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Abstract

Tagging systems are intriguing dynamic systems, in which users collabora-
tively index resources with the so-called tags. In order to leverage the full
potential of tagging systems, it is important to understand the relationship
between the micro-level behavior of the individual users and the macro-level
properties of the whole tagging system. In this thesis, we present the Epis-
temic Dynamic Model, which tries to bridge this gap between the micro-level
behavior and the macro-level properties by developing a theory of tagging
systems. The model is based on the assumption that the combined influ-
ence of the shared background knowledge of the users and the imitation
of tag recommendations are sufficient for explaining the emergence of the
tag frequency distribution and the vocabulary growth in tagging systems.
Both macro-level properties of tagging systems are closely related to the
emergence of the shared community vocabulary.

With the help of the Epistemic Dynamic Model, we show that the gen-
eral shape of the tag frequency distribution and of the vocabulary growth
have their origin in the shared background knowledge of the users. Tag
recommendations can then be used for selectively influencing this general
shape. In this thesis, we especially concentrate on studying the influence of
recommending a set of popular tags. Recommending popular tags adds a
feedback mechanism between the vocabularies of individual users that in-
creases the inter-indexer consistency of the tag assignments. How does this
influence the indexing quality in a tagging system? For this purpose, we in-
vestigate a methodology for measuring the inter-resource consistency of tag
assignments. The inter-resource consistency is an indicator of the indexing
quality, which positively correlates with the precision and recall of query
results. It measures the degree to which the tag vectors of indexed resources
reflect how the users perceive the similarity between resources. We argue
with our model, and show it with a user experiment, that recommending
popular tags decreases the inter-resource consistency in a tagging system.
Furthermore, we show that recommending the user his/her previously used
tags helps to increase the inter-resource consistency. Our measure of the
inter-resource consistency complements existing measures for the evaluation
and comparison of tag recommendation algorithms, moving the focus to
evaluating their influence on the indexing quality.
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Zusammenfassung

Tagging-Systeme sind faszinierende dynamische Systeme in denen Benutzer
kollaborativ Ressourcen mit sogenannten Tags indexieren. Um das volle
Potential von Tagging-Systemen nutzen zu konnen ist es wichtig zu verste-
hen, wie sich das Verhalten der einzelnen Benutzer auf die Eigenschaften
des Gesamtsystems auswirkt. In der vorliegenden Arbeit wird das Epis-
temic Dynamic Model préasentiert. Es schliagt eine Briicke zwischen dem
Benutzerverhalten und den Systemeigenschaften. Das Modell basiert auf der
Annahme, dass der Einfluss des gemeinsamen Hintergrundwissens der Be-
nutzer und der Imitation von Tag-Vorschldgen ausreicht, um die Entstehung
der Haufigkeitsverteilungen der Tags und des Wachstums des Vokabulars zu
erklaren. Diese beiden Eigenschaften eines Tagging-Systems hangen eng mit
der Entstehung eines gemeinsamen Vokabulars der Benutzer zusammen.
Mit Hilfe des Epistemic Dynamic Models zeigen wir, dass die generelle
Ausprigung der Tag-Haufigkeitsverteilungen und des Wachstums des Vok-
abulars ihren Ursprung in dem gemeinsamen Hintergrundwissen der Be-
nutzer haben. Tag-Vorschlage konnen dann dazu genutzt werden, um gezielt
diese generelle Auspragung zu beeinflussen. In der vorliegenden Arbeit un-
tersuchen wir hauptséichlich den Einfluss der von Vorschlagen populérer
Tags ausgeht. Populdre Tags sorgen fiir einen Feedback-Mechanismus zwis-
chen den Vokabularen der einzelnen Benutzer, der die Inter-Indexer Kon-
sistenz der Tag-Zuweisungen erhoht. Wie wird aber dadurch die Index-
ierungsqualitdt in Tagging-Systemen beeinflusst? Zur Klarung dieser Frage
untersuchen wir eine Methode zur Messung der Inter-Ressourcen Konsistenz
der Tag-Zuweisungen. Die Inter-Ressourcen Konsistenz korreliert positiv
mit der Indexierungsqualitdt, und mit der Trefferquote und der Genauigkeit
von Suchanfragen an das System. Sie misst inwieweit die Tag-Vektoren
die durch Benutzer wahrgenommene Ahnlichkeit der jeweiligen Ressourcen
widerspiegeln. Wir legen mit Hilfe unseres Modell dar, und zeigen es auch
mit Hilfe eines Benutzerexperiments, dass populéare Tags zu einer verringerten
Inter-Ressourcen Konsistenz fithren. Des Weiteren zeigen wir, dass die Inter-
Ressourcen Konsistenz erhoht wird, wenn dem Benutzer das eigene, bisher
genutzte Vokabular vorgeschlagen wird. Unsere Methode zur Messung der
Inter-Ressourcen Konsistenz ergéanzt bestehende Evaluationsmafle fiir Tag-
Vorschlags-Algorithmen um den Aspekt der Indexierungsqualitét.
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Chapter 1

Introduction

During the last years, collaborative tagging systems like Flickr, Delicious and
Bibsonomy have become more and more popular'. Tagging systems allow
users to upload their resources, like photos, bookmarks or BibTeX entries,
and organize them by assigning keywords to them. In the context of tagging
systems, these keywords are called tags. Over time, the tag assignments of
the different users lead to the emergence of a loose categorization system for
resources which is frequently called a folksonomy (see [78]).

Folksonomies constitute intriguing dynamic systems constructed by the
collaboration and interaction of their users. They offer new possibilities
for indexing and searching resources. One key aspect of tagging systems
is the uncontrolled nature of the community’s vocabulary. This lowers the
entry barrier for using tagging systems but also poses challenges during
search and navigation of the resources. For example, due to the uncontrolled
vocabulary, folksonomies have to cope with problems like ambiguous and/or
synonymous tags, which do not arise if centrally controlled vocabularies like
thesauri are used for annotating resources [78]. Nevertheless, it has been
observed in [38, p. 205] that the aggregated tag assignments of users “give
rise to a stable pattern in which the proportions of each tag are nearly
fixed”. This is typically taken as an indicator that tagging is successful in
collaboratively indexing resources despite of its uncontrolled nature.

Where do these stable patterns come from? How do they emerge from
the micro-level behavior of the individual users in absence of a central, co-
ordinating instance? Are we able to influence this process, e.g. in order to
increase the indexing quality in tagging systems? In order to leverage the
full potential of tagging systems, it is important “to understand the char-
acteristics of user activity in (collaborative) tagging systems” [92, p. 183],
e. g. to understand the relationship between the usage of tags on the micro-
level of individual users and the emergence of macro-level properties of whole

!See http://www.flickr.com/, http://www.delicious.com/, and
http://www.bibsonomy.org/.
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folksonomies. With this thesis, we want to contribute to such a better under-
standing of the processes that are ongoing in tagging systems. Furthermore,
we want to show how a better understanding of the processes can be put
into use for selectively influencing and improving them.

In this thesis, we focus on analyzing the behavior and interaction of
users in broad folksonomies. The reason for this focus is that in broad
folksonomies a resource may be tagged by several users and a tag can be
assigned multiple times to the same resource. Examples of tagging systems
that produce broad folksonomies are Delicious and Bibsonomy. In contrast,
in narrow folksonomies each resource is usually tagged only by a single user
and a tag can only be assigned a single time to the same resource (see Sec-
tion 2.1 for more details). An example of a tagging system that produces a
narrow folksonomy is Flickr. All in all, analyzing the behavior and interac-
tion of users in broad folksonomies has two advantages over studying it in
narrow folksonomies:

e In broad folksonomies, the behavior of users can directly be compared
to each other given that they have at least one resource in common. In
that case, it can be compared which tags they have used for describing
the same resource. In narrow folksonomies, such a direct comparison
is not possible because the system prevents that two users can use the
same tag at the same resource. Furthermore, most of the resources in
narrow folksonomies like Flickr are only tagged by a single user.

e In broad folksonomies, there is a more direct interaction of users in the
context of a resource. For example, in Delicious a user sees amongst
others the set of popular tags of the resource he/she is currently tag-
ging. This adds a direct feedback mechanism between the vocabular-
ies of the users who have tagged the same resource, thus leading to a
collaborative effort of tagging resources. In contrast, users of narrow
folksonomies typically only get in contact with the vocabulary of other
users during searching or browsing resources but not during tagging
a resource. Thus, the influence of the other users’ vocabulary is more
indirect in narrow folksonomies.

In this thesis, we concentrate on analyzing properties of broad folk-
sonomies that are related to the emergence of the shared community vo-
cabulary and to the navigability of the resulting folksonomy. Central to the
development of the community’s vocabulary are the properties of the tag
frequency distribution and the size of the used vocabulary (see Chapter 3).
For example, the size of the vocabulary influences how many search terms
can be used for accessing the resources in a folksonomy. Furthermore, both
properties are closely related to the entropy of the used tagging vocabu-
lary for which it has been shown in [21] that the entropy can be used for
measuring the navigability of a folksonomy.
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1.1 Research Methodology

For understanding the connection between the micro-level behavior of in-
dividual users in tagging systems and the emergence of certain macro-level
properties of the system, we develop a theory about how different factors
like the background knowledge of the users and the tag recommendations
provided in the user interface of tagging systems interact with each other.
We express our theory about the dynamics in tagging systems in form of the
Epistemic Dynamic Model (see Chapter 4). Our model can be used for pre-
dicting the macro-level properties that we expect to emerge in a folksonomy
given that the underlying assumptions of our model hold. It is our objec-
tive to identify with our model the influence factors on the users’ tagging
behavior that are required for explaining the emergence of the properties
described in Chapter 3.

During the evaluation of our model in Chapter 5, we use Popper’s critical
method [86, p. 13ff] for comparing our theory about the relevant influence
factors to competing theories from the literature, which try to explain the
same observations as we do with our Epistemic Dynamic Model (see Sec-
tion 4.3). Each of these competing theories corresponds to different assump-
tions about which influence factors are relevant for explaining the emergence
of the observed properties. In such a case, Popper’s critical method can be
used for ruling out some of the competing theories but it can not be used
for identifying whether a theory is “true”.

According to Popper’s critical method, theories are evaluated by generat-
ing a number of test statements. In our case, the test statements correspond
to evaluating whether a theory and its corresponding model are able to pre-
dict the observable macro-level properties of folksonomies. If several theories
pass the test with our test statements then Popper suggests to develop more
rigid tests that are able to rule out some of the competing theories.

For example, the majority of the tagging models described in Section 4.3
as well as our own Epistemic Dynamic Model have been designed with the
objective to explain the tag frequency distributions in tagging systems. But
in the current literature, only quite weak tests are used for determining
whether a given tagging model successfully explains the tag frequency dis-
tribution. Often, it is only visually compared whether the simulated tag
frequency distribution belongs to the family of power-law like, heavy-tailed
distributions. In contrast, in Chapter 5 we suggest to use more rigid tests.
We use statistical methods for additionally checking whether also the ob-
served exponents of the power-law like distributions can be reproduced. In
our evaluation in Chapter 5, the more rigid tests help us to rule out some
of the competing tagging models from the literature. Furthermore, we show
that one of the competing models can be integrated as a submodel into
our own Epistemic Dynamic Model, then leading to equivalent evaluation
results.
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1.2 Why Tagging Models?

In this section, we shortly discuss the potential benefits of having models
of the tagging behavior of users. In contrast to most works in computer
science, tagging models do not provide an immediate benefit, e.g. by im-
proving the performance of an application. Instead, they are more related to
fundamental research, which leads to a better understanding of the complex
dynamics in tagging systems by integrating different assumptions about the
users’ behavior and the influencing factors into a theory of tagging.

Such a better understanding can be used for better exploiting the po-
tential of tagging systems and their paradigm of annotating resources with
uncontrolled vocabularies. For example, in Chapter 6 we use the Epistemic
Dynamic Model for predicting how a specific kind of tag recommendations,
i. e. the suggestion of the popular tags at a resource, influences the indexing
quality in a tagging system, and the navigability of the indexed resources.
These predictions of the model are confirmed in Chapter 6 by a user exper-
iment. According to Popper’s critical method, this user experiment can be
seen as a further test of the Epistemic Dynamic Model in how far it allows
to make correct predictions about the dynamics in tagging systems. From a
more practical point of view, the Epistemic Dynamic Model not only helps
us in predicting the outcome of a user experiment but it also provides an
explanation for the observations made during the experiment.

Thus, the user experiment in Chapter 6 exemplifies one use case of tag-
ging models according to which the model is used for generating hypotheses
about the expected outcome of user experiments prior to designing and
conducting them. If the hypotheses are confirmed by the experiment then
the model provides an explanation for the observations and the experiment
contributes to a more thorough testing of the model. In contrast, if the
hypotheses can not be confirmed, this may lead to a modification and/or
extension of the model and its corresponding theory of tagging. According
to Popper’s critical method, the new model, which results from the latest
observations, should correct the old model such that it not only explains the
latest observations but also all previous observations where the old model
was successful [86].

