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Abstract—This paper examines multiple machine learning 
models to find the model that best indicates anomalous activity 
in an industrial control system that is under a software-based 
attack. The researched machine learning models are Random 
Forest, Gradient Boosting Machine, Artificial Neural Network, 
and Recurrent Neural Network classifiers built-in Python and 
tested against the HIL-based Augmented ICS dataset. Although 
the results showed that Random Forest, Gradient Boosting 
Machine, Artificial Neural Network, and Long Short-Term 
Memory classification models have great potential for anomaly 
detection in industrial control systems, we found that Random 
Forest with tuned hyperparameters slightly outperformed the 
other models. 
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I. INTRODUCTION  
Conflicts between nation-states have evolved in the 21st 

century. Where bombs and bullets were exchanged between 
competing entities in the past, now there are cyber weapons 
and tariffs. Nowhere is this truer than in the conflict between 
the competing interests in the Middle East. Objectively, one 
such recipient of this exchange was Iran. Sanctions were 
deployed to cripple the nation's economy, and cyber weapons 
were deployed to impede the progress of Iran's nuclear 
program [10, 19]. 

Specifically, in 2010, the Stuxnet computer virus was 
deployed to destroy the nuclear centrifuges used to enrich 
uranium at Iran's nuclear facility. The computer virus worked 
by displaying normally functioning nuclear centrifuges in the 
user interface to technicians while the nuclear centrifuges 
were induced to spin quickly and slowly in a cyclical fashion, 
which led to the destruction of these devices [19]. Never 
before had a nation-state inflicted upon another a cyber 
weapon with the degree of sophistication and number of zero-
days contained in Stuxnet against the industrial control system 
of a competing nation-state [19]. Thus, Stuxnet marked an 
escalation in the sophistication of the software-based tools 
upon which one nation is willing to inflict upon another. 
Arguably, this was an improvement over the kinetic means of 
warfare, which almost always led to the loss of life. However, 
it nonetheless represented an escalation in a space for which 
the rules of engagement have yet to be defined. 

Consequently, the successful deployment of a remote 
cyber weapon by one nation-state upon another sets a new 
precedent, which makes industrial control systems fair game 
for both attack and defense and the search for improved 
defense mechanisms a worthy endeavor. In other words, a 
point of no return in the cyber conflict has been reached, and 

there is no telling how nation-states or rogue adversaries will 
use this capability. Therefore, defense mechanisms should be 
built into one nation's own cyber-physical systems, whether 
they are electrical, sanitation, public use of water, or as a 
separate public utility essential to everyday living. 

II. PROBLEM STATEMENT 
    Our paper shares the sentiment of industrial cybersecurity 
researchers and firms such as Dragos, which aim to improve 
the current security status of Industrial Control Systems (ICS). 
Ultimately, the goal is to find machine-learning based 
solutions for detecting anomalies in those systems and to find 
methods that prevent exploiting such anomalies. 

    However, a complete review of an industrial control 
system's defenses would involve an audit of every software, 
electrical, and mechanical component built into the industrial 
control system combined with a review of the industrial 
control system's physical site perimeter. Thus, if this 
discussion of defending an industrial control system could be 
metaphorically compared to a real-world scenario where a 
guard needs to defend his or her building, then this paper 
focuses on building a better camera. More specifically, a guard 
would have many cameras to detect intruders at different 
points of interest in a building that typically includes entry and 
hallways. Detecting an anomaly for a guard would mean 
seeing an individual roaming the hallway from the feed of a 
closed-circuit camera during a time of day in which the 
presence of a person is atypical – such as late at night.  

