

Machine Learning Methods for Anomaly Detection
in Industrial Control Systems

Johnathan Tai
College of Engineering &

Computer Science
Syracuse University

Syracuse, NY
jtai02@syr.edu

Izzat Alsmadi, Ph.D.
Department of Computing

and Cyber Security
Texas A&M, San Antonio

San Antonio, Texas
ialsmadi@tamusa.edu

Yunpeng Zhang, Ph.D.
Department of Information
and Logistics Technology

University of Houston
Houston, Texas

yzhan226@central.uh.edu

Fengxiang Qiao, Ph.D.
College of Science,

Engineering & Technology
Texas Southern University

Houston, Texas
fengxiang.qiao@tsu.edu

Abstract—This paper examines multiple machine learning
models to find the model that best indicates anomalous activity
in an industrial control system that is under a software-based
attack. The researched machine learning models are Random
Forest, Gradient Boosting Machine, Artificial Neural Network,
and Recurrent Neural Network classifiers built-in Python and
tested against the HIL-based Augmented ICS dataset. Although
the results showed that Random Forest, Gradient Boosting
Machine, Artificial Neural Network, and Long Short-Term
Memory classification models have great potential for anomaly
detection in industrial control systems, we found that Random
Forest with tuned hyperparameters slightly outperformed the
other models.

Keywords—Machine Learning, CPS, ICS, Industrial Control
System Security, Cyber-Physical System Security, Neural
Networks, Anomaly Detection, Deep Learning

I. INTRODUCTION
Conflicts between nation-states have evolved in the 21st

century. Where bombs and bullets were exchanged between
competing entities in the past, now there are cyber weapons
and tariffs. Nowhere is this truer than in the conflict between
the competing interests in the Middle East. Objectively, one
such recipient of this exchange was Iran. Sanctions were
deployed to cripple the nation's economy, and cyber weapons
were deployed to impede the progress of Iran's nuclear
program [10, 19].

Specifically, in 2010, the Stuxnet computer virus was
deployed to destroy the nuclear centrifuges used to enrich
uranium at Iran's nuclear facility. The computer virus worked
by displaying normally functioning nuclear centrifuges in the
user interface to technicians while the nuclear centrifuges
were induced to spin quickly and slowly in a cyclical fashion,
which led to the destruction of these devices [19]. Never
before had a nation-state inflicted upon another a cyber
weapon with the degree of sophistication and number of zero-
days contained in Stuxnet against the industrial control system
of a competing nation-state [19]. Thus, Stuxnet marked an
escalation in the sophistication of the software-based tools
upon which one nation is willing to inflict upon another.
Arguably, this was an improvement over the kinetic means of
warfare, which almost always led to the loss of life. However,
it nonetheless represented an escalation in a space for which
the rules of engagement have yet to be defined.

Consequently, the successful deployment of a remote
cyber weapon by one nation-state upon another sets a new
precedent, which makes industrial control systems fair game
for both attack and defense and the search for improved
defense mechanisms a worthy endeavor. In other words, a
point of no return in the cyber conflict has been reached, and

there is no telling how nation-states or rogue adversaries will
use this capability. Therefore, defense mechanisms should be
built into one nation's own cyber-physical systems, whether
they are electrical, sanitation, public use of water, or as a
separate public utility essential to everyday living.

II. PROBLEM STATEMENT
 Our paper shares the sentiment of industrial cybersecurity
researchers and firms such as Dragos, which aim to improve
the current security status of Industrial Control Systems (ICS).
Ultimately, the goal is to find machine-learning based
solutions for detecting anomalies in those systems and to find
methods that prevent exploiting such anomalies.

 However, a complete review of an industrial control
system's defenses would involve an audit of every software,
electrical, and mechanical component built into the industrial
control system combined with a review of the industrial
control system's physical site perimeter. Thus, if this
discussion of defending an industrial control system could be
metaphorically compared to a real-world scenario where a
guard needs to defend his or her building, then this paper
focuses on building a better camera. More specifically, a guard
would have many cameras to detect intruders at different
points of interest in a building that typically includes entry and
hallways. Detecting an anomaly for a guard would mean
seeing an individual roaming the hallway from the feed of a
closed-circuit camera during a time of day in which the
presence of a person is atypical – such as late at night.