All in all, tagging models can be seen as a way for formulating our as-
sumptions about the dynamics in tagging systems and making them explicit.
The tagging model can then be used for showing that the assumptions are
plausible by making predictions with the model and evaluating them with
the help of available tagging data and/or with user experiments. Upon suc-
cessful evaluation of a model, it provides an explanation for the observations
in the tagging data and/or user experiments. If several observations can be
reproduced then the model helps us in connecting these, priorly unrelated
observations.
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1.3 Structure of the Thesis

We start this thesis in Chapter 2 with giving an overview of the founda-
tions and applications of tagging systems. We give a formal definition of
folksonomies and define different views on them. In this thesis we take a
stream view on a folksonomy, which is especially well suited for studying the
dynamics in a folksonomy, i.e. how the folksonomy develops over time. In
the stream view, a folksonomy is viewed as a sequence of tag assignments
that is ordered by their creation time. Furthermore, we give an overview of
the literature about tag recommendations, spam detection and retrieval in
folksonomies, which is related to the topic of this thesis.

In Chapter 3, we describe the folksonomy data sets that we use through-
out this thesis. Based on the data sets, we then give an overview of the
macro-level properties that are generally observable in folksonomies. We
especially concentrate on the tag frequency distribution and the vocabulary
growth and size in folksonomies. Both properties are related to the emer-
gence of a shared community vocabulary. Furthermore, they influence the
navigability of folksonomies, i.e. how easy it is to search and browse the
resources in a folksonomy. Finally, we give an overview of further properties
discussed in the literature.

In Chapter 4, we define our Epistemic Dynamic Model of tagging sys-
tems. It is based on the assumption that at least the shared background
knowledge of the users and the imitation of tag recommendations are re-
quired for explaining the emergence of the properties from Chapter 3. Each
of these two assumed influence factors is modeled by a separate building
block in our model. Based on the building blocks, we define different config-
urations of our Epistemic Dynamic Model that can be used for testing and
comparing alternative implementations of the same building block, and for
studying the influence of tag recommendations on the emergent properties.
Finally, we give an overview of further influence factors and tagging models
that are currently discussed in the literature.

In Chapter 5, we evaluate our Epistemic Dynamic Model and compare
it to competing tagging models from the literature. For this purpose, we
first define evaluation measures that enable us to do a more rigid testing
of tagging models than the current methods used in the literature. We use
the measures for evaluating in how far really both of our assumed influence
factors are required for explaining the emergence of the properties from
Chapter 3. Furthermore, we use the measures for comparing two alternative
models to each other that simulate the shared background knowledge of
users.

In Chapter 6, we analyze the influence of tag recommendations on the
indexing quality in tagging systems. The tag assignments in a tagging sys-
tem have a high indexing quality if they link resources that have aspects
in common, thus increasing the recall during retrieval. Additionally, tag
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assignments with a high indexing quality should help to discriminate be-
tween resources, thus increasing the precision during retrieval. Based on the
findings from our evaluation of the Epistemic Dynamic Model in Chapter 5,
we predict for two exemplary tag recommenders from Delicious how they
influence the indexing quality in tagging systems. We then use a controlled
user experiment for evaluating our predictions.

Finally, Chapter 7 summarizes the main contributions of this thesis.

1.4 Contributions and Publications

This thesis provides three main contributions to the literature about tagging
systems:

First, we propose and describe the Epistemic Dynamic Model of tagging
systems, which integrates the influences coming from the shared background
knowledge of the users and from the imitation of tag recommendations (see
Chapter 4). An initial version of the model has been published in the paper
“An Epistemic Dynamic Model for Tagging Systems” on the 19*" ACM
Conference on Hypertext and Hypermedia in 2008 [26]. At the time of its
publication, the Epistemic Dynamic Model has been the first model that is
able to explain the emergence of the sublinear vocabulary growth in tagging
systems. With the paper [26], we have won the Ted Nelson Newcomer Award.

Second, we propose and describe a more rigid approach to the evaluation
of tagging models than currently applied in the literature (see Chapter 5).
A first version of our evaluation approach has been published in the paper
“On Differences in the Tagging Behavior of Spammers and Regular Users”
on the 2" Web Science Conference in 2010 [27]. The paper contains the
comparison of our model to the Yule-Simon Model with Memory. The com-
parison of our model to the Semantic Walker Model has been published in
the paper “Das Epistemic Model — Ein Modell zur Erklarung der Dynamik
in Tagging Systemen” on the 2. DGI-Konferenz der Deutschen Gesellschaft
fiir Informationswissenschaften und Informationspraxis in 2012 [25].

Third, we propose and describe a novel approach for evaluating the in-
fluence of tag recommenders on the indexing quality in tagging systems (see
Chapter 6). We demonstrate the approach in the context of a user experi-
ment for two exemplary tag recommenders. We use the results of the user
experiment for evaluating our predictions, which are based on the Epistemic
Dynamic Model, about how the two tag recommenders influence the index-
ing quality in tagging systems. The user experiment and its results have
been published in the paper “Measuring the Indexing Quality of Tag Rec-
ommenders on the Indexing Quality in Tagging Systems” at the 23'9 ACM
Conference on Hypertext and Social Media in 2012 [28].



Chapter 2

Foundations and
Applications of Tagging
Systems

In tagging systems, users can upload resources and assign arbitrary words
to them, the so-called tags. Later, the tags can be used for retrieving and
browsing the collection of resources. The collection of all users, resources
and tag assignments of a tagging system are called folksonomy. Depend-
ing on how the users are allowed to assign the tags, folksonomies can be
further divided into broad folksonomies and narrow folksonomies. In broad
folksonomies, a tag can be assigned several times to the same resource by
different users. In narrow folksonomies, a tag can only be assigned once to
a resource. More details about the constituting elements of a folksonomy
and the distinction between broad and narrow folksonomies are available in
Section 2.1.

In the following chapters, we focus on modeling and analyzing the be-
havior and interaction of users in broad folksonomies because they exhibit a
higher level of interaction between the users (see Chapter 1). Probably the
most prominent tagging system that generates a broad folksonomy is De-
licious'. In Delicious, users can upload and create bookmarks of arbitrary
web pages. In Fig. 2.1, the tagging interface of Delicious is shown as it was
in use in January 2008. During tagging, the user sees three sets with tag
suggestions, namely the recommended tags, the your tags and the popular
tags. By clicking on a suggested tag, the user is able to include it to the set
of tags that will be assigned to the bookmark.

Very similar to Delicious is the Bibsonomy? system. Bibsonomy is a
tagging system in which users can create bookmarks of arbitrary web pages
as well as of BibTeX references. Bibsonomy has a smaller user community

"ttp://www.delicious.com/
Zhttp://www.bibsonomy.org
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delicious folksonomy search tagging web20

your tags
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popular tags

bibtex bibliography tagging bookmarks folksonomy web2.0 social

Figure 2.1: Tagging interface of Delicious. Users can enter free tags in the
tags input field. Furthermore, they can reuse tags from the suggestions
provided below the input field, i.e. tags from the set of recommended tags,
your tags and popular tags (see Section 2.2 for more details).

than Delicious. Also in Bibsonomy, the user sees a set of recommended tags
from which he/she can reuse tags during tagging (see Fig. 2.2).

Delicious and Bibsonomy are just two examples of tagging systems pro-
ducing broad folksonomies that give tag recommendations. Many other sys-
tems also offer such recommendations [56]. It is the objective to “support
users in the tagging process and to expose different facets of a resource” [56,
p. 506] with the help of tag recommendations. In Section 2.2, we give an
overview of the relevant work on tag recommendation algorithms.

One problem of tagging systems is that they are attracting spammers.
Spammers are users who use tags in a misleading way for increasing the
visibility of some resources or simply for confusing the other users [63]. For
example, the owners of Bibsonomy have reported in [65] that 1,411 legitimate
users and 18,681 spammers had contributed to the Bibsonomy system until
the end of 2007. Thus, in order to retain the usefulness of tagging systems,
it became an important research field how to automatically detect and filter
spammers in tagging systems. A summary of the related work on spam
detection in tagging systems is available in Section 2.3.

Of course, using tagging systems for annotating resources with tags is
not an end in itself. An important application of tagging systems is the
retrieval of resources, e. g. by searching for resources annotated with specific
tags or by browsing the tags and resources contained in a tagging system. In
Section 2.4, a summary of the works related to the retrieval of resources is
available. We especially concentrate on algorithms for ranking search results
and methods for visualizing the tag space of a folksonomy by means of tag
clouds.
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Figure 2.2: Tagging interface of Bibsonomy for bookmarking web pages.
Users can enter free tags in the tags input field. Furthermore, they can
select tags from the set of recommended tags below the input field. By
clicking on the button to the right of the set of recommended tags, users
can get a new set of recommended tags for bookmarking the web page.

2.1 Folksonomies

The collection of all users, tags, resources and tag assignments in a tagging
system is called folksonomy. We formally define a folksonomy as follows (cf.
[6, 96]):

Definition 1 A folksonomy F is a tuple F := (U, T, R, Y, pt) where

e U, T, and R are finite sets, whose elements are called users, tags and
resources, respectively.

e Y is a ternary relation between them, i.e., Y CU X T X R, called tag
assignments (TAS for short).

e pt is a function pt : Y — n that assigns to each tag assignment of Y
a temporal marker n € N. It corresponds to the time at which a user
assigned a tag to the resource.

The tag assignments can be grouped into several postings. A posting contains
all tag assignments made by the same user to the same resource at the same
time. The temporal marker of the posting is equal to the temporal marker of
each of the contained tag assignments.

Furthermore, one can distinguish between broad and narrow folksonomies
[115]. For broad folksonomies, the Definition 1 from above applies without
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any constraints. This means that the same tag can be assigned several times
to the same resource by different users. Examples for broad folksonomies are
the folksonomies created in Delicious and Bibsonomy (see above). In con-
trast, for narrow folksonomies, the corresponding tagging system enforces
the additional constraint on the set Y of tag assignments that a tag can only
be assigned once to a resource:

Definition 2 The folksonomy F created by a tagging system is called a nar-
row folksonomy if the tagging system enforces the following additional con-
straint on the set Y of tag assignments: ¥(u,t,7) €Y : P(u/,t,7) €Y : u #

.

An example for narrow folksonomies is the folksonomy created in Flickr?,
which is a tagging system for sharing photos. Often, narrow folksonomies are
used for sharing resources where the initially uploading user is also the owner
of the resource, like it is the case for photos (Flickr) or videos (YouTube?).
In contrast, broad folksonomies are used for sharing resources that are not
necessarily owned by one of the users in the tagging system, like it is the
case for web pages or bibliographic references.

The above definitions of what to understand under folksonomies only
cover the parts that are common to all tagging systems. Depending on the
system, additional elements and relations may be available. For example, in
Delicious the users can organize a collection of bookmarks in stacks®. How-
ever, in this thesis, we focus on the core functionalities of tagging systems
described in Def. 1 and 2. In the following subsections, we are describing
possible representation mechanisms for these core folksonomies, which offer
different views on their content.

2.1.1 Hypergraph View of Folksonomies

In [50], it has been proposed to use a tripartite, undirected hypergraph view
on folksonomies:

Definition 3 The hypergraph view for folksonomy F is defined as the hy-
pergraph G = (V, E), where the set of vertexzes V' consists of the union of
the disjunct sets of users, tags and resources, i.e. V. =U UT U R. The set
of hyperedges E connects those tags, users and resources that are involved
in one of the tag assignments, i.e. E = {{u,t,r}|(u,t,7) € Y}.

An example for the hypergraph view on a folksonomy is shown in Fig. 2.3.
The hypergraph view on a folksonomy can also be transformed to other

Shttp://www.flickr.com/
‘http://www.youtube . com/
Shttp://blog.delicious.com/2011/09/a-new-flavorE2%80%A6still-delicious/
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Figure 2.3: Representation of a folksonomy F as a tripartite, undirected

hypergraph (left) and as a tripartite, undirected graph (right). In the folk-

sonomy, user! has tagged res2 with the tags tag! and tag2. Furthermore,
user? has tagged resl with tagl.

graph views on a folksonomy. For example, in [50] the tripartite, undi-
rected hypergraph is projected to a tripartite, undirected graph by splitting
each hyperedge {u,t,r} into three distinct edges {{u,t}, {u,r},{t,r}} (see
Fig. 2.3). This graph view of folksonomies has been used in [50] for defining
the FolkRank algorithm, which is summarized in Subsection 2.4.1.

Furthermore, the original hypergraph graph may be projected to bipar-
tite or even unipartite graphs. For example, in [80] it has been proposed
to project the tripartite hypergraph into three bipartite graphs with regular
edges with edges between either (1) users and tags, (2) users and resources,
or (3) tags and resources. An example of how to reduce the tripartite graph
to an unipartite graph is given in [95], where the graph of tag co-occurrences
is analyzed. In the tag co-occurrence graph described in [95], two tags t1
and to are connected by an edge if there exist two hyperedges {u1,t1,71}
and {usg,t,r2} in the original hypergraph for which u; = wug, r1 = ro and
t £ to.

In this subsection, we have presented just a few examples for the possible
projections of the original hypergraph. For example, until now we have only
dealt with unweighted graphs, but during a projection it may happen that
two hyperedges are projected to the same edge in the resulting graph. This
may be used for defining weighted variants of the projected graphs in which
the weight of an edge depends on the number of hyperedges that have been
projected to the respective edge (see also [95]).