Intelligent 
Agent 

Detection 
Mechanism 

Normal 
Conditions 

Abnormal 
Conditions 

Guard Camera Empty hallway 
at 1:00 AM 

Intruder 
roaming the 
hallway at 1:00 
AM 

System 
Technician 

Machine 
Learning 
System 

Water level 
never exceeds 
70% between 
the hours of 
9:00 PM to 
12:00 PM every 
day of the week 

Water level 
exceeds 95% 
between 9:00 
PM to 12:00 
PM for two 
days 

    In this case, the guard is trained to accept one input – the 
camera feed – to detect anomalies. However, the guard must 
combine the input from the camera feed with his or her prior 
experience gained observing camera feeds during his or her 
time on the job. The goal is to understand that a person should 
not be present at a certain location at a particular moment in 
time to conclude that there is an intruder in the building. 
Whereas, the machine learning systems trained in this paper 
are trained on 59 inputs (water level, power level, temperature, 
etc.) of time series data in which the model gains experience 



understanding how data points should behave under normal 
operating conditions. Next, the model is tested against the 
abnormal dataset (the dataset with abnormal data points) to 
test how well the machine learning model can identify whether 
the industrial control system is under attack. In this case, the 
target column can have a value of 0 or 1 – not under attack or 
under attack. In other words, the model is trained to 
understand how data points should behave under normal 
operating conditions (the attack column is 0 in the normal 
dataset) while measuring how well a model is trained depends 
on the model's ability to accurately predict the attack column 
during abnormal operating conditions (the attack column 
switches between 0 and 1 for fixed periods).  

III. ANOMALY DETECTION IN INDUSTRIAL CONTROL SYSTEMS 
THROUGH MACHINE LEARNING 

First, detection of an anomaly requires processing of data 
points from the system by a human or non-human agent. In 
the case of Stuxnet, which was found in the Siemens Step7 
software that controlled programmable logic controllers at 
Natanz, the nuclear centrifuges used to enrich uranium 
appeared to work correctly. However, physically, the 
centrifuges were induced to spin in a way that led to their 
destruction [19]. Thus, the first requirement is to ensure that 
data showing the industrial control system's activity is 
accurate. Second, if the data is accurate, then there is an 
opportunity to detect anomalous activity in the system 
through machine learning. 

IV. HIL-BASED AUGMENTED ICS SECURITY DATASET 
The dataset discussed in this paper that allows machine 

learning researchers an opportunity to approach the detection 
of anomalous activity as a binary classification problem is the 
HAI Dataset created by researchers at the Electronics and 
Telecommunications Research Institute in South Korea. The 
dataset consists of 59 datapoints collected every second from 
a realistic industrial control system testbed that simulates 
stream-turbine power generation and hydropower generation. 
The 59 data points come from the 4 major processes of the 
testbed: the boiler (P1), turbine (P2), water-treatment 
component (P3), and HIL simulator (P4), where a data point 
represents a signal at a moment in time. Table 1 lists a sample 
dataset from HAI, indicating whether or not the industrial 
control system is under attack. 

Table 1 shows four columns from the 1st Column of the 
Normal Dataset to the 59th Column of the original dataset. 
The dataset in Table 1 was before the preprocessing phase, 
including (1) the time column, (2) the P1.B4022 sensor 
column, (3) the P1.FCV03D column, and (4) the binary attack 
column, which indicates whether or not the industrial control 
system is under attack. In the normal dataset used for training, 
all of the column "Attack" values are zero. 

The data is divided into a normal dataset and an abnormal 
dataset. In the normal dataset, column "Attack" contains 0's 
for all rows, and the collected data represents the testbed (e.g., 
turbine, boiler, etc.) operating under normal conditions, 
whereas the abnormal dataset represents data points collected 
during the period under which the industrial control system is 
under a software-based attack. In other words, in the 
abnormal dataset, a signal may be much higher or much lower 
than normal, or the water level may be higher or lower than 
normal, which might indicate compromise. 