Intelligent
Agent

Detection
Mechanism

Normal
Conditions

Abnormal
Conditions

Guard Camera Empty hallway
at 1:00 AM

Intruder
roaming the
hallway at 1:00
AM

System
Technician

Machine
Learning
System

Water level
never exceeds
70% between
the hours of
9:00 PM to
12:00 PM every
day of the week

Water level
exceeds 95%
between 9:00
PM to 12:00
PM for two
days

 In this case, the guard is trained to accept one input – the
camera feed – to detect anomalies. However, the guard must
combine the input from the camera feed with his or her prior
experience gained observing camera feeds during his or her
time on the job. The goal is to understand that a person should
not be present at a certain location at a particular moment in
time to conclude that there is an intruder in the building.
Whereas, the machine learning systems trained in this paper
are trained on 59 inputs (water level, power level, temperature,
etc.) of time series data in which the model gains experience

understanding how data points should behave under normal
operating conditions. Next, the model is tested against the
abnormal dataset (the dataset with abnormal data points) to
test how well the machine learning model can identify whether
the industrial control system is under attack. In this case, the
target column can have a value of 0 or 1 – not under attack or
under attack. In other words, the model is trained to
understand how data points should behave under normal
operating conditions (the attack column is 0 in the normal
dataset) while measuring how well a model is trained depends
on the model's ability to accurately predict the attack column
during abnormal operating conditions (the attack column
switches between 0 and 1 for fixed periods).

III. ANOMALY DETECTION IN INDUSTRIAL CONTROL SYSTEMS
THROUGH MACHINE LEARNING

First, detection of an anomaly requires processing of data
points from the system by a human or non-human agent. In
the case of Stuxnet, which was found in the Siemens Step7
software that controlled programmable logic controllers at
Natanz, the nuclear centrifuges used to enrich uranium
appeared to work correctly. However, physically, the
centrifuges were induced to spin in a way that led to their
destruction [19]. Thus, the first requirement is to ensure that
data showing the industrial control system's activity is
accurate. Second, if the data is accurate, then there is an
opportunity to detect anomalous activity in the system
through machine learning.

IV. HIL-BASED AUGMENTED ICS SECURITY DATASET
The dataset discussed in this paper that allows machine

learning researchers an opportunity to approach the detection
of anomalous activity as a binary classification problem is the
HAI Dataset created by researchers at the Electronics and
Telecommunications Research Institute in South Korea. The
dataset consists of 59 datapoints collected every second from
a realistic industrial control system testbed that simulates
stream-turbine power generation and hydropower generation.
The 59 data points come from the 4 major processes of the
testbed: the boiler (P1), turbine (P2), water-treatment
component (P3), and HIL simulator (P4), where a data point
represents a signal at a moment in time. Table 1 lists a sample
dataset from HAI, indicating whether or not the industrial
control system is under attack.

Table 1 shows four columns from the 1st Column of the
Normal Dataset to the 59th Column of the original dataset.
The dataset in Table 1 was before the preprocessing phase,
including (1) the time column, (2) the P1.B4022 sensor
column, (3) the P1.FCV03D column, and (4) the binary attack
column, which indicates whether or not the industrial control
system is under attack. In the normal dataset used for training,
all of the column "Attack" values are zero.

The data is divided into a normal dataset and an abnormal
dataset. In the normal dataset, column "Attack" contains 0's
for all rows, and the collected data represents the testbed (e.g.,
turbine, boiler, etc.) operating under normal conditions,
whereas the abnormal dataset represents data points collected
during the period under which the industrial control system is
under a software-based attack. In other words, in the
abnormal dataset, a signal may be much higher or much lower
than normal, or the water level may be higher or lower than
normal, which might indicate compromise.