2.1.2 Stream View of Folksonomies

In the previous subsection, we have defined the hypergraph view on a folk-
sonomy. The hypergraph view and projections of it are well suited for rep-
resenting the relations between users, tags and resources in the folksonomy.
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However, the hypergraph view is ignoring the information encoded in the
timestamps associated with the different tag assignments, as given by the
function pt : Y — n. Thus, if it comes to analyzing the dynamic aspects of
a folksonomy, i.e. how it developed over time, one has to use another view.
In the following, we define stream views on a folksonomy F. A stream view
corresponds to a sequence of tag assignments that is ordered by the tempo-
ral markers of the tag assignments. We distinguish the resource stream, the
co-occurrence stream and the user stream:

Definition 4 The resource stream for folksonomy F and resource r € R
is a sequence ((u1,t1,71); (u2,t2,72);...; (Un,tn,m)) of all tag assignments
for the resource r such that (u;, t;,r;) € Y and r; = r. The tag assign-
ments in the resource stream are ordered by their temporal markers such

that pt((ui,ti, ri)) < pt((wita, tigr, mit1))-

Definition 5 The co-occurrence stream for folksonomy F and tagt € T is a
sequence ((u1,t1,71); (u2,t2,72);. .5 (Un,tn, ™)) of all tag assignments that
co-occur with tag t in the same posting such that (u;,t;,m;) € Y and t; # t
and I/ ' ") €Y ' = u; At =t A" = r;. The tag assignments in the co-
occurrence stream are ordered by their temporal markers (see Definition 4).

Definition 6 The user stream for folksonomy F and user u € U is a se-
quence ((u1,t1,71); (u2,t2,72); .. .5 (Un,tn, ) of all tag assignments of the
user u such that (u;, t;,r;) € Y and u; = u. The tag assignments in the user
stream are ordered by their temporal markers (see Definition /).

The analysis of resource streams, co-occurrence streams and user streams
gives insights into the dynamics and underlying mechanisms that lead to the
development of folksonomies. This helps to better understand the poten-
tial and the limits of social tagging systems. For example, the analysis of
resource streams gives insights into how users agree on a common descrip-
tion for a certain resource. In this context, it is of especial interest how the
size of the vocabulary associated with the resource grows over time. Fur-
thermore, one may analyse the frequency distribution of the tags associated
with a resource. From these two observables one may conclude on the degree
of consensus between the users how to describe the resource and how the
consensus evolves over time.

In co-occurrence streams, one can study the behavior of several users in
the context of several resources. The analysis of co-occurrence streams gives
insights into how the semantics of a certain tag evolves in a tagging system.
Like for the resource streams, the size of the vocabulary co-occurring with
a certain tag is of interest as well as the frequency distribution of the co-
occurring tags. Both properties influence the navigability of tag clouds,
which are often used for browsing the resources of tagging systems (see
Subsection 2.4.2).
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In user streams, one can study the evolving vocabulary of a single user.
The analysis of user streams gives insights into how users organize resources
and which interests they have. For example, one may measure the entropy
of the user’s vocabulary to get insights into how effectively the user is or-
ganizing the resources in his/her resource collection. Furthermore, many
algorithms for personalized ranking of search results or personalized recom-
mendation of interesting resources make use of the information in the user
stream (see Section 2.4).

2.2 Tag Recommendation

In Fig. 2.1 and 2.2 it has been shown that tagging systems provide tag
recommendations to the users. Such recommendations should support the
user in the tagging process by exposing different facets of a resource [56].
Given a user who is about to tag a given resource, e.g. a web page, there
are three basic paradigms of recommending tags to this user [70]: One can
recommend (1) tags based on the tag assignments of other users (either
extracted from the tag assignments associated with the current resource or
from all tag assignments), (2) tags based on the previous tag assignments of
the current user, and (3) tags based on the content of the current resource,
e.g. by extracting keywords from the content or title of a web page.

Tag recommenders that only use a combination of the first two paradigms
as a source for their recommendations are subsumed as graph-based recom-
menders (see Subsection 2.2.1) because they only depend on the informa-
tion that is available in the hypergraph of the folksonomy [31]. Tag rec-
ommenders that, amongst others, use the third paradigm as a source for
their recommendations are subsumed as content-based recommenders [31]
(see Subsection 2.2.2). The three recommendation paradigms fulfill differ-
ent purposes and are used in different ways. In Subsection 2.2.3, we finally
summarize how the quality of tag recommendation algorithms is usually
evaluated.

2.2.1 Graph-based Recommenders

The first paradigm is often used for recommending tags that have been used
by other users in the context of the current resource. The most simple exam-
ple of such a recommender is the Popular Tags recommender of Delicious,
which is shown in Fig. 2.1. It recommends the seven most popular tags of
the current resource. But a recommender that only relies on the set of tags
already assigned to the current resource has the disadvantage that it cannot
make recommendations for previously unseen resources and that it can not
recommend new tags. More sophisticated tag recommenders than the Popu-
lar Tags recommender from Delicious try to counteract these disadvantages
by amending their recommendations based on the first paradigm with tags
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based on the other two paradigms. Examples of such more sophisticated
recommenders are described in [54, 58, 124].

Another way of using the first paradigm for recommending tags is to
not only include tag assignments made in the context of the current re-
source but also tag assignments made in the context of all other resources.
This extended set of tag assignments is used for analyzing the conditional
probability P(t2|t1) of observing a tag to together with a tag ¢ in different
contexts like a posting, a resource or a user. These conditional probabilities
are then used for recommending tags that often co-occur together with tags
that are already assigned to the current resource, or that have already been
used by the current user.

There exist different techniques for analyzing the co-occurrences of tags
like association rules mining [3, 48, 102], collaborative filtering [56, 76, 93],
topic models [52, 66, 125] or tensor factorization [89]. From these techniques,
the association rule mining can only be used for providing unpersonalized
tag recommendations because it does not distinguish between the tag assign-
ments of the current user and those of all other users. In contrast, the other
three techniques provide personalized tag recommendations. Thus, they also
exploit the second paradigm by taking the previous tag assignments of the
current user into account. They are then used for identifying like-minded
users and for preferring tags coming from their tagging vocabulary.

Such personalized recommendations, which rely on the second paradigm,
have the advantage that they can outperform the best possible non-personalized
tag recommender, i.e. a recommender that not only incorporates knowledge
about the past behavior of all users but also about their future behavior
[89]. Of course, this best possible non-personalized tag recommender can
not exist in practice but it only serves as a theoretical upper bound for
non-personalized recommenders.

The personalization techniques described above are quite sophisticated
because they amalgamate the personalization step, which is based on the
second paradigm, with the generation of recommendations based on the first
paradigm. This has the disadvantage that these personalized recommenders
cannot make recommendations for previously unseen users. This disadvan-
tage does not hold for another kind of personalized recommenders that treat
the personalization in an additional step [54, 58, 69, 70]. This has the ad-
vantage that the personalization step can be omitted if tag assignments of
the current user do not exist in the folksonomy yet. Usually, these recom-
menders first generate tag recommendations on either the first or the third
paradigm, and then filter and rank this initial set of recommendations based
on the tagging vocabulary of the current user.

More simple examples of personalized tag recommenders are available in
Delicious. Both, the Your Tags and the Recommended Tags recommender
in Fig. 2.1, provide personalized recommendations. The Your Tags recom-
mender is only based on the second paradigm because it simply suggests all
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previously used tags of the current user. Over time, this set of tags may be-
come very large. In contrast, the Recommended Tags recommender suggests
the intersection between all previously used tags of the current user and all
tags previously used at the current resource. Thus, the recommendations
are based on the first and the second paradigm, and they are more focused
on the tags that are relevant for the current resource.

2.2.2 Content-based Recommenders

Finally, there exist the recommenders that exploit the third paradigm by
generating tag recommendations based on the actual content of the re-
sources. This third paradigm has the advantage that it can be used for
generating recommendations for previously unseen resources and/or users
and that it can even be used for recommending previously unseen tags. One
can further distinguish tag recommenders that simply parse the textual con-
tent associated with a resource and then rank the extracted words according
to some metrics [54, 69, 70, 125], and tag recommenders that analyze the
co-occurrence between words in the textual content of a resource and its
tags [40, 48, 51, 52, 109, 124]. Although most content-based recommenders
assume that the resources have some textual content associated with them,
there also exist recommenders for non-textual resources like images [1].

2.2.3 Evaluation of Tag Recommenders

After this overview of different tag recommendation algorithms, it is now
the question how to measure the quality of the generated tag recommenda-
tions and how to compare different algorithms during an evaluation? For
this purpose, the methodology proposed by Jéschke et al. [56] has found
widespread adoption in the literature about tagging systems. According to
this methodology, it should be the objective of tag recommenders to predict
as accurate as possible the tags that will finally be assigned by a user. The
quality of the set of recommended tags in comparison to the finally assigned
tags is then measured in terms of precision, recall and f-measure [114]. With
regard to this methodology, one can further distinguish an offline [56] and
an online [55] variant of the methodology:

e The offline variant takes as input a folksonomy data set, which is
then splitted into a training and a test set. It is the objective of
tag recommenders to reproduce the tag assignments of the users and
resources in the test set based on the information available in the
training set. The offline variant of the methodology has the advantage
that the quality of the tag recommendations can be automatically
computed, and that results of different recommenders can be easily
compared given that the same training and test set is used during the
evaluation. However, it has also the disadvantage that it does not
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take into account that tag recommendations may actually influence
and change the tag assignments of a user. For example, the offline
evaluation actually penalizes tag recommenders that help the users
in providing a more complete or accurate description of resources.
Furthermore, it is important that the users in the folksonomy data set
have not been influenced by any kind of tag recommenders in order to
avoid biasing the evaluation results.

e The online variant also takes as input a folksonomy data set but the
tag recommendations are presented to actual users who then decide
which of the recommendations to pick and which additional tags to
assign to a given resource. The online variant has the advantage that
it takes into account how the users are influenced by the recommen-
dations. However, it has the disadvantage that it requires a lot more
effort in order to evaluate a tag recommender and that the results are
harder to compare between different evaluations, e.g. because of dif-
ferences between the user populations participating in the evaluations.

All in all, the offline variant has the big advantage that it is easy to re-
produce, requires few effort and that the results are easy to compare across
different evaluations as long as the same data set is used. In contrast, the
online variant has the big advantage that it takes into account how the users
are influenced by seeing the tag recommendations. Both variants have the
disadvantage in common that they can not be used for measuring whether
the recommendations help the users in improving the quality of their tag
assignments. In case of the offline variant, a tag recommender can not out-
perform the uninfluenced tag assignments of the users because any deviation
from the uninfluenced behavior gets penalized by the evaluation measures.
In case of the online variant, it is measured whether users prefer one tag
recommender over another during tagging. But this aspect of tag recom-
mendations is distinct from the resulting quality of the tag assignments.
In Chapter 6, we are presenting an alternative measure for evaluating tag
recommenders that is able to measure in how far the quality of the tag
assignments is influenced by a tag recommender.

2.3 Spam Detection

Tagging systems are an interesting target for spammers. Spam in tagging
systems can be defined as content that legitimate users do not wish to share
and content that is tagged in a way to mislead other users [47, 65]. Often,
it is the purpose of spam to increase the visibility of specific resources [63].
Tagging systems have to find ways for coping with spam because otherwise
the content of legitimate users becomes invisible. For example, in [65] it has
been reported that, at the end of 2007, 92% of all registered users in the



2.3. SPAM DETECTION 17

Bibsonomy system were spammers. The problem is even bigger than these
numbers suggest because often spammers belong to the group of very active
users. For example, Wetzker et al. have reported in [121] that 19 of the
top 20 most active users in their crawled Delicious data set are spammers.
But spam content not only influences the visibility of legitimate resources
and users in tagging systems but also important properties of the tagging
systems that can be observed at the macro level (see Chapter 3 and [95]
for examples). Thus, Wetzker et al. conclude in [24, p. 29-30] that “spam
filtering should precede any sophisticated analysis” of tagging systems.

In principle, one can distinguish three different anti-spam techniques [47]:
(1) One can manually or automatically classify users as either a spammer
or a legitimate user of the system. The spam status of the users is then
used for removing their content from the system. (2) One can design the
system to reduce the prominence of spam content. For example, this can be
achieved by designing spam resistant ranking algorithms. (3) One can try to
make contributing spam content more difficult, e.g. by using CAPTCHAs
[117] during the creation of a user account. In the following, we concentrate
on the former two approaches because only they require algorithms that are
specific to tagging systems.

2.3.1 Spam Classification

Most of the work on anti-spam techniques in tagging systems is related to the
supervised classification of users as either spammers or legitimate users. One
of the first supervised spam classifiers has been proposed by Krause et al. in
[65]. They found out that especially features related to the co-occurrences
of users help to classify users as spammers. In this context, two users are
said to co-occur together if they share at least one resource, one tag or one
tag-resource pair. Krause et al. have used this co-occurrence information
of users together with a set of manually labeled users for training a SVM
classifier, which can then be used for automatically labeling the remaining
users in the data set.

A further rich source for spam classification is the vocabulary of the
users, i.e. how often they have used which tags. For example, the three
most successful submissions [20, 37, 59] to the spam detection task of the
ECML/PKDD Discovery Challenge 2008 [49] all use this information as their
premier feature on which the corresponding classifier gets trained. This
success of the tag related features becomes obvious when looking at the
statistics of the Bibsonomy data set that has been used during the Discovery
Challenge for evaluating the classifiers: In this data set, 92% of all users
are spammers and 297,846 of the 359,000 distinct tags are solely used by
spammers. Thus, the vast majority of tags directly indicate a spammer.