 
Table 1. Sample HAI Dataset Indicating whether or not 

the Industrial Control System is under Attack 

 
Note: The data in this table is from the project's .ipynb notebook [16]  

V. TIME SERIES ANOMALY DETECTION 
Given that normal data points are arranged in 

chronological order and that the industrial control system 
operates in fixed, periodic cycles, that the target column is 
binary, then there is an opportunity to approach the problem 
as a sequence classification problem [6, 7, 21]. Research has 
been conducted in this area to find models that can predict 
anomalous activity in datasets that possess these 
characteristics – some of which are more suited to account for 
time and some that are not, including: 

 Gaussian Naïve Bayes – “probabilistic classification 
models that are able to quantify the uncertainty in 
predictions by providing posterior probability 
estimates” using Bayes Theorem (P(y|x) = (P(x|y)P(y) 
/ P(x)))  [17]. 

 Random Forest – "Random forests attempt to improve 
the generalization performance by constructing an 
ensemble of decorrelated decision trees. Random 
forests build on the idea of bagging to use a different 
bootstrap sample of the training data for learning 
decision trees. However, a key distinguishing feature 
of random forests from bagging is that, at every 
internal node of a tree, the best splitting criterion is 
chosen among a small set of randomly selected 
attributes" [17]. 

 Random Forest (GridSearchCV): Same as above, but 
the best hyperparameters were found with 
GridSearchCV, which algorithmically finds the best 
estimator. 

 Gradient Boosting Machine – "Boosting is an iterative 
produced used to adaptively change the distribution of 
training examples for learning base classifiers so that 
they increasingly focus on examples that are hard to 
classify" [17]. 

 Gradient Boosting Machine (GridSearchCV): Same 
as above, but the best hyperparameters were found 
with GridSearchCV, which algorithmically finds the 
best estimator. 

 Artificial Neural Network – "Artificial neural 
networks (ANN) are powerful classification models 



that are able to learn highly complex and nonlinear 
decision boundaries purely from the data. They have 
gained widespread acceptance in several applications 
such as vision, speech, and language processing" [17]. 

 Long Short-Term Memory – "Long Short-Term 
Memory networks, or LSTMs for short, can be 
applied to time series forecasting" [6]. They are a type 
of recurrent neural network with feedback 
connections compared to artificial neural networks, 
which are feedforward. There "are many types of 
LSTM models that can be used for each specific type 
of time series forecasting problem" [6]. 

 Long Short-Term Memory Autoencoder – 
"Autoencoders are a type of self-supervised learning 
model that can learn a compressed representation of 
input data" [5].  

 
 For every model researched in the experiment, either the 
entire dataset or selected features were passed to the model. In 
the case of neural networks, the entire dataset was passed to 
the model, but only selected features were chosen in the case 
of all other models. Furthermore, multiple models were tested 
to find the model that best predicts the presence of anomalous 
activity as a potential indicator of compromise at a given 
moment in time. However, to carry out this experiment and to 
execute a thorough and accurate survey of the models, data 
preprocessing and exploratory data analysis was conducted 
first. 

VI. DATA PREPROCESSING 
In the data preprocessing and exploratory data analysis 

steps, the data was separated according to the method 
described in [7], which states that "in the case of anomaly 
detection, the normal traffic pattern is defined in the training 
phase. In the testing phase, the learned model is applied to 
new data, and every exemplar in the testing set is classified 
as either normal or anomalous" [6]. In this step, the DateTime 
values were also converted from strings into Python 
DateTime objects. 

VII. EXPLORATORY DATA ANALYSIS 
In the exploratory data analysis step, the per column 

distribution and correlation matrix of the columns from the 
normal dataset were analyzed as shown in Fig. 1 for per 
column distribution and in Fig. 2 for correlation matrix. 
 

 
Fig. 1. Per Column Distribution  

 

 
Fig. 2. Correlation Matrix 

Columns P1.B4022 (temperature demand to follow 
P1.B4005 and electrical load from the steam-turbine model 
measured in Celcius), P1.FCV03D (position command for 
FCV03 measured in percent), and P1.FCV03Z (current 
position of FCV03 valve measured in percent) from the boiler 
process were compared to find the difference between the 
data points in the normal time-series data (Fig. 3) and the 
abnormal time series data (Fig. 4).  
 