Table 1. Sample HAI Dataset Indicating whether or not

the Industrial Control System is under Attack

Note: The data in this table is from the project's .ipynb notebook [16]

V. TIME SERIES ANOMALY DETECTION
Given that normal data points are arranged in

chronological order and that the industrial control system
operates in fixed, periodic cycles, that the target column is
binary, then there is an opportunity to approach the problem
as a sequence classification problem [6, 7, 21]. Research has
been conducted in this area to find models that can predict
anomalous activity in datasets that possess these
characteristics – some of which are more suited to account for
time and some that are not, including:

 Gaussian Naïve Bayes – “probabilistic classification
models that are able to quantify the uncertainty in
predictions by providing posterior probability
estimates” using Bayes Theorem (P(y|x) = (P(x|y)P(y)
/ P(x))) [17].

 Random Forest – "Random forests attempt to improve
the generalization performance by constructing an
ensemble of decorrelated decision trees. Random
forests build on the idea of bagging to use a different
bootstrap sample of the training data for learning
decision trees. However, a key distinguishing feature
of random forests from bagging is that, at every
internal node of a tree, the best splitting criterion is
chosen among a small set of randomly selected
attributes" [17].

 Random Forest (GridSearchCV): Same as above, but
the best hyperparameters were found with
GridSearchCV, which algorithmically finds the best
estimator.

 Gradient Boosting Machine – "Boosting is an iterative
produced used to adaptively change the distribution of
training examples for learning base classifiers so that
they increasingly focus on examples that are hard to
classify" [17].

 Gradient Boosting Machine (GridSearchCV): Same
as above, but the best hyperparameters were found
with GridSearchCV, which algorithmically finds the
best estimator.

 Artificial Neural Network – "Artificial neural
networks (ANN) are powerful classification models

that are able to learn highly complex and nonlinear
decision boundaries purely from the data. They have
gained widespread acceptance in several applications
such as vision, speech, and language processing" [17].

 Long Short-Term Memory – "Long Short-Term
Memory networks, or LSTMs for short, can be
applied to time series forecasting" [6]. They are a type
of recurrent neural network with feedback
connections compared to artificial neural networks,
which are feedforward. There "are many types of
LSTM models that can be used for each specific type
of time series forecasting problem" [6].

 Long Short-Term Memory Autoencoder –
"Autoencoders are a type of self-supervised learning
model that can learn a compressed representation of
input data" [5].

 For every model researched in the experiment, either the
entire dataset or selected features were passed to the model. In
the case of neural networks, the entire dataset was passed to
the model, but only selected features were chosen in the case
of all other models. Furthermore, multiple models were tested
to find the model that best predicts the presence of anomalous
activity as a potential indicator of compromise at a given
moment in time. However, to carry out this experiment and to
execute a thorough and accurate survey of the models, data
preprocessing and exploratory data analysis was conducted
first.

VI. DATA PREPROCESSING
In the data preprocessing and exploratory data analysis

steps, the data was separated according to the method
described in [7], which states that "in the case of anomaly
detection, the normal traffic pattern is defined in the training
phase. In the testing phase, the learned model is applied to
new data, and every exemplar in the testing set is classified
as either normal or anomalous" [6]. In this step, the DateTime
values were also converted from strings into Python
DateTime objects.

VII. EXPLORATORY DATA ANALYSIS
In the exploratory data analysis step, the per column

distribution and correlation matrix of the columns from the
normal dataset were analyzed as shown in Fig. 1 for per
column distribution and in Fig. 2 for correlation matrix.

Fig. 1. Per Column Distribution

Fig. 2. Correlation Matrix

Columns P1.B4022 (temperature demand to follow
P1.B4005 and electrical load from the steam-turbine model
measured in Celcius), P1.FCV03D (position command for
FCV03 measured in percent), and P1.FCV03Z (current
position of FCV03 valve measured in percent) from the boiler
process were compared to find the difference between the
data points in the normal time-series data (Fig. 3) and the
abnormal time series data (Fig. 4).