A further interesting approach for spam classification is described by
Neubauer and Obermayer in [82]. The quality of their results is not as good
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as those of the previously described supervised classifiers but their approach
is nevertheless interesting because it can be used in an unsupervised way, i. e.
it does not require a manually labeled training data set. Like Krause et al.
in [65], Neubauer and Obermayer also exploit the co-occurrence information
of users by partitioning the folksonomy hypergraph into 2-hyperincident
connected edge-components. Neubauer and Obermayer have observed that
legitimate users are then exclusively contained in the largest connected edge-
component. All other edge-components exclusively contain spammers. In
[82], this observation is used for creating an unsupervised classifier, but it
may also be used as an additional feature in supervised classifiers.

2.3.2 Ranking of Spam Content

Until now, we have described methods for automatically classifying users
into spammers and legitimate users. In the following, we describe methods
that do not assign an explicit spam status to the users but instead try to
reduce the prominence of spam content by designing spam resistant ranking
algorithms. This is an approach originally used for making ranked results
of web search engines more spam resistant (see [24] for an example), which
can also be transfered to tagging systems.

One of the first works in this area is the work by Heymann et al. in
[47]. They propose a ranking that is based on coincidences between users,
i.e. they consider the tag assignments of those users as more reliable who
agree more often with other users on the tags for describing a resource. The
coincidence based ranking is then compared to a boolean retrieval model
and to an occurrence based model (cf. Section 2.4). The quality of the
ranked retrieval results is then evaluated with the SpamFactor [63]. The
SpamFactor of a given ranking increases, the more spam is present in the
results and the closer the spam is to the top of the ranking.

The disadvantage of the coincidence based ranking is that it is resistant
to uncoordinated spammers but that it can easily be circumvented by col-
lusive attacks by several spammers. To overcome this problem, Wang et al.
propose the DSpam tagging system [118]. DSpam also assigns weights to the
tag assignments of the different users, but it computes personalized weights
based on the social network between users and the similarity of their tag
assignments. The evaluation in [118] shows that DSpam is more resistant
against spam than the coincidence based ranking of Heymann et al.

Finally, in [83] Noll et al. present the SPEAR algorithm for ranking
search results in tagging systems according to the expertise of the users.
Such a ranking is more spam resistant because typical spam patterns de-
crease the expertise of the respective user. For example, users are consid-
ered as experts if they often belong to one of the first users to annotate
a resource, and if many other users follow their decision to annotate. In
contrast, spammers typically belong to one of the last users who annotate
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legitimate resources. Furthermore, for resources with spam content, the
spammers belong to the first users but they have only very few users who
follow them. The evaluation in [83] shows that SPEAR is more successful
in demoting spam than comparable algorithms for expertise based ranking
like HITS [60].

2.4 Retrieval of Resources

In the previous sections, we have summarized works that deal with rep-
resenting and creating folksonomies. In this section, we summarize works
that deal with one of the main applications of tagging systems, namely with
the retrieval of resources. In tagging systems, the retrieval of resources is
supported by two kinds of interfaces that can either be used for searching
resources or for browsing resources. The searching of resources is supported
by traditional search interfaces like they are also known from web search,
i.e. by an input box that can be used for querying the resource collection
with arbitrary search terms. In contrast, the browsing of resources is in
most tagging systems supported by visualizations of the tag space [11] like
they are provided by tag clouds (see Fig. 2.4). By clicking on one of the tags
visualized in the tag cloud, the user implicitly submits a search query with
the respective tag as if it would have been entered into the input box of the
search interface. Of course, both kinds of interfaces may also be integrated
into a single user interface which allows searching and browsing at the same
time. Both kinds of interfaces have their merit. It depends on the actual
search task of the user which of the two interfaces provides a better support.
Typically, two different search tasks are distinguished:

1. On the one hand, there is the simple lookup task during which the
user wants to find a specific resource or information [75, 104, 111].
An example for a simple lookup task would be to find articles about
the NASA (cf. [104]). For simple lookup tasks, users often prefer
traditional search interfaces, which allow to directly enter relevant
search terms [104].

2. On the other hand, there is the exploratory search task during which
the user has some broader information need that requires multiple
searches interwoven with an analysis of the retrieved resources [68, 104,
111]. An example for an exploratory search task would be to identify
sport activities that are popular in a certain city like Pittsburgh and
then to find resources that provide more details about these activities
(cf. [111]). For exploratory search tasks, users often prefer browsing
interfaces, which visualize the tag space of the folksonomy [104, 111].

In Subsection 2.4.1, we give an overview of the literature about ranking
the search results in tagging systems according to their relevance for the
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Figure 2.4: Example tag cloud from http://www.bibsonomy.org/. The
tags are ordered alphabetically. The font size and intensity indicate the
frequency with which the respective tags are used in a collection of resources.

query. Of course, these algorithms can also be used for ranking the results
that are shown to the user due to his/her interaction with a tag cloud. Then,
in Subsection 2.4.2, we give an overview of the literature about tag space
visualizations, more specifically about the visualization of tag clouds.

2.4.1 Ranking the Relevance of Resources

With regard to the retrieval of resources, one can distinguish between the
boolean retrieval and the ranked retrieval [74]. In the boolean retrieval,
queries can be posed in form of a boolean expression of terms, i. e. terms can
be combined with operators like AND, OR, and NOT. For boolean retrieval,
resources are typically represented as a set of terms. Thus, it is well suited
for the retrieval in narrow folksonomies where a tag can be annotated to a
resource at most once (see Section 2.1). In contrast, the ranked retrieval
is based on the vector space model in which resources are represented as
a vector or a bag of words, i.e. it is well suited for the retrieval in broad
folksonomies where a tag can be annotated several times to a resource by
different users. In the following, we thus concentrate on the vector space
model because in this thesis we are mainly interested in studying broad
folksonomies.

In the vector space model, each resource r; of a folksonomy is repre-
sented by a vector v;. In its most simple form, each entry in the vector
then corresponds to the frequency with which one of the tags t1,...,%, is
annotated to r;. But the vector space model may also be enriched by taking
semantic relations between tags into account [2], or the tag frequencies may
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be weighted by measures like TF-IDF (term frequency-inverse document fre-
quency; [74]). But regardless of the actual weight of each tag, the intuition
behind the vector space model is that the tag vector captures the relative
importance of the different tags for describing a resource.

The vector space model is the fundamental model for several information
retrieval tasks like scoring documents on a query, document classification
and document clustering [74]. These retrieval tasks have in common that
they require to compute the similarity between pairs of resources r; and r;,
or to score the relevance of a resource r; for a query q. A standard way for
computing the similarity of resources in the vector space model is the cosine
similarity [74]. Given two tag vectors v; and vj, their similarity is measured
as follows:

Ui'vj
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But the cosine similarity from Equation 2.1 can also be used for scoring
the relevance of a resource r; for a query ¢. For this purpose, the query is
also represented as a vector, which can then be compared to the tag vectors
of the resources [74], i.e. the relevance of resource r; with tag vector v; for
a query ¢ corresponds to sim(q,v;).

In many retrieval systems, the resources do not only have a query specific
relevance score, but also a static quality score which is query independent
[74]. Probably, the most well-known example of such a static quality score
is the PageRank algorithm [14], which is used by Google for ranking web
documents based on the link structure of the web. The relevance score
of a document for a query then corresponds to a weighted combination of
the query dependent score and the static quality score of the document.
The weights with which the two scores are combined may be automatically
learned [53] in order to achieve an optimal ranking.

Until now, we have mainly concentrated on retrieval and ranking in gen-
eral. In the following, we concentrate on algorithms that have been specifi-
cally proposed for retrieval and ranking in tagging systems, i.e. they make
use of the structure of folksonomies. Three research areas are related to
the retrieval and ranking in tagging systems: (1) Improving the computa-
tion of the query dependent relevance score of resources, (2) improving the
computation of the static quality score of resources, and (3) introducing a
personalized relevance score of resources into the ranking algorithms.

Query Dependent Relevance Scores

In folksonomies, one typical problem during computing the query specific
relevance score of resources is that an uncontrolled vocabulary is used for
annotating the resources. This introduces the typical problem that different
users use synonyms for describing the same concept or that tags are pol-
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ysemous, i.e. that they have multiple meanings [11]. It is thus a common
approach to try to detect the lexical relations between the different tags and
then to take these relations into account during the query dependent rele-
vance ranking. For example, the relevance of a resource may be increased if
it is annotated with synonyms of one of the search terms.

Examples of approaches for taking the lexical relations between query
terms and tags into account are available in [2, 7, 50, 123]. In [2], Abbasi
and Staab propose an enriched vector space model in which the original tag
vector v; of a resource is multiplied with a square matrix Tg that contains
similarity values between tags. This square matrix is computed based on the
co-occurrence of tags in different contexts C, e. g. in the context of resources,
and the type of similarity S between tags, e.g. the cosine similarity. The
results show that enriching the vector space model is especially useful for
queries where only few results are returned.

In [7], Bao et al. show that tagging data from social bookmarking systems
like Delicious can be used for optimizing the ranking results in web search.
They propose the Social Similarity Rank algorithm, which exploits the co-
occurrence of tags in the context of the same resource. The inclusion of the
Social Similarity Rank as a feature into a baseline web search engine helped
to improve the mean average precision of queries.

In [50], Hotho et al. propose the FolkRank algorithm. It uses the same
idea as the PageRank algorithm [14], i.e. the relevance of resources for a
query is computed based on random walks on the folksonomy hypergraph. In
principle, a resource is considered more relevant, the easier it is to reach with
random walks on the hypergraph. In FolkRank, it is possible to parametrize
the algorithm such that the random walks are more likely starting at spe-
cific nodes in the hypergraph. For example, for computing the relevance of
resources for a query, the random walks more likely start at the query terms.

In [123], Wu et al. propose to derive the emergent semantics in a folkson-
omy by representing users, tags and resources in a conceptual space similar
to probabilistic topic models [12]. An evaluation with human evaluators has
shown that the ranking algorithm retrieves resources that are highly relevant
for the search term.

Static Quality Scores of Resources

With regard to calculating the static quality score of a resource, one im-
portant use case is to try to reduce the score of resources that have been
uploaded and tagged by spammers. An overview of these ranking algorithms
is given in Subsection 2.3.2. Furthermore, one may use ranking algorithms
like HITS [60] and PageRank [14], which can be applied on any kind of
graph, i.e. also on the folksonomy hypergraph. However, the HITS algo-
rithm has the disadvantage that it is very susceptible to spammers (see [83]
and Subsection 2.3) while the PageRank algorithm mainly measures the
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degree of the node that represents the resource because the edges in the
folksonomy hypergraph are undirected [50]. There also exist adaptations
of the PageRank algorithm to folksonomies like FolkRank [50] (see above)
and SocialPageRank [7], which both have the idea in common that highly
relevant resources are tagged by many users with popular tags. In [7], it has
been shown that the inclusion of SocialPageRank as a feature into a baseline
web search engine helps to improve the mean average precision of queries.

Personalized Relevance Scores of Resources

Finally, there exist many algorithms that provide a personalized ranking of
resources, i. e. they try to derive which resources a user would likely perceive
as interesting. On the one hand, there exist algorithms that personalize
the ranking with regard to a query [50, 94, 101, 123]. On the other hand,
there exist algorithms which try to recommend the user interesting resources
without having a query as a context [15, 41, 61, 85, 112, 120]. Both kinds
of algorithms have in common that they analyze which tags a user has
previously used and/or which resources they have previously tagged. Then,
the algorithms identify like-minded users that have tags and/or resources
with the current user in common.

In [92], Santos-Neto et al. predict that like-minded users can be best
identified based on the common tags of users because over 90% of the tags
are used by more than one user. In contrast, they expect that identifying
like-minded users based on common resources is much harder because only
16% of the resources is tagged by more than one user. This prediction of
Santo-Neto et al. is confirmed by the evaluation in [120], where it is shown
that personalized recommendations based on common tags outperform per-
sonalized recommendations based on common resources. The former kind
of recommendations only reach the quality of a baseline recommender that
simply recommends the most popular resources of the folksonomy. A further
source for personalized recommendations are the explicit friendship links be-
tween users like they are available in the contact lists of users in a tagging
system. But in [94] it is shown that personalized recommendations based on
explicit friendship links are outperformed by personalized recommendations
based on common tags and/or resources, i. e. users may be friends with each
other although they do not have common interests.

2.4.2 Visualizations of the Tag Space

In tagging systems, often a visualization of the tag space is provided to the
users. The most prominent example of such a visualization is the tag cloud
interface (see Fig. 2.4). According to Rivadeneira et al. [90], tag clouds can
be used for (1) searching a specific term, e. g. for navigating to the underlying
resources, (2) browsing the content in a folksonomy, often without a specific
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information need, and (3) impression formation about the topics covered
in a set of resources. Furthermore, Rivadneira et al. mention the task of
recognition, e.g. for disambiguating the personomies of two users with the
same name. But the latter task also requires impression formation, thus we
summarize it under impression formation.

The support of browsing and impression formation is a unique feature
covered by tag clouds. In contrast, when searching for specific resources or
information, traditional search interfaces and tag clouds each have their own
advantages. For example, traditional search interfaces have the advantage
that the users can directly enter relevant search terms without searching
for them in a tag cloud. Directly entering search terms is especially use-
ful because tag clouds are often restricted to only visualizing the N most
frequent tags. Thus, users are not able to directly access all resources in a
folksonomy from a tag cloud. For example, in [67] Li et al. have shown that
in their Delicious data set only approximately 60% of all resources can be
directly accessed with the help of the 400 most popular tags. This problem
gets even more prevalent, the larger a folksonomy grows [21]. In [67], Li
et al. thus propose to introduce hierarchical browsing into tag clouds where
the user first browses from the more general tags to the more specific tags.
Each browsing step then influences which tags are shown during the next
browsing step.