 
Fig. 3. P1 Boiler Process Sensor Data – Normal Conditions 

 
Fig. 4. P1 Boiler Process Sensor Data – Abnormal Conditions 

When comparing the three data points in Fig. 3 and Fig. 
4, we can see that there are significant anomalies in the 
behavior of these data points when the system is under attack.  

Similarly, this difference in behavior is also shown in the 
industrial control system's turbine process sensor data. Fig. 5 
and Fig. 6 show a comparison between the P2.VT01 (Shaft-



vibration-related y-axis displacement near the first mass 
wheel measured in μm) and P2.VYT03 (Shaft-vibration-
related y-axis displacement near the second mass wheel 
measured in μm) shows significant differences in behavior 
between the data points when the system is operating under 
normal conditions and when the system is under attack. 

 
Fig. 5. P2 Turbine Process Sensor Data – Normal Conditions 

 
Fig. 6. P2 Turbine Process Sensor Data – Abnormal Conditions 

    We can also see from the P3.LT01 (Water level in upper 
tank measured in %) in Fig. 7 and Fig. 8 that, the water level 
in the industrial control system under attack exceeds 80% 
whereas the water level in the industrial control system 
operating under normal conditions never exceeds the mid-
70% range. 

 

 
Fig. 7. P3 Water-Treatment Process Sensor Data – Normal Conditions 

 
Fig. 8. P3 Water-Treatment Process Sensor Data – Abnormal Conditions 

    However, we can see that the data points from the P4 
Hardware-In-the-Loop simulation in Fig. 9 and Fig. 10 do not 
lead to any obvious conclusions. In other words, there are no 

easily discernible differences between the data captured from 
the P4 sensors operating under normal conditions and the P4 
sensors operating under abnormal conditions. Therefore, we 
can conclude that some amount of feature engineering is 
needed to remove features from the dataset that are not strong 
predictors of the attack column. 
 

 
Fig. 9. P4 HIL Sensor Data – Normal Conditions 

 
Fig. 10. P4 HIL Sensor Data – Abnormal Conditions 

VIII. FEATURE SELECTION 
    Common feature selection techniques were applied to 
reduce the number of features from 59 to 9. The techniques 
included the application of the SelectKBest function in scikit-
learn using f_classif as the test. Following the 9 best 
predictors' selection, the 9 predictors were scaled and 
projected onto a 5-dimensional subspace through principal 
component analysis. 
    In principal component analysis, the components were 
selected based on the proportion of variance explained by the 
given component, which resulted in the 5 components that 
represented the greatest proportion of variance being selected 
for projection onto the subspace. In the feature selection step, 
the Python f_classif function was selected due to the presence 
of negative values in the dataset. If negative values were not 
present in the dataset, then chi2 would have been chosen as 
the test. 

The 9 highest scoring features from the application of the 
f_classif test in the SelectKBest function were:  

 Heat-exchanger outlet pressure setpoint (P1.B2004),  
 Water level setpoint in the return water tank 

(P1.B3004),  
 Heat-exchanger outlet temperature setpoint 

(P1.B4002),  
 Temperature demand to follow P1. B4005 and 

electrical load from the steam-turbine model 
(P1.B4022),  

 Digital value of FT01 flow transmitter (P1.FT01),  
 Water level of return water tank (P1.LIT01),  
 Position command for LCV01 valve (P1.PCV01D),  
 Current position of PCV01 valve (P1.PCV01Z), and  



 User speed demand (P2.SD01).  
Following their selection by SelectKBest(), they were 

reduced to 5 principal components.

IX. MODEL TRAINING 
Next, with the data preprocessed and with the feature 

selection steps complete, candidate models such as Random 
Forest, Gradient Boosting Machine, Artificial Neural 
Network, Long-Short Term Memory, and Long-Short Term 
Memory Autoencoder models were trained to detect 
anomalous activity in the industrial control system using the 
normal dataset (train). The accuracy of these models was 
tested using the abnormal dataset (test). The model, training 
time, prediction time, cross-validated mean, cross-validated 
standard deviation, and accuracy are summarized in Table 2. 