Fig. 3. P1 Boiler Process Sensor Data – Normal Conditions

Fig. 4. P1 Boiler Process Sensor Data – Abnormal Conditions

When comparing the three data points in Fig. 3 and Fig.
4, we can see that there are significant anomalies in the
behavior of these data points when the system is under attack.

Similarly, this difference in behavior is also shown in the
industrial control system's turbine process sensor data. Fig. 5
and Fig. 6 show a comparison between the P2.VT01 (Shaft-

vibration-related y-axis displacement near the first mass
wheel measured in μm) and P2.VYT03 (Shaft-vibration-
related y-axis displacement near the second mass wheel
measured in μm) shows significant differences in behavior
between the data points when the system is operating under
normal conditions and when the system is under attack.

Fig. 5. P2 Turbine Process Sensor Data – Normal Conditions

Fig. 6. P2 Turbine Process Sensor Data – Abnormal Conditions

 We can also see from the P3.LT01 (Water level in upper
tank measured in %) in Fig. 7 and Fig. 8 that, the water level
in the industrial control system under attack exceeds 80%
whereas the water level in the industrial control system
operating under normal conditions never exceeds the mid-
70% range.

Fig. 7. P3 Water-Treatment Process Sensor Data – Normal Conditions

Fig. 8. P3 Water-Treatment Process Sensor Data – Abnormal Conditions

 However, we can see that the data points from the P4
Hardware-In-the-Loop simulation in Fig. 9 and Fig. 10 do not
lead to any obvious conclusions. In other words, there are no

easily discernible differences between the data captured from
the P4 sensors operating under normal conditions and the P4
sensors operating under abnormal conditions. Therefore, we
can conclude that some amount of feature engineering is
needed to remove features from the dataset that are not strong
predictors of the attack column.

Fig. 9. P4 HIL Sensor Data – Normal Conditions

Fig. 10. P4 HIL Sensor Data – Abnormal Conditions

VIII. FEATURE SELECTION
 Common feature selection techniques were applied to
reduce the number of features from 59 to 9. The techniques
included the application of the SelectKBest function in scikit-
learn using f_classif as the test. Following the 9 best
predictors' selection, the 9 predictors were scaled and
projected onto a 5-dimensional subspace through principal
component analysis.
 In principal component analysis, the components were
selected based on the proportion of variance explained by the
given component, which resulted in the 5 components that
represented the greatest proportion of variance being selected
for projection onto the subspace. In the feature selection step,
the Python f_classif function was selected due to the presence
of negative values in the dataset. If negative values were not
present in the dataset, then chi2 would have been chosen as
the test.

The 9 highest scoring features from the application of the
f_classif test in the SelectKBest function were:

 Heat-exchanger outlet pressure setpoint (P1.B2004),
 Water level setpoint in the return water tank

(P1.B3004),
 Heat-exchanger outlet temperature setpoint

(P1.B4002),
 Temperature demand to follow P1. B4005 and

electrical load from the steam-turbine model
(P1.B4022),

 Digital value of FT01 flow transmitter (P1.FT01),
 Water level of return water tank (P1.LIT01),
 Position command for LCV01 valve (P1.PCV01D),
 Current position of PCV01 valve (P1.PCV01Z), and

 User speed demand (P2.SD01).
Following their selection by SelectKBest(), they were

reduced to 5 principal components.

IX. MODEL TRAINING
Next, with the data preprocessed and with the feature

selection steps complete, candidate models such as Random
Forest, Gradient Boosting Machine, Artificial Neural
Network, Long-Short Term Memory, and Long-Short Term
Memory Autoencoder models were trained to detect
anomalous activity in the industrial control system using the
normal dataset (train). The accuracy of these models was
tested using the abnormal dataset (test). The model, training
time, prediction time, cross-validated mean, cross-validated
standard deviation, and accuracy are summarized in Table 2.