Additionally, the tag cloud also provides benefits during the search task
because it can help to mediate between the different vocabularies of the
users, i.e. a user may use the tag cloud for locating the terms that have
been used by other users for representing a specific concept. Furthermore,
in [104] it has been observed that users prefer to click on a tag if it is
available in the tag cloud instead of typing it into a search box. Ideally, the
traditional search interface is combined with a tag space visualization into
a single interface [111].

With regard to the design of a tag cloud, one can distinguish between the
design choices for (1) the spatial layout of the tag cloud, i.e. how to arrange
the different tags, (2) the visual properties of the single tags, e.g. font size,
and (3) the algorithm for selecting the N tags which are displayed in the
tag cloud. The layout of a tag cloud influences for which task a tag cloud is
especially well suited. The visual properties of the single tags can be used
for influencing which tags get the most attention of the users. Furthermore,
the tag selection algorithm can be used for influencing how many resources
can be directly accessed from the tag cloud interface.

There exist several approaches for the spatial layout of tag clouds. Prob-
ably the most common spatial layout is that of sequentially ordered lines. If
each line contains several words, then tag clouds like those in Fig. 2.4 and
Fig. 2.5a are generated. If each line only contains a single word, then the
tag clouds become vertical lists of words (see Fig. 2.5b). A further visualiza-
tion might be that of a “bin-packed” cloud where no clear lines are visible



2.4. RETRIEVAL OF RESOURCES 25

web tools folksonomy toread web
semantic social clustering search tools
mining 2.0 tagging myown
conference learning ontology data foll(sonomy
workshop bibsonomy text software toread
dataset network recommender m semantic
taggingsurvey survey blog dm ir social
w4 52| Glustering
bookmarking nux  tag CE brary segrch
research community engine mining
(a) (b)

Figure 2.5: (a) Example of a frequency-ordered tag cloud. (b) Example
of a frequency-ordered list. Both examples are taken from http://www.
bibsonomy.org/.

[90], a circular layout [72] or a faceted tag cloud interface [111]. Within the
general layout of the tag cloud, a further design decision is the ordering of
the tags, like alphabetical ordering (Fig. 2.4), frequency-ordering (Fig. 2.5),
or thematic ordering (see [72] for an example).

The choice of the tag cloud visualization depends on the particular task
of the user. If the user is looking for a specific term within the cloud, e.g.
during a search task, then a sequential layout with alphabetical ordering
of the tags is preferred by the users over other layout options. This layout
also leads to the fastest selection of the searched term [72]. With regard
to looking for tags related to a specific topic, e.g. during a browsing task,
there exist contradicting results in the literature. Lohmann et al. report in
[72] that a thematic ordering of the tags helped to reduce the time needed
for selecting a corresponding term while Schrammel et al. [97] report the
fastest selection time for alphabetically ordered tag clouds. It seems that
the actual algorithm for creating the thematic ordering influences the time
needed by the users [97]. Finally, if the user wants to get an impression of
the topics represented in a collection of resources, then a frequency ordered
list of tags leads to the best results during user experiments [90].

Not only the spatial layout of tag clouds influences the attention and
perception of the users. A further influence comes from the visual properties
of the different tags. In [10], Bateman et al. showed that especially the
font size, font weight (i.e. bold or normal font) and the intensity have a
strong influence on whether and how fast users notice certain tags in a
cloud. Furthermore, the position in the tag cloud also has an influence.
Tags in the center of the cloud and in the upper left corner are more often
noticed and clicked on [10, 97] but this general tendency of the users may
be overridden by stronger visual properties [10].
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Finally, the algorithm for selecting the N tags which are displayed may
influence the usefulness of a tag cloud for searching, browsing and impression
formation. For example, in [43] it has been shown that a selection of tags
based on a variation of TF-IDF (term frequency-inverse document frequencys;
[74]) helps to increase the number of resources which can be directly reached
from a tag cloud, if compared to a selection simply based on the frequency of
tags. Furthermore, the heterogeneity of the tags in the cloud is increased by
a TF-IDF based selection. This increases the navigational efficiency of tag
clouds. But the navigational efficiency of tag clouds may also be influenced
by which kind of folksonomy is browsed, i. e. a narrow or broad folksonomy.
In [46], Helic et al. show that “broad folksonomies create more efficient
navigational structures that enable users to find target resources with fewer
hops” [46, p. 71].



Chapter 3

Macro-Level Properties of
Folksonomies

In this chapter, we describe characteristic properties that can be observed
at the macro-level of a folksonomy. It is our objective to explain with the
Epistemic Dynamic Model how these properties emerge from the micro-
level behavior of the individual users (see Chapter 4). We are especially
interested in properties that are associated with the emergence of the shared
community vocabulary of the users and its effectiveness for navigating the
resources indexed in a folksonomy.

With this regard, two central properties are the tag frequency distribu-
tion and the growth and size of the used vocabulary. These properties are
related as follows to the emergence of a shared vocabulary of the users and
the navigability of tagging systems:

1. The tag frequency distribution described in Section 3.2 influences
how many results are shown for a certain search term. In folksonomies,
a power-law like tag frequency distribution can be observed. This
means that a few search terms lead to very large result lists while for
the majority of search terms only very few results are returned. The
exact extent of this effect on the search results is influenced by the
exponent of the power-law. The observation of many search terms
for which only few results are returned has led to the development of
techniques that especially try to improve the browsing and retrieval
with these search terms (see Section 2.4).

2. The size of the vocabulary and its growth described in Section 3.3
influence how many search terms can be used for accessing the re-
sources in a tagging system. With this regard, a larger vocabulary
would be desirable. But on the other hand, the vocabulary growth
and size also indicates the level of consensus between the users about
which vocabulary to use for annotating resources. The less consensus

27



28 CHAPTER 3. MACRO-LEVEL PROPERTIES OF FOLKSONOMIES

Data Set |U| T |R| Y|

Delicious 532,938 2,886,015 17,296,850 140,333,714

Bibsonomy 38,920 468,945 1,437,796 16,818,699

Table 3.1: Sizes of the data sets from Delicious and Bibsonomy that are
used in this thesis. Both data sets contain the activity of spammers. In
the Delicious data set, approximately 1.4% of the users are spammers. In
the Bibsonomy data set, approximately 93% of the users are spammers. For
more details, see Appendix B.

between the users, the larger and the more diverse the vocabulary.
With this regard, a smaller vocabulary would be desirable because it
corresponds to a more consistently used vocabulary.

In this thesis, we are focusing on these two properties and how their
emergence can be explained with the micro-level behavior of the individual
users. They are also the most often discussed properties in the literature
about tagging systems (for examples see Tab. 4.5). Nevertheless, also other
properties have been discussed in the literature. In Section 3.4, we shortly
summarize these further properties.

3.1 Used Data Sets

Throughout this thesis, we use two large folksonomy data sets from Delicious
and Bibsonomy for studying the properties of folksonomies and for evalu-
ating our Epistemic Dynamic Model. Delicious and Bibsonomy are tagging
systems that both create a broad folksonomy. The sizes of the two data sets
are summarized in Tab. 3.1. The Delicious data set is based on a crawl of
Delicious by the TAGora consortium in November 2006. The Bibsonomy
data set is based on a complete dump of the system that has been provided
by the owners of Bibsonomy in July 2008. More details about these data
sets are available in Appendix B.

As explained in Section 2.1, there exist different views on such folkson-
omy data sets. In this thesis, we base our analysis on stream views of the
folksonomies, more specifically on co-occurrence stream views (see Subsec-
tion 2.1.2). We are focusing on stream views because they allow for studying
temporal aspects of folksonomies, like the vocabulary growth in Section 3.3.
Furthermore, we are focusing on co-occurrence streams because they aggre-
gate the behavior of several users in the context of several resources. This
aggregation makes co-occurrence streams less susceptible to the individual
behavior of single users or the characteristics of a specific resource, thus
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tag vl T |R| Y]

ringtones 3,215 4,458 9,041 74,155
setup 4,176 4,818 5,605 40,689
boat 1,641 5,100 3,907 23,512
historical 1,374 4,664 2,789 16,662
messages 973 3,110 1,326 9,634
decorative 223 1,540 1,057 8,892
costs 709 2,555 1,226 7,359
ff 482 1,544 1,497 5,114
checkbox 869 455 266 4,758
datawarehouse 444 697 814 3,730
tools 183 3,425 4,097 25,437
social 246 3,402 1,765 15,322
design 209 2,797 2,156 14,606
analysis 142 1,855 1,998 12,506
blogs 85 2,250 1,397 8,926

Table 3.2: Statistics of the filtered co-occurrence streams from Delicious
(top) and Bibsonomy (bottom). The filtered streams only contain tag as-
signments made by regular users.

better uncovering the general patterns of user behavior during indexing re-
sources in tagging systems than user or resource stream views.

Throughout this thesis, we will concentrate our analysis on 15 represen-
tative tags for which then corresponding co-occurrence streams have been
extracted from either the Delicious or Bibsonomy data set. In order to be
able to make generalizable observations, we only take tags into account for
which at least 1,000 postings of regular users, i.e. non-spammers, are avail-
able in the respective data set. For Delicious, we randomly select 10 out of
9,081 possible tags that fulfill this criterion. For Bibsonomy, we randomly
select 5 out of 2,064 possible tags.

For each of the 15 tags, we extract a pair of co-occurrence streams from
the respective folksonomy data set. The filtered stream of such a pair only
contains tag assignments that have been made by regular users of the sys-
tem. In contrast, the corresponding unfiltered stream of such a pair contains
tag assignments from regular users as well as from spammers.! From the
unfiltered stream, we only use the first x tag assignments so that it has the
same length as its filtered counterpart. The sizes of the extracted filtered

'Details about how we identified the spammers in the Delicious and the Bibsonomy
data set are available in Appendix B.
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tag U] T R Y]
ringtones 1,569 (57) 7,953 3,016 74,155 (50,938)
setup 698 (18) 6,498 1,070 40,689 (34,300)
boat 880 (64) 5,404 2487 23,512 (7,332)
)
)
)

historical 298 5,430 805 16,662 (13,504)
4,145 178 9,634 (8,669)

messages 143

decorative 168 1,462 975 8,892 (697)

( (
( (
( (
( (
( (
( (
3) (
ff 481 (12) 1,578 1452 5,114 (179)
(2) (
(2) (
( (
( (
( (
( (
( (

costs 84 (3 3,878 106 7,359 (6,918)
checkbox 114 (2 3,596 38 4,758 (4,041)
datawarehouse 426 (2 723 785 3,730 (147)
tools 283 (169) 3,458 3,652 25,437 (7,708)
social 203 (162) 2,692 1,673 15,322 (6,227)
design 128 (44) 2,108 1,170 14,606 (8,192)
analysis 125 (53) 1,382 1,764 12,506 (2,944)
) )

blogs 146 1,909 1,002 8,962 (4,158

Table 3.3: Statistics of the unfiltered co-occurrence streams from Delicious
(top) and Bibsonomy (bottom). The unfiltered streams contain tag assign-
ments made by regular users as well as tag assignments made by spammers.
In the columns |U| and |Y'|, the overall number of users and tag assignments
in the respective stream are given. The parentheses contain how many of the
overall number of users are spammers and how many of the tag assignments
are provided by the spammers.

streams are given in Tab. 3.2. The sizes of the unfiltered streams are given in
Tab. 3.3 together with information about how many spammers are contained
in the respective streams.

We are using the stream pairs for analyzing in how far spammers exhibit
a behavior that is different to that of regular users and how this influences
the observed properties. Nevertheless, in Chapter 5 during our evaluation of
the Epistemic Dynamic Model we are only using the filtered streams because
the model is only based on assumptions about the behavior of regular users.

3.2 Tag Frequency Distribution

The first characteristic property of co-occurrence streams is the distribution
of the tag frequencies. Often, the tag frequency distribution is shown in
form of a Zipf plot [126]. In a Zipf plot, the occurrence probability of a tag
is shown in dependency on its rank. For example, the most often used tag
has rank 1 and the 10th most often used tag has rank 10. One can observe a
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Figure 3.1: Zipf plots of the occurrence probabilities of tags in dependency
on their rank for all streams from Tab. 3.2. Only tag assignments of regular
users in the respective streams are taken into account.

power-law like decay of the occurrence probabilities for the medium to less
frequently used tags in the long tail of the Zipf plot and a flattened slope
for the most frequently used tags (cf. [19]).

The characteristic slope of the occurrence probabilities in the Zipf plot,
as it has been described by Cattuto et al. in [19], is shown in Fig. 3.1. The
plot shows the occurrence probability p, of a tag in dependency on its rank
n for all co-occurrence streams from Tab. 3.2. If a logarithmic scaling of
the two plot axes is used, the power-law like decay for the medium to less
frequently used tags forms a straight line.