 
Table 2. Anomaly Detection Accuracies of Various 

Models in Wired Intrusion Detection Systems 
 

Classifier Notes Training 
Time 

Prediction 
Time 

Cross-
Validated 
Mean (cv=5) 

Cross-
Validated 
Standard 
Deviation 
(cv=5) 

Accuracy 

Gaussian 
Naïve 
Bayes 

The first 
model test was 
Gaussian 
Naïve Bayes, 
which yielded 
an accuracy of 
54% on the 
test dataset. 
Model 
hyperparamete
rs were not 
tuned. 

~.1s ~.1s N/A N/A 54.0% 

Random 
Forest 

Next, a 
Random 
Forest 
classifier was 
trained with 
hyperparamete
rs manually 
set to 20 trees, 
Gini as a 
function for 
measuring 
node impurity, 
and random 
state set to 0. 
 

~.9s ~.1s 76.40% 0.074 82.930% 

Random 
Forest 
GSCV 

{‘criterion’: 
‘gini’, 
‘max_depth’: 
4, 
‘max_features
’: ‘log2’, 
‘min_samples
_leaf’: 1, 
‘min_samples
_split’: 10, 
‘n_estimators’
: 1000} 

~109.8s ~8.2s 86.51% 0.054 82.934% 

Gradient 
Boosting 
Machine 

Default 
Parameters 

~583.02s ~.1s 83.61% 0.054 77.58% 

Gradient 
Boosting 
Machine 
GSCV 

{‘max_depth’: 
7, 
‘min_samples
_split’: 1000} 

~1274.2
8s 

~10-
20s 

77.18% 0.103 83.63% 

Artificial 
Neural 
Network 

3 hidden 
layers and 12 
nodes per 
layer 

~76s ~10-
20s 

81.25% 0.036 82.79% 

Long 
Short-Term 
Memory 

1 layer with 
10 nodes and 
1 dropout 
layer 

~111s ~-20s 82.78% 5.578994
7509765
63e-06 

82.81% 

Long 
Short-Term 
Memory 
Autoencode
r 

6 layers – 16 
nodes in layer 
1, 4 nodes in 
layer 4, 1 node 
in layer 3, 4 
nodes in layer 
4, 16 nodes in 
layer 5, and 1 
node in layer 
6.  

~809s ~10-
20s 

82.78% 0.000153
6130905
151367 

82.79% 

 

X. METRICS AND MODEL EVALUATION 
     Figure 11 shows the receiver operating characteristic 
(ROC) curves for the Random Forest classifier with 20 trees, 
a Random Forest classifier with 1,000 trees, a Gradient 
Boosting Machine classifier using default parameters, a 
Gradient Boosting Machine classifier with max depth of 7 
and minimum sample split of 1,000, an artificial neural 
network with 3 hidden layers and 12 nodes per layer, and a 
long short-term memory recurrent neural network with 10 
nodes and a dropout layer. 

 
Fig. 11. Receiver Operating Characteristic (ROC) Curves 

    From this, we can see that the area under the curve for the 
Gradient Boosting Machine classifier was the greatest despite 
sharing a similar accuracy with all other classifiers. 
 

Once the models were complete, the models were then 
compared with models that were surveyed in [7] and some of 
the results shared by Maglaras and Jiang in [15]. In [7], the 
authors surveyed different measures such as ANN, Associate 
Rules Bayesian Network, Clustering k-means, Clustering, 
Hierarchical Clustering, DBSCAN Decision Trees, GA, 
Naive Bayes, K-Nearest Neighbors, HMM, Random Forest, 
and Support Vector Machines [3]. The time complexities and 
ranges of accuracies gleaned from the document are shown in 
Table 3. 