Table 2. Anomaly Detection Accuracies of Various

Models in Wired Intrusion Detection Systems

Classifier Notes Training
Time

Prediction
Time

Cross-
Validated
Mean (cv=5)

Cross-
Validated
Standard
Deviation
(cv=5)

Accuracy

Gaussian
Naïve
Bayes

The first
model test was
Gaussian
Naïve Bayes,
which yielded
an accuracy of
54% on the
test dataset.
Model
hyperparamete
rs were not
tuned.

~.1s ~.1s N/A N/A 54.0%

Random
Forest

Next, a
Random
Forest
classifier was
trained with
hyperparamete
rs manually
set to 20 trees,
Gini as a
function for
measuring
node impurity,
and random
state set to 0.

~.9s ~.1s 76.40% 0.074 82.930%

Random
Forest
GSCV

{‘criterion’:
‘gini’,
‘max_depth’:
4,
‘max_features
’: ‘log2’,
‘min_samples
_leaf’: 1,
‘min_samples
_split’: 10,
‘n_estimators’
: 1000}

~109.8s ~8.2s 86.51% 0.054 82.934%

Gradient
Boosting
Machine

Default
Parameters

~583.02s ~.1s 83.61% 0.054 77.58%

Gradient
Boosting
Machine
GSCV

{‘max_depth’:
7,
‘min_samples
_split’: 1000}

~1274.2
8s

~10-
20s

77.18% 0.103 83.63%

Artificial
Neural
Network

3 hidden
layers and 12
nodes per
layer

~76s ~10-
20s

81.25% 0.036 82.79%

Long
Short-Term
Memory

1 layer with
10 nodes and
1 dropout
layer

~111s ~-20s 82.78% 5.578994
7509765
63e-06

82.81%

Long
Short-Term
Memory
Autoencode
r

6 layers – 16
nodes in layer
1, 4 nodes in
layer 4, 1 node
in layer 3, 4
nodes in layer
4, 16 nodes in
layer 5, and 1
node in layer
6.

~809s ~10-
20s

82.78% 0.000153
6130905
151367

82.79%

X. METRICS AND MODEL EVALUATION
 Figure 11 shows the receiver operating characteristic
(ROC) curves for the Random Forest classifier with 20 trees,
a Random Forest classifier with 1,000 trees, a Gradient
Boosting Machine classifier using default parameters, a
Gradient Boosting Machine classifier with max depth of 7
and minimum sample split of 1,000, an artificial neural
network with 3 hidden layers and 12 nodes per layer, and a
long short-term memory recurrent neural network with 10
nodes and a dropout layer.

Fig. 11. Receiver Operating Characteristic (ROC) Curves

 From this, we can see that the area under the curve for the
Gradient Boosting Machine classifier was the greatest despite
sharing a similar accuracy with all other classifiers.

Once the models were complete, the models were then
compared with models that were surveyed in [7] and some of
the results shared by Maglaras and Jiang in [15]. In [7], the
authors surveyed different measures such as ANN, Associate
Rules Bayesian Network, Clustering k-means, Clustering,
Hierarchical Clustering, DBSCAN Decision Trees, GA,
Naive Bayes, K-Nearest Neighbors, HMM, Random Forest,
and Support Vector Machines [3]. The time complexities and
ranges of accuracies gleaned from the document are shown in
Table 3.

Table 3. Time Complexities and Accuracy Ranges of

Different Models [3]

Classifier Typical Time
Complexity

Accuracy

Artificial Neural
Network

O(emnk) Roughly 80% but
varies

p y

Association Rules O(n3) Roughly 100% with
13% FP Rate

Bayesian Network O(mn) Roughly 93% with
1.39% FP Rate

Clustering, K-Means O(kmni) 80%-90% but varies
Clustering,
hierarchical

O(n3) 80%-90% but varies

Clustering, DBSCAN O(n3) 80%-90% but varies
Decision Trees O(mn2) 98.5% FAR was

0.9%
Genetic Algorithms
(GA)

O(gkmn) 100% Best with FAR
between 1.4% and
1.8%

Naïve Bayes O(mn) Reported 98% and
89% accuracies

K-Nearest Neighbors O(nlogk) 80%-90% but varies
Hidden Markov
Models (HMM)

O(nc2) Higher than 85%

Random Forest O(mnlogn) 99% Range
Sequence Mining O(n3) A real-time scenario

where 84% was
detected

SVM O(n2) Results enhanced
SVM "87.74%"

 The results by Buczak et al. [7] show that 90% detection
accuracy is achievable in a network-based intrusion
detection system (IDS), which means that there is still room
for hyperparameter tuning in the theorized Python-based
anomaly detection system discussed in this paper.

 However, there is room to tune the hyperparameters of
the models discussed in this paper, but there is also room to
test additional models. In particular, Maglaras and Jiang's
research work has shown that "segmentation and clustering
algorithms" show great promise in detecting intrusions in
SCADA systems [15]. The models tested in this paper fit
into the category of neural networks or decision trees.
Nonetheless, Maglaras and Jiang note the success of
clustering and segmentation algorithms in their paper
because these algorithms "do not need to know the
signatures" from network activity collected by more
commonly used rules-based IDS systems [15]. Thus, not
only is their room to tune hyperparameters of the tested
models, there is room to test other types of models.

XI. PRACTICAL CONSIDERATIONS & LIMITATIONS
 Furthermore, while there is room to continue to tune the
model hyperparameters, there also exists room to consider
the limitations of this research, namely:

 The inability of this system to defend itself from
zero-day attacks.

 Discussion of how the anomaly detection system
would be implemented in a real-world industrial
control system.

 Discussion of the computational cost of the
researched anomaly detection system in low-level
hardware.

 For the aforementioned points, complete defense of an
industrial control system would include a thorough review
of a system's software and hardware components – of which
both types of components would undergo formal
verification at design time in an ideal scenario. However,

this is unlikely to happen in every industrial control system
implementation due to the cost of formal verification.
Further, history has shown that even the world's most well-
tested components may contain critical vulnerabilities– e.g.
Spectre and Meltdown [11, 13].

 Thus, the true fix to defend ones own industrial control
system against adversaries involves disconnecting the
industrial control system from the grid while formally
verifying software and hardware components at design time
and only utilizing parts from trusted suppliers. However, in
the absence of this, then an organization should implement a
form of detection.

XII. CONCLUSION
 Altogether, research carried out in this paper shows that,
the Random Forest, Gradient Boosting Machine, Artificial
Neural Network, and Long Short-Term Memory models have
great potential for anomaly detection in industrial control
systems based on the results of testing various Python-based
models against a sample industrial control system dataset in
an experimental environment, however Random Forest with
hyperparameters tuned with GridSearchCV slightly
outperformed all other tested models. As a result, we have
identified areas of this paper where there is room for
additional research, including the tuning of hyperparameters
in the laboratory environment, testing of additional
segmentation and clustering models, and additional research
into the practical implementation of each model.

REFERENCES
[1] Alazab, Mamoun, et al. "A Multidirectional LSTM

Model for Predicting the Stability of a Smart Grid." IEEE
Access, vol. 8, 2020, pp. 85454–85463.,
doi:10.1109/access.2020.2991067.

[2] Alazab, Mamoun, et al. "Malicious Spam Emails
Developments and Authorship Attribution." 2013
Fourth Cybercrime and Trustworthy Computing
Workshop, 2013, doi:10.1109/ctc.2013.16.

[3] Athalye, Anish, et al. "Obfuscated Gradients Give a
False Sense of Security: Circumventing Defenses to
Adversarial Examples." ArXiv.org, 31 July 2018,
arxiv.org/abs/1802.00420.

[4] Azab, Ahmad, et al. "Machine Learning Based Botnet
Identification Traffic." 2016 IEEE
Trustcom/BigDataSE/ISPA, 2016,
doi:10.1109/trustcom.2016.0275.