It has been observed in [38] that the tag frequencies of the most fre-
quently used tags already stabilize after 100 postings. In Fig. 3.2, an exam-
ple for this stabilization process is shown for the social co-occurrence stream
from Bibsonomy (see Tab. 3.2). In [42], the stabilization of the tag frequency
distribution has been observed even earlier in a stream, i.e. after 30 post-
ings. Some authors like Golder and Huberman in [38] mainly attribute this
stabilization process of the tag frequencies to a consensus between the users
about the important tags for indexing a resource. This consensus may form
due to seeing the tags of the other users during browsing the system or
due to tag recommendations that are based on the tag assignments of the
other users (see also Section 2.2). But in [71], Lipczak and Milios found out
that this stabilization is misleading because it does not show a consensus
between the users but it is caused by the fact that with growing number
of tag assignments the influence of the single user on the tag frequencies
decreases. Instead of being a sign of collaboration between the users, they
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Figure 3.2: Stabilization of the occurrence probabilities of the 10 most of-
ten used tags in the social co-occurrence stream from Tab. 3.2. Only tag
assignments of regular users are taken into account.

found stronger evidence that the stabilization of tag frequencies is rather
caused by a shared knowledge between the users.

In text corpora, the distribution of the occurrence probabilities of words
is very similar to that of tags in tagging systems. This regularity is com-
monly known as Zipf’s law [126]. It says that the occurrence probabilities
of words in natural language texts form a power-law and can be expressed
with the following formula:

Pn~n Y with a >0 (3.1)

Zipt’s law states that the slope of the occurrence probabilities will always
form a straight line in Zipf plots if both axes are logarithmically scaled.
But Zipf’s law ignores the flattened slope that can also be observed for the
occurrence probabilities of words (see Fig. 3.3). Thus, Benoit Mandelbrot
introduced a constant m into Zipf’s law so that it better accounts for the
observations made in text corpora [73]:

P~ (n+m)” % witha >0 (3.2)

This additional constant m leads to a flattened slope for the most fre-
quent words. Examples for Zipf plots of the occurrence probabilities of words
in text corpora are shown in Fig. 3.3. The used text corpora have the same
size and the same topical focus as the streams in Fig. 3.1. The text corpora
have been obtained by downloading the resources that are tagged in the
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Figure 3.3: Zipf plots of the occurrence probabilities of words for text cor-
pora that have the same topical focus as the streams from Tab. 3.2 and
Fig. 3.1. The text corpora have been obtained by downloading the docu-
ments that are tagged in the corresponding stream. For better compara-
bility, only as many words from the text corpora are taken into account as
there are tag assignments in the corresponding stream.

corresponding stream and taking only as many “word assignments” from
the text corpus into account as there are tag assignments in the stream.

Because the Zipf plots of the distributions in Fig. 3.1 and Fig. 3.3 exhibit
the same general shape, it is reasonable to assume that they all belong to
the same family of heavy-tailed, power-law like distribution functions as they
may be approximated with Equation 3.1 or Equation 3.2. But despite of
the same general shape it is also important to note that there are significant
differences between the plots of tag frequencies in Fig. 3.1 and the word
frequencies in Fig. 3.3:

1. There is a much higher probability of observing one of the most fre-
quent tags in a co-occurrence stream than of observing one of the most
frequent words in a text corpus. For example, the most frequent tag
in the ringtones stream is used in 8% of the tag assignments while the
most frequent word in the ringtones corpus is only used in 0.6% of the
“word assignments”.

2. For all analyzed pairs of co-occurrence streams and text corpora, the
stream always contains less distinct tags than the corresponding text
corpus contains distinct words. The number of the distinct tags or
words can be read out from the Zipf plots by looking at tag or word
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Average Std. Dev. Minimum Maximum
Tag Frequencies 0.9266 0.195 0.6572 1.3270
Word Frequencies | 0.6398 0.087 0.5514 0.8663

Table 3.4: Average, standard deviation, minimum and maximum of the a-
values if the Zipf plots of the tag frequencies in Fig. 3.1 and of the word
frequencies in Fig. 3.3 are approximated with a power-law.

with the maximal rank contained in the plot. For example, the ring-
tones stream contains 4,458 distinct tags while the ringtones corpus
contains 12,652 distinct words.

These observed differences point to the fact that if the Zipf plots in
Fig. 3.1 and 3.3 are approximated with a power-law (see Equation 3.1) then
the best fit is achieved for completely different exponents . For example,
in case of the tag frequencies in Fig. 3.1 the average of the best-fitting a-
values is 0.9266. In contrast, in case of the word frequencies in Fig. 3.3 the
average of the best-fitting a-values is 0.6398. Furthermore, the distribution
of a-values for word frequencies has a lower standard deviation than for the
tag frequencies (see Tab. 3.4).

All in all, it thus seems that the occurrence probabilities of tags and
words are influenced by similar mechanisms that cause their common char-
acteristic shape. But there also seems to be an additional influencing factor
in case of the tags that causes the overall lower number of tags and the
higher probability of observing one of the most frequent tags. Thus, a
model for generating the tag frequency distributions in tag streams is likely
to extend a model for generating the word frequency distributions in natural
language texts. This assumed connection between models for tag frequen-
cies and models for word frequencies is also the underlying assumption of
our Epistemic Dynamic Model, which is described in Chapter 4.

Until now, we have considered the tag frequency distributions in co-
occurrence streams because they are less susceptible to the individual influ-
ences of single users or resources (see Section 3.1). Now, we look at the tag
frequency distribution of resource streams. In general, the tag frequency
distributions in resource streams also follow the heavy-tailed, power-law like
distribution that we observed in co-occurrence streams. But in [42], Halpin
et al. noted a significant different behavior for tags between rank 7 and 10
for resource streams in a Delicious data set. Between these ranks, a drop
in the occurrence probabilities of the respective tags can be observed (see
Fig. 3.4).

In [42, p. 216], Halpin et al. conclude that this drop in the occurrence
probabilities is likely “a consistent effect of the way tagging is performed”.
Two possible explanations are offered in [42]: (1) It may be related to a
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Figure 3.4: Drop in the relative occurrence probabilities for tags between
rank 7 and 10 in resource streams. The relative occurrence probability cor-
responds to the occurrence probability normalized by the occurrence proba-
bility of the most frequent tag. The average relative occurrence probability
in the graph has been computed by averaging the relative occurrence proba-
bility for 500 randomly selected resource streams from our overall Delicious
data set. As a guide for the eye, a line for the best-fitting power-law distri-
bution is also included in the graph. Only resource streams are taken into
account to which more than 100 regular users contributed.
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cognitive effect during tagging, e.g. based on the average number of tags
contained in a posting, or (2) it may be an artifact of the user interface
specific to Delicious. In Subsection 5.5.3, we show with the help of our
Epistemic Dynamic Model from Chapter 4 that this artifact can plausibly
explained as being an artifact of the Delicious user interface.

With regard to how the tag frequency distributions in co-occurrence
streams are influenced by the presence of spammers, no single pattern can be
identified (see Fig. 3.5). On the one hand, there exist co-occurrence streams
like the ringtones stream where the presence of spammers in the unfiltered
version of the stream increases the probability of the infrequent tags. On the
other hand, there exist co-occurrence streams like the social stream where
the presence of spammers rather increases the occurrence probability of the
most frequent tags.

Allin all, one can conclude from these observations that spammers have a
strong influence on the tag frequency distributions in tagging systems. The
differences in the tag frequency distributions may be caused by different
kinds of spamming strategies like they are described in [63]. Thus, during
our evaluation of the Epistemic Dynamic Model in Chapter 5, we have to
compare the predictions of our model to the tag frequency distributions in
the filtered streams because our model only aims at explaining the behavior
of regular users.

3.3 Vocabulary Growth and Size

The second characteristic property observable in tagging systems is the sub-
linear growth of the used vocabulary, i.e. with increasing number of tag
assignments in a stream the probability of inventing a new tag decreases.
This sublinear growth pattern can be observed in all kind of stream views
of a folksonomy as well as in the whole folksonomy [17, 38]. This effect is
also well known in linguistics and information retrieval where it is known as
Heaps’ law [44]. If we transfer Heaps’ law to tagging systems, then it states
that the number of distinct tags |T'| in a tag stream with |Y'| tag assignments
grows according to Equation 3.3.

7] ~ |Y|? (3.3)

In Fig. 3.6, the vocabulary growth of all co-occurrence streams from
Tab. 3.2 is shown. It can be seen that there is a high variance between
the vocabulary growth speeds. For example, after approximately 5,000 tag
assignments, the stream with the lowest growth speed contains around 450
distinct tags and the stream with the highest growth speed contains around
1,900 distinct tags. This high variance in the vocabulary growth speeds of
single streams can not only be observed for co-occurrence streams but also
for resource streams as well as for user streams [17, 38].
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Figure 3.5: Zipf plots of the occurrence probability of tags in dependency
on their rank for the ringtones and social stream pairs from Tab. 3.2 and
3.3. The filtered variant of a stream only contains tag assignments of regular
users. The unfiltered variant of a stream contains a mix of tag assignments
from regular users and spammers. The detailed plots for the remaining
co-occurrence stream pairs from Tab. 3.2 and Tab. 3.3 are available in Ap-
pendix B.
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Figure 3.6: Vocabulary growth for all streams from Tab. 3.2 for the first
10,000 tag assignments. Only tag assignments of regular users in the re-
spective streams are taken into account. A high variance in the vocabulary
growth rates can be observed.



38 CHAPTER 3. MACRO-LEVEL PROPERTIES OF FOLKSONOMIES

2000 LI B B e I B B e

costs
design
+ checkbox

—  Costs
— — design

o

+ checkbox

1500

1000

URRRILL

# of distinct tags

0,001

w
[
o
LN AL B
Y

Occurrence Probability
(=)
2

1
T NETATANE A A
\HHH‘ \\HHH‘ 1111

IRRLLL

P : —
o BTt Lo b b g b g v 1 0,0001 covnl vl vl
0 1000 2000 3000 4000 5000 1 10 100 1000 10000

# of tag assignments Tag Rank

Figure 3.7: Comparison of vocabulary size (left) and tag frequency distribu-
tion (right) for the costs, the design and the checkbox co-occurrence streams
from Tab. 3.2. The costs and the design stream have been restricted to
their first 4,758 tag assignments so that they contain the same number of
tag assignments as the checkboxr stream. The smaller the vocabulary, the
steeper the decline in the occurrence probabilities of tags in the respective
stream.

In [5, 113], it has been shown that the vocabulary growth rate according
to Heaps’ law and the tag frequency distribution according to Zipf’s law
are correlated with each other. Under the assumption that a tag stream is
generated by randomly drawing a number of tags from the tag frequency
distribution that adheres to Equation 3.1 or Equation 3.2 with exponent
« then this results in a vocabulary growth according to Heaps’ law (see
Equation 3.3) with exponent 5 = é This means that a and 3 are negatively
correlated with each other.

However, in practice this mathematical dependency does not hold exactly
because Zipfs’ law and Heaps’ law can only be used for approximating the
real distribution and the real vocabulary growth. Nevertheless, the predicted
negative correlation between o and 8 can be observed in our tagging data
(see Fig. 3.7). Translated to vocabulary size and tag frequency distribution,
the negative correlation means that we expect to observe a steeper decline
in the occurrence probabilities of tags, i.e. a higher exponent «, if a smaller
vocabulary size is observed, i.e. a lower growth exponent .

This negative correlation between vocabulary size and tag frequency dis-
tribution is also not disturbed by the presence of spammers. In Fig. 3.8, it
is shown how the presence of spammers influences the vocabulary size for
the ringtones and the social stream. In case of the ringtones stream the
presence of spammers leads to a larger vocabulary size. This reflects our
observation in Fig. 3.5 where the presence of spammers leads to a less steep
decline in the occurrence probabilities of tags. In contrast, in case of the
social stream, the presence of spammers leads to a slightly smaller vocab-
ulary in Fig. 3.8 and to a slightly steeper decline of the tag’s occurrence
probabilities in Fig. 3.5.
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Figure 3.8: Vocabulary growth for the ringtones and social stream pairs
from Tab. 3.2 and 3.3. The filtered variant of a stream only contains tag
assignments of regular users. The unfiltered variant of a stream contains
a mix of tag assignments from regular users and spammers. Only the first
20,000 tag assignments of the respective streams are shown. The detailed
plots for the remaining co-occurrence stream pairs from Tab. 3.2 and Tab. 3.3
are available in Appendix B.

The different effects of spammers on the vocabulary size, and thus also
on the tag frequency distribution, may be explained with different spam
patterns in Delicious and Bibsonomy. In case of the unfiltered ringtones
stream from Delicious, the unusual growth pattern between tag assignment
9,700 and 17,300 is caused by two very large postings of a single user, each
containing around 4,000 tags. In contrast the unfiltered social stream: It
is from Bibsonomy where the maximum size of a posting is restricted by
the system to 100 tag assignments. Here, spammers can not create such big
postings and thus spammers have to use other spam patterns that may even
lead to a lower vocabulary growth rate.

3.4 Further Properties

In the previous sections, we have discussed two properties that can be ob-
served in tagging systems: The tag frequency distribution, and the vocab-
ulary growth. We discussed these two properties because they are closely
related to the emergence of a consensus between the users and to the navi-
gability of the resources in tagging systems. Together with the stabilization
of the tag frequencies (see Fig. 3.2), these two properties receive the most
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attention in the literature about tagging systems. An overview of where the
different properties are discussed in the literature is available in Tab. 4.5
and in Section 4.3.

Nevertheless, in the literature about tagging systems also other proper-
ties have been described and discussed. The most influential work with this
regard is that of Cattuto et al. in [18] about the Semantic Walker Model
(see Subsection 4.3.2 for a summary). They are taking another view on
folksonomies, i.e. they are looking at the emergence and the properties of
the co-occurrence network of tags. In the co-occurrence network of tags, the
nodes represent the different tags in the folksonomy, which are connected
by weighted edges. Two tags are connected if there exists at least one post-
ing in which they were used in conjunction. The weight of the edge then
corresponds to the number of postings in which the two tags co-occur.

Given such a co-occurrence network of tags, one can then observe and
describe the standard properties of networks that are used in the literature
about complex networks and the validation of network generating models
[9, 84]. For example, in [18], Cattuto et al. study the distributions of the
degrees, strengths and weights in the network. Furthermore, they are study-
ing the distribution of the average degree of the nearest neighbors of nodes
as well as the average clustering coefficients of nodes in dependency on the
nodes’ degree.

The view of Cattuto et al. in [18] on folksonomies in form of a co-
occurrence network of tags moves the attention towards the internal struc-
ture of single postings and how it is influenced by the semantics of tags. In
contrast, the stream view that we take in this thesis (cf. Subsection 2.1.2)
concentrates more on the dynamics and interactions of users in a folkson-
omy. But although the two views and the respective observed properties
serve different purposes, they are partially correlated with each other. For
example, the frequency of a tag influences the maximal weight of each of the
edges connected to it in the co-occurrence network. Thus, if we observe in
the tag frequency distribution an increased probability of tags that only oc-
cur once in the folksonomy then this influences the probability of observing
edges whose weight is 1. Similar examples can also be constructed for the
other properties of a co-occurrence network and how they are influenced by
the tag frequency distribution.



Chapter 4

An Epistemic Dynamic
Model of Tagging Systems

In this chapter, we describe our Epistemic Dynamic Model of tagging sys-
tems. It was first described in [26] and then further refined in [27]. The
Epistemic Dynamic Model is based on the assumption that the shared back-
ground knowledge and language of the users as well as their exposure to each
others tags are relevant for explaining the emergence of the properties that
are described in Chapter 3. For example, given the tagging interface of Deli-
cious (see Fig. 2.1), the shared background knowledge and language of users
influences which tags are entered into the tags input field. Furthermore, the
users are exposed to each others tags in form of the recommended tags and
the popular tags suggestions (see also Section 2.2).

Our Epistemic Dynamic Model is designed as a system of building blocks.
Each building block corresponds to one of the influence factors that are
assumed to be relevant for explaining the emergence of certain properties.
In this thesis, we are concentrating on influence factors and building blocks
that are required for explaining the properties described in Chapter 3. If
further properties should be explained, it might become necessary to extent
the Epistemic Dynamic Model with further building blocks, which then cover
further influence factors like those described in Subsection 4.3.1.

The rest of this chapter is structured as follows: In Section 4.1, we
introduce the building blocks that we assume to be required for explaining
the emergence of the properties described in Chapter 3. The two most
important building blocks simulate the shared background knowledge of the
users (Subsection 4.1.2) and the collaboration between the users due to
their exposure to each others tags (Subsection 4.1.3). Then, in Section 4.2
we propose three concrete configurations of the Epistemic Dynamic Model
based on these building blocks:

1. The configuration from Subsection 4.2.1 corresponds to the Epistemic
Dynamic Model as it has been described in [27]. In this configuration,
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the building block for simulating the shared background knowledge
of the users is treated as a black box from which we randomly draw
words according to word frequency distributions that can be observed
in corpora of natural language texts.

2. In the configuration from Subsection 4.2.2, we replace the black box
implementation of the shared background knowledge with another im-
plementation that is based on the Semantic Walker Model from Cat-
tuto et al. [18] (see also Subsection 4.3.2). In Chapter 5, we use
this configuration for analyzing in how far the Semantic Walker Model
provides a plausible explanation of the processes in the black box.

3. In the configuration from Subsection 4.2.3 we deactivate the building
block that is used for simulating the collaboration of users due to their
exposure to each others tags. In Chapter 5, we use this configuration
for analyzing in how far the exposure to each others tags is really
required for explaining the properties observed in Chapter 3.

After describing our own Epistemic Dynamic Model, we provide in Sec-
tion 4.3 an overview of further influence factors and tagging models that are
currently discussed in the literature about tagging systems.

4.1 Building Blocks of the Epistemic Model

In this section, we present the building blocks that are used in our Epistemic
Dynamic Model. Each building block corresponds to one of the influence
factors that we assume to be required for explaining how the tag frequency
distributions emerge from the micro-level behavior of the individual users.
Furthermore, we are interested in explaining the related property of the
vocabulary growth. We are especially interested in explaining these two
properties because they are closely related to the emergence of the shared
community vocabulary and its effectiveness for navigating the resources in
a folksonomy (see Chapter 3).

By analyzing the user interface of Delicious in Fig. 2.1, one can identify
two important influence factors on a user’s tag choice:

e First, a user can add free tags in the tags input field. These tags most
likely come from a user’s background knowledge about the content
of the resource. To some extent, a user shares his/her background
knowledge, as well as his/her natural language for describing it, with
the other users in the tagging system.

e Second, users are exposed to each others tags in form of the tag sugges-
tions provided by the tagging system. In Delicious, the recommended
tags as well as the popular tags are based on the previously used tags of
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other users (see Section 2.2). This exposure to each others tags is seen
to facilitate a collaboration between users during indexing resources
(cf. [38]). Furthermore, users may also be exposed to each others tags
in form of tag space visualizations during the retrieval of resources (see
Section 2.4).

In the Subsections 4.1.2 and 4.1.3, we present the corresponding building
blocks from our Epistemic Dynamic Model that are used for modeling these
two influence factors. Prior to that, we describe in Subsection 4.1.1 the
building block that is used for simulating the tag assignments as a stream of
postings. In Chapter 5, we then show that the three building blocks of our
model are sufficient for explaining the emergence of the properties described
in Chapter 3.

4.1.1 Simulating a Stream of Postings

In this thesis, we take a stream view on folksonomies (see Subsection 2.1.2).
A stream corresponds to a list of postings that is ordered by the creation
time of the postings. When simulating such a stream with our Epistemic
Dynamic Model, we always start with an empty stream. Then, in each step
a new posting is simulated. A posting comprises the information about the
set of tags that has been annotated by a specific user to a specific resource.
In the following, we describe the building block of our Epistemic Dynamic
Model that is used for generating this information about a posting. The
actual simulation of how the respective user then selects appropriate tags
for annotating a resource is done with the help of the other two building
blocks that are described in Subsection 4.1.2 and in Subsection 4.1.3.

As described above, for simulating a posting we first have to predeter-
mine the information about the user, the resource and the size of the post-
ing’s tag set. It depends on the kind of stream view, how to predetermine
this information: For example, when simulating a resource stream, all post-
ings will be annotated to the same resource. Similarly, when simulating a
user stream, all postings will be created by the same user. Only when simu-
lating co-occurrence streams, postings will be created by different users and
be annotated to different resources. Depending on the user and resource, a
user specific background knowledge or resource specific tag suggestions may
be simulated by the other two building blocks of our model.

Nevertheless, in the context of our work, we do not expect that the sim-
ulation of user specific background knowledge or resource specific tag sug-
gestions have an important influence on the tag frequency distribution and
the vocabulary growth in tagging systems. Thus, in the following all users
share the same background knowledge, which can be seen as an aggregation
of the (overlapping) background knowledge structures of the users. Fur-
thermore, when simulating the suggestion of popular tags in co-occurrence
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Figure 4.1: Distribution of the posting sizes used for simulating co-
occurrence streams. It corresponds to the distribution of posting sizes from
regular users in the overall Delicious data set described in Section 3.1.

streams (see Subsection 4.1.3), we also simulate the aggregated popular tags
of all resources in the co-occurrence stream. This way, the complexity of the
Epistemic Dynamic Model is reduced by a huge amount. Furthermore, more
generalizable results are achieved due to abstracting from the concrete in-
fluence of a specific user or resource to the aggregated influence of several
USers or resources.

Besides the information about the user and the resource, a posting also
comprises the information about how many tags are assigned by the user to
the resource. This information about the number of assigned tags becomes
especially important when simulating the background knowledge of users as
random walks on semantic networks (see Subsection 4.1.2). In the following,
we simulate the size s of a posting’s tag set by randomly drawing it from
a probability distribution p(s). This parameter of our Epistemic Dynamic
Model is a parameter that can be estimated based on our tagging data sets.
In [19], it has been discovered that in tagging systems the distribution p(s)
is a heavy-tailed distribution. In Fig. 4.1, the empirical distribution of the
posting sizes in our Delicious data set from Section 3.1 is shown. In order to
get realistic simulation results, we use this empirically observed distribution
of posting sizes during our evaluation in Chapter 5.

4.1.2 Simulating the Shared Background Knowledge

In the following, we describe the building block that simulates with prob-
ability BK how users select appropriate tags from their active vocabulary.
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For example, the tags entered into the tags input box shown in Fig. 2.1
can be seen to be influenced by the background knowledge of the individual
user as well as by the natural language shared with other users. In this
thesis, two different implementations of the building block are described
and tested: First, we describe why and how word frequency distributions
acquired from text corpora can be used for simulating the background knowl-
edge and shared terminology of users. Then we describe how semantic net-
works can alternatively be used for implementing this building block of the
Epistemic Dynamic Model.

Background Knowledge as Word Frequency Distributions

One way of simulating the selection process of tags from the active vo-
cabulary of users is by using predefined word frequency distributions. For
example, when simulating resource streams the word frequency distribution
p(WluNr) may be used. It gives for each word w from the terminology W
the probability that it will be annotated by user u to the resource r. Simi-
larly, when simulating co-occurrence streams the distribution p(W|uNt) may
be used. It gives the probability for each word w that it will be annotated
by user u in the context of the topic t.

Given these distributions, the tag assignments of a user are simulated
by randomly drawing the required number of words from the respective dis-
tribution. Obviously, it is not possible to get the active vocabulary and/or
frequency distribution for each individual user. Furthermore, the exact dis-
tribution may not only be influenced by the current resource r or topic ¢ but
also by many other factors like the previously visited resources or the pur-
pose for which the user is tagging. Nevertheless, it is reasonable to assume
that in any case the occurrence probabilities in the users’ active vocabularies
adhere to Zipf’s law (see [126] and Subsection 3.2). Zipf’s law describes an
inherent property of human natural language according to which the occur-
rence probabilities of words in natural language texts form a power-law.

In [36], Gelbukh and Sidorov found out that the concrete power-law
exponents of distributions for different topics and authors only have a small
standard deviation from an average value. Only the used language (e.g.
English) has an influence on the average power-law exponent. Thus, instead
of the exact distributions for each user, in the following we approximate
them with user independent distributions p(W|r) and p(W|t) that give the
word probabilities averaged over several users who share the same natural
language.

Although it is reasonable to assume that p(W|r) and p(W|t) adhere
to Zipf’s law and that only small deviations between single users can be
observed, the question remains about the concrete power-law exponent of
the distribution. With this regard it has been shown in [107] that in tagging
systems one can distinguish two types of users: (1) The categorizers use
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tags as a kind of category for organizing resources, and (2) the describers
describe the content of resources by means of tags. Categorizers choose tags
from their active vocabulary so that their tag vectors have a high information
value. In contrast, describers choose tag vectors from their active vocabulary
so that the tag vectors closely resemble the content of the resource (cf. [107]).

Thus, according to the findings of [107], we expect to observe different
power-law exponents for p(W|r) and p(W|t), depending on whether we sim-
ulate the tag assignments of a categorizer or describer. Furthermore, it can
be concluded that the power-law exponents of p(W|r) and p(W|t) for simu-
lating describers are very similar to the power-law exponents observable for
the word frequency distributions in continuous texts. Because most users
in tagging systems apply a mixture of both tagging styles and because they
have a tendency to the descriptive style [107], we assume in the following
that p(W|r) and p(W|t) can be approximated with word frequency distribu-
tions observable in continuous texts. The plausibility of this assumption is
evaluated in Chapter 5 by showing that the configuration of the Epistemic
Dynamic Model from Subsection 4.2.1, which builds upon this assumption,
can be used for reproducing the properties described in Chapter 3.

During the evaluation in Chapter 5, we approximate p(W|r) and p(W|t)
with empirically measured word frequency distributions from 15 different
text corpora consisting of web documents related to the topics of the co-
occurrence streams described in Section 3.1. For example, when simulating
the co-occurrence stream for a topic ¢, we use the word frequency distribution
from a text corpus containing all documents that have been annotated in our
Delicious data set from Section 3.1 with a tag like ringtones that represents
the respective topic.

In Fig. 4.2, the frequency-rank plots of the 15 empirically measured word
frequency distributions are shown. The plots show that the power-law ex-
ponents of the Zipf distributions are very similar across the different topics
and the different sizes of the crawled web corpora (i.e. the single plots are
rather indistinguishable from each other). This confirms the findings from
[36] that the concrete value of the power-law exponent is rather indepen-
dent of authors and/or topics. Instead, it reflects an inherent property of
human natural language. Nevertheless, during evaluating the simulation
of co-occurrence streams in Chapter 5, we use the empirically measured
word frequency distribution of the corresponding text corpus for simulating
p(W|t), e.g. the ringtones corpus will be used during the simulation of the
ringtones stream.