 
Table 3. Time Complexities and Accuracy Ranges of 

Different Models [3] 
 

Classifier Typical Time 
Complexity 

Accuracy 

Artificial Neural 
Network 

O(emnk) Roughly 80% but 
varies 

p y



Association Rules O(n3) Roughly 100% with 
13% FP Rate 

Bayesian Network O(mn) Roughly 93% with 
1.39% FP Rate 

Clustering, K-Means O(kmni) 80%-90% but varies 
Clustering, 
hierarchical 

O(n3) 80%-90% but varies 

Clustering, DBSCAN O(n3) 80%-90% but varies 
Decision Trees O(mn2) 98.5% FAR was 

0.9% 
Genetic Algorithms 
(GA) 

O(gkmn) 100% Best with FAR 
between 1.4% and 
1.8% 

Naïve Bayes O(mn) Reported 98% and 
89% accuracies 

K-Nearest Neighbors O(nlogk) 80%-90% but varies 
Hidden Markov 
Models (HMM) 

O(nc2) Higher than 85% 

Random Forest O(mnlogn) 99% Range 
Sequence Mining O(n3) A real-time scenario 

where 84% was 
detected 

SVM O(n2) Results enhanced 
SVM "87.74%" 

 

    The results by Buczak et al. [7] show that 90% detection 
accuracy is achievable in a network-based intrusion 
detection system (IDS), which means that there is still room 
for hyperparameter tuning in the theorized Python-based 
anomaly detection system discussed in this paper.   
 
    However, there is room to tune the hyperparameters of 
the models discussed in this paper, but there is also room to 
test additional models. In particular, Maglaras and Jiang's 
research work has shown that "segmentation and clustering 
algorithms" show great promise in detecting intrusions in 
SCADA systems [15]. The models tested in this paper fit 
into the category of neural networks or decision trees. 
Nonetheless, Maglaras and Jiang note the success of 
clustering and segmentation algorithms in their paper 
because these algorithms "do not need to know the 
signatures" from network activity collected by more 
commonly used rules-based IDS systems [15]. Thus, not 
only is their room to tune hyperparameters of the tested 
models, there is room to test other types of models. 

XI. PRACTICAL CONSIDERATIONS & LIMITATIONS 
    Furthermore, while there is room to continue to tune the 
model hyperparameters, there also exists room to consider 
the limitations of this research, namely: 
 

 The inability of this system to defend itself from 
zero-day attacks. 

 Discussion of how the anomaly detection system 
would be implemented in a real-world industrial 
control system. 

 Discussion of the computational cost of the 
researched anomaly detection system in low-level 
hardware. 

 
    For the aforementioned points, complete defense of an 
industrial control system would include a thorough review 
of a system's software and hardware components – of which 
both types of components would undergo formal 
verification at design time in an ideal scenario. However, 

this is unlikely to happen in every industrial control system 
implementation due to the cost of formal verification. 
Further, history has shown that even the world's most well-
tested components may contain critical vulnerabilities– e.g. 
Spectre and Meltdown [11, 13]. 
 
    Thus, the true fix to defend ones own industrial control 
system against adversaries involves disconnecting the 
industrial control system from the grid while formally 
verifying software and hardware components at design time 
and only utilizing parts from trusted suppliers. However, in 
the absence of this, then an organization should implement a 
form of detection. 

XII. CONCLUSION 
    Altogether, research carried out in this paper shows that, 
the Random Forest, Gradient Boosting Machine, Artificial 
Neural Network, and Long Short-Term Memory models have 
great potential for anomaly detection in industrial control 
systems based on the results of testing various Python-based 
models against a sample industrial control system dataset in 
an experimental environment, however Random Forest with 
hyperparameters tuned with GridSearchCV slightly 
outperformed all other tested models. As a result, we have 
identified areas of this paper where there is room for 
additional research, including the tuning of hyperparameters 
in the laboratory environment, testing of additional 
segmentation and clustering models, and additional research 
into the practical implementation of each model. 
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