[5] Brownlee, Jason. "A Gentle Introduction to LSTM
Autoencoders." Machine Learning Mastery, 27 Aug.
2020, machinelearningmastery.com/lstm-autoencoders/.

[6] Brownlee, Jason. Deep Learning for Time Series
Forecasting. Machine Learning Mastery, 2020.

[7] Buczak, Anna L., and Erhan Guven. "A Survey of Data
Mining and Machine Learning Methods for Cyber
Security Intrusion Detection." IEEE Communications
Surveys & Tutorials, vol. 18, no. 2, 2016, pp. 1153–
1176., doi:10.1109/comst.2015.2494502.

[8] Hwang, Won-Seok, et al. "Time-Series Aware Precision
and Recall for Anomaly Detection: Considering Variety
of Detection Result and Addressing Ambiguous
Labeling." Time-Series Aware Precision and Recall for
Anomaly Detection | Proceedings of the 28th ACM
International Conference on Information and
Knowledge Management, 1 Nov. 2019,
dl.acm.org/doi/abs/10.1145/3357384.3358118.

[9] ICS Security Datasetnovice tier Starter: HAI Security
Dataset eb7995d4-c, Python notebook using data from
HAI Security Dataset,
https://www.kaggle.com/icsdataset/starter-hai-security-
dataset-eb7995d4-c, Accessed: Sep., 14th 2020.

[10] "Iran Sanctions - United States Department of State."
U.S. Department of State, U.S. Department of State, 21
Aug. 2020, www.state.gov/iran-sanctions/.

[11] Kocher, Paul, et al. "Spectre Attacks: Exploiting
Speculative Execution." 2019 IEEE Symposium on
Security and Privacy (SP), 2019,
doi:10.1109/sp.2019.00002.

[12] Kurakin, Alexey, et al. "Adversarial Machine Learning
at Scale." ICLR 2017, 2017.

[13] Lipp, Moritz, et al. "Meltdown." Communications of the
ACM, vol. 63, no. 6, 2020, pp. 46–56.,
doi:10.1145/3357033.

[14] Madry, Aleksander, et al. "Towards Deep Learning
Models Resistant to Adversarial Attacks." ArXiv.org, 4
Sept. 2019, arxiv.org/abs/1706.06083.

[15] Maglaras, Leandros A., and Jianmin Jiang. "Intrusion
Detection in SCADA Systems Using Machine Learning
Techniques." 2014 Science and Information Conference,
27 Aug. 2014, doi:10.1109/sai.2014.6918252.

[16] Shin, Hyeok-Ki, et al. "Implementation of
Programmable CPS Testbed for Anomaly Detection."

[17] Tan, Pang-Ning, et al. Introduction to Data Mining.
Pearson Education, 2019.

[18] Tramèr, Florian, et al. "Ensemble Adversarial Training:
Attacks and Defenses." ArXiv.org, 26 Apr. 2020,
arxiv.org/abs/1705.07204.

[19] "Throwback Thursday: Whatever Happened to Stuxnet?:
Synopsys." Software Integrity Blog, 28 Feb. 2019,
www.synopsys.com/blogs/software-security/whatever-
happened-to-stuxnet/.

[20] Vasan, Danish, et al. "Image-Based Malware
Classification Using Ensemble of CNN Architectures
(IMCEC)." Computers & Security, vol. 92, 2020, p.
101748., doi:10.1016/j.cose.2020.101748.

[21] Yin, Chuanlong, et al. "A Deep Learning Approach for
Intrusion Detection Using Recurrent Neural Networks."
IEEE Access, vol. 5, 12 Oct. 2017, pp. 21954–21961.,
doi:10.1109/access.2017.2762418.

[22] Zhang, Chaoyun, et al. "Deep Learning in Mobile and
Wireless Networking: A Survey." IEEE
Communications Surveys & Tutorials, 2019.

[23] A Visualized Botnet Detection System Based Deep
Learning for the Internet of Things Networks of Smart
Cities - IEEE Journals & Magazine,
ieeexplore.ieee.org/document/8985278.