All in all, the word frequency distributions from Fig. 4.2 can be seen
as a black box that we use for simulating the tag frequency distributions
as they would occur in a tagging system if the users are only influenced by
their background knowledge. This implementation of the building block for
simulating the shared background knowledge of users does not try to explain
how the tag frequencies emerge from the structure of natural languages.
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Figure 4.2: Zipf plots of the word frequency distribution empirically mea-
sured in the 15 crawled text corpora. The corresponding word frequency
distributions will be used in the Epistemic Model for simulating the distri-
butions p(W|r) and/or p(Wt).

Background Knowledge as Semantic Networks

In the following, we describe an alternative implementation of the building
block for simulating the background knowledge and shared terminology of
users. Like in the Semantic Walker Model [18], we use an undirected graph g
for modeling a semantic network that represents the background knowledge
of an average user. The nodes in the graph represent tags and the vertices
represent semantic links between the tags. This approach has the advantage
that it provides an explanation how the Zipf distributions p(W|r) and p(W|t)
may emerge from the memory structure of humans instead of treating them
as a black box from which we randomly draw tags.

Given such a graph g, the simulation of the tag assignments of a user cor-
responds to a self-avoiding random walk through the graph (see [18]). When
simulating an individual co-occurrence stream, all of the random walks for
the different simulated users start at the same node in the graph. This node
corresponds to the tag that represents the topic for which the co-occurrence
stream is constructed. Compared to the original random walk algorithm
described in [18], we introduce two modifications:

1. First, we modify how the start node of the random walks is selected
at the beginning of the simulation. In [18], the start node is randomly
selected among all nodes in the semantic network. In contrast, we
introduce a further parameter d, which allows to restrict this random
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selection to nodes in the graph that have the degree d. The degree
d corresponds to the number of nodes (or topics) to which the start
node is directly connected. Thus, d can be seen as a measure of the
semantic breadth of the topic that is simulated. The higher d, i.e.
the more nodes or topics are directly connected to the start node, the
more general is the simulated topic.

2. Second, we have to define whether and how the random walks are
influenced by imitating one or several of the tag suggestions (see Sub-
section 4.1.3). We decided that the random walk always resumes at
the previously simulated tag of the posting, independent of whether
the previous tag has been selected from the tag suggestions or from the
semantic network. This simulates how tag suggestions may influence
a user’s understanding of a resource by triggering word associations.
If there does not exist a previous tag in the posting, i.e. if the first
tag in a posting is simulated, then the random walk is resumed at the
initially selected start node (see above).

The structure of the graph ¢ is the parameter with the most influence
on the properties of the simulated stream. Thus, the structure of the graph
used during our simulations should resemble that of real semantic networks.
An example for a real semantic network that may be used is the Word
Association Norms data set [81], which contains over 5.000 interconnected
words. It has been generated by presenting to users a stimulus word and then
asking them to write down the first word that came to their mind. In the
semantic network, the stimulus word and the responses are connected with
each other. The Word Association Norms data set consists of the results of
this experiment, repeated for several stimulus words. The resulting graph
of this real semantic network has three important properties: (1) It has a
small graph diameter, (2) the words form clusters, and (3) a heavy-tailed
degree distribution can be observed (see [106]).

Unfortunately, the Word Association Norms data set is too small for
simulating co-occurrence streams that may contain more than 5.000 distinct
tags. Thus, larger, artificially generated substitutes of this real semantic
network have to be used. In [18], the authors show analytically that a small
graph diameter is a minimal requirement for the artificial substitutes in order
to explain the sublinear growth of the vocabulary. In [18], three different
models for producing networks with a small diameter have been tested: (1)
The Erdds-Rényi Model [32], (2) the Uncorrelated Configuration Model [16],
and (3) the Watts-Strogatz Model [119]. In Tab. 4.1, the properties of the
resulting semantic networks are shown.

As can be seen in Tab. 4.1, none of the three graph generation models
tested in [18] reproduces all three properties observable in real semantic net-
works. Thus, they can not be used for realistically simulating the properties
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Table 4.1: Comparison of the properties of the Word Association Norms data
set from [81] with the properties of networks generated with the Erdés-Rényi
Model, the Uncorrelated Configuration Model, the Watts-Strogatz Model
and the Growing Network Model. Only the Growing Network Model is able
to reproduce all three properties of the Word Association Norms data set.

that emerge in tagging systems due to the structure of the users’ back-
ground knowledge. Instead, we propose to use the Growing Network Model
described by Steyvers and Tenenbaum in [106]. It generates networks that
share all three properties with real semantic networks (see Tab. 4.1). In the
following, we assume that semantic networks generated with the Growing
Network Model can be used for approximating real semantic networks like
the Word Association Norms data set.

The plausibility of this assumption is evaluated in Chapter 5. We show
that the configuration of the Epistemic Dynamic Model from Subsection 4.2.2,
which builds upon this assumption, reproduces the properties described in
Chapter 3. Furthermore, we show that using the Growing Network Model
leads to better evaluation results than using one of the other network gen-
eration models originally tested in [18]. This is shown by comparing the
simulation results achieved with the Growing Network Model to the best
performing network model from [18], namely the Watts-Strogatz Model.
The Growing Network Model and the Watts-Strogatz Model, which we use
during our evaluation in Chapter 5, can be summarized as follows:

e The Growing Network Model generates graphs that have a small diam-
eter, a high clustering coefficient, and a heavy-tailed degree distribu-
tion [106]. Initially, the graph consists of myg, fully connected nodes.
Then, new nodes are added until the graph contains N nodes. Each
new node a,, differentiates an already existing node a. by connecting to
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mgn randomly selected direct neighbors of a.. For simulating a graph
with properties similar to the Word Association Norms data set, the
parameter myy, has to be fixed to 11 (see [106]). It is the purpose of the
Growing Network Model “to capture at an abstract level the relations
between the statistics reported ... [for real semantic networks] ... and
the dynamics of how semantic structures might grow” [106].

e The Watts-Strogatz Model is able to generate graphs of size N that
have the small-world property, i.e. the nodes form clusters and the
graph has a small diameter [119]. Initially, all N nodes in the graph
are arranged in a ring in which each node is connected to its m,,s direct
neighbors to the left and to its m,,s direct neighbors to the right. Then,
each link is rewired with probability p,,s to another random node. The
node degree distribution approximates a normal distribution with an
average degree of 2 - my,s and a very low variance.

All in all, word frequency distributions and semantic networks provide
competing implementations of how to model the tag selection of users ac-
cording to their background knowledge. But this does not mean that they
are contradicting each other. In case of the word frequency distributions,
we simply assume that the background knowledge leads to the emergence
of a Zipf like tag frequency distribution with an exponent comparable to
what can be observed in natural language texts. This treats the background
knowledge of the users as a black box from which we randomly draw tags.
In contrast, the semantic networks provide a “model in the model” that tries
to explain the processes inside of the black box. Furthermore, the Growing
Network Model, which is used for generating artificial semantic networks,
can be seen to be a “model in the model in the model”. In terms of Pop-
per’s critical method (cf. Section 1.1), if we are able to show that both
models of the background knowledge are able to reproduce the properties
from Chapter 3 then randomly drawing from p(W|r) and p(W|t) can be seen
as approximating random walks on semantic networks.

4.1.3 Simulating the Tag Suggestions of the User Interface

In this subsection, we describe the building block of our Epistemic Dynamic
Model that simulates with probability I that a user accepts one of the tags
suggested by the user interface (see Fig. 2.1). In our model, we are especially
interested in analyzing tag suggestions that expose a user to the tags of
the other users. This exposure to each others tags introduces a feedback
mechanism between the different users in a tagging system. This kind of
feedback mechanism is often seen as one of the reasons why tagging works
despite of its uncontrolled nature [38].

For example, in case of Delicious (see Fig. 2.1), the users are exposed to
each others tags by means of the recommended tags and the popular tags.
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The recommended tags consist of the intersection between the current user’s
tags and all tags already assigned to the current resource. The popular tags
consist of the 7 most popular tags at the current resource. By clicking on
any of the suggested tags the user can easily include it in his/her posting.

If the primary purpose of our Epistemic Dynamic Model would be to
simulate as accurately as possible the dynamics in a concrete tagging sys-
tem like Delicious, then the exact tag recommendation algorithms from the
respective system would ideally be simulated. For example, in case of De-
licious this would require to simulate the recommended tags, the your tags
and the popular tags. But in the following, we are more interested in gen-
eralizable results about how users are influenced by being exposed to each
others tags. Thus, we are only focusing on modeling the influence coming
from the suggestion of the popular tags already assigned to the current re-
source. In case of Delicious, this also models to some extent the influence
of the recommended tags because they are also based on the tags already
assigned to the current resource. According to [116], most existing tagging
systems provide tag suggestions that are based on the tags already assigned
to the current resource (see also Section 2.2).

All in all, for simulating the influence of the popular tags on the user,
we introduce two further parameters n and h to the model:

e The parameter n represents the number of popular tags that can be
accessed by the user. For example, when simulating tag assignments
made in Delicious to a single resource, n corresponds to the number
of popular tags shown by the user interface, i.e. n = 7.

e The parameter h may be used for restricting the number of previous
tag assignments that are used for determining the n most popular
tags. For example, for n = 7 and A = 300 only the 7 most popular
tags during the last 300 tag assignments are suggested to the user.
If all previous tag assignments should be taken into account, then h
should be set to the current size of the stream.

Simulating Popular Tags in Resource Streams

When simulating the tag stream for a single resource, the value of n is chosen
according to what can be observed in the user interface of the tagging system,
e.g. in case of Delicious n = 7. The correct value of h is unknown but most
likely corresponds to the current size of the stream, i.e. the popular tags are
computed based on all previous tag assignments. Setting h to the current
size of the stream eliminates this parameter from the Epistemic Model.
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Simulating Popular Tags in Co-occurrence Streams

When simulating the tag assignments of a co-occurrence stream, different
values for n and h are required. This is because co-occurrence streams
aggregate the postings from several resource streams. But as explained in
Subsection 4.1.1, in order to reduce the complexity of the Epistemic Model
we decided to not simulate each resource and each user separately. Instead,
we try to achieve a similar effect by adapting the values of n and h as follows:

Co-occurrence streams aggregate the postings from several resources. In
principle, for each of these resources the users would see another set of 7
most popular tags. Thus, the users not only have access to the 7 most
popular tags in the co-occurrence stream but to more tags. For example, if
a co-occurrence stream aggregates 100 resources then users have access to
at most 700 most popular tags at a certain point in time. Thus, the number
of aggregated resources influences our choice of n. The more resources are
aggregated, the higher n.

The popular tags of the different aggregated resource streams are not
disjunct of each other. Instead, there is a significant overlap between them.
This effectively reduces the number of available, distinct popular tags. We
assume that for a very specific topic like datawarehouses, the overlap between
the set of popular tags is higher than for a more general topic like ringtones.
Thus, the more general the topic of the co-occurrence stream and the more
aggregated resources, the higher the value of n.

The simulation of co-occurrence streams also influences our choice of the
parameter h: In [38] it has been observed that resources typically receive
most of the postings within a few days and then the activity at that resource
drops off. Thus, a resource typically does not contribute new postings and
its set of popular tags during the whole duration of a co-occurrence stream
but only in a certain time frame. This kind of “aging” of resources may
be simulated with the h parameter. It corresponds to the number of tag
assignments after which a specific resource no longer contributes to the set
of popular tags available in a co-occurrence stream.

All in all, in co-occurrence streams, the parameters n and h can be seen
to also model in an abstract way the influence coming from the number of
aggregated resources and from the semantic breadth of its topic. Thus, in
contrast to the simulation of resource streams, there is no unique choice of n
and h for simulating co-occurrence streams. Instead, these parameters have
to be fitted to the specific co-occurrence stream in order to best reproduce
its concrete properties like the tag frequency distribution.

Strategies for Choosing from the Suggested Tags

Until now, we have explained how to determine the value of n and h, depend-
ing on whether a resource stream or a co-occurrence stream is simulated.
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In the following, it is now the question how the users choose one of the n
suggested tags. There are several plausible ways how the tag choice process
of users can be modeled:

1. Each of the suggested tags is chosen with the same probability. This
corresponds to users who randomly choose one of the suggested tags,
and users who are not influenced by a tag’s semantics. While this
may be a plausible strategy for spammers, it is unlikely capturing the
behavior of real users.

2. The suggested tags are chosen with a probability that is proportional
to the tag’s occurrence probability in the previous stream. This cor-
responds to users who pick up the latest tagging trends, and who are
easily influenced by other users. This selection strategy is very similar
to the strategy modeled in the Yule-Simon Model with Memory [19]
and the model of Golder and Huberman [38].

3. The suggested tags are chosen with a probability that is proportional
to the tag’s probability in the user’s background knowledge. This
corresponds to users who choose tags that seem appropriate based on
their own background knowledge. Thus, a user unlikely imitates tags
that he/she perceives as semantically irrelevant in the current context.

We assume that in the reality a mixture of the second and the third tag
selection strategy can be observed, i.e. users are influenced by their own
background knowledge and by how often they have seen a certain tag in
the context of other resources. Nevertheless, in order to keep the Epistemic
Model as simple as possible, we decided to only test the third strategy
in the context of our evaluation in Chapter 5. It seems to be the most
plausible strategy that users are stronger influenced in their choice by their
own background knowledge about the semantics of a tag and only to a lesser
extent by the choices of other users.

Nevertheless, we are aware that this may be a simplification of the actual
tag choice process of users. For example, the second strategy is required for
explaining the observations by Tisselli in [110]. Tisselli analyzed how the
tag thinkflickrthