunctive
normal form and assumes the exclusiveness condition that the disjuncts are exclusive to
make sum-product probability computation possible. Since BO-EM is applicable to expla-
nation graphs as well, it allows PRISM to abolish the exclusiveness condition entirely.

BO-EM is useful for real application domains also. Inoue et al. (2009) applied BDD-EM
to evaluating hypotheses about metabolic pathways. They assume propositional variables
in their logical model to be independent boolean random variables. On the other hands,
Synnaeve et al. (2009) proposed another logical model about metabolic pathway contain-
ing multi-valued variables. In their model, concentrations of metabolites are discretized
into three levels. Replacing BDD-EM with BO-EM in the system Inoue et al. (2009) pro-
posed enables us to evaluate hypotheses generated from models which involve multi-valued
variables like the one Synnaeve et al. (2009) proposed.

175

IsaiaATA, KAMEYA, SATO AND MINATO

References

Sheldon B. Akers. Binary decision diagrams. IEEE Transaction on Computers, 27(6):
509-516, 1978.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172:81-129, 2008.

Luc De Raedt, Angelika Kimming, and Hannu Toivonen. ProbLog: A probabilistic Prolog
and its application in link discovery. In Proc. of IJCAI'07, pages 2468-2473, 2007.

Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen Muggleton, editors. Proba-
bilistic Inductive Logic Programming - Theory and Applications, 2008. Springer.

Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2007. ISBN 0262072882.

Bernd Gutmann, Ingo Thon, and Luc De Raedt. Learning the parameters of probabilistic
logic programs from interpretations. Department of Computer Science, K.U.Leuven, 2010.

Katsumi Inoue, Taisuke Sato, Masakazu Ishihata, Yoshitaka Kameya, and Hidetomo
Nabeshima. Evaluating abductive hypotheses using an EM algorithm on BDDs. In
Proc. of IJCAI'09, pages 810-815, 20009.

Masakazu Ishihata, Yoshitaka Kameya, Taisuke Sato, and Shin-ichi Minato. Proposition-
alizing the EM algorithm by BDDs. TR08-0004, Dept. of Computer Science, Tokyo
Institute of Technology, 2008.

Manfred Jaeger. Relational bayesian networks. In Proc. of UAI’'97, pages 266273, 1997.

Robert Mateescu and Rina Dechter. And/or multi-valued decision diagrams (AOMDDs)
forweighted graphical models. In Proc. of UAI’07, 2007.

Shin-ichi Minato, Nagasa Ishiura, and Shuzo Yajima. Shared binary decision diagram with
attributed edges for efficient boolean function manipulation. In Proc. of DAC’90, pages
52-57, 1990.

Stephen Muggleton. Stochastic logic programs. In New Generation Computing. Academic
Press, 1996.

David Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence,
64(1):81-129, 1993.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. In Proc. of IEEFE, pages 257286, 1989.

Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, 15:391-454, 2001.

Gabriel Synnaeve, Andrei Doncescu, and Katsumi Inoue. Kinetic models for logic-based
hypothesis finding in metabolic pathways. In Proc. of ILP’09, 2009.

Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling finite
linear CSP into SAT. In Proc. of CP’06, pages 590-603, 2006.

Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity of the optimal

variable ordering problems of a shared binary decision diagram. IEICE Transactions on
Information and Systems, 79(4):271-281, 1996.

176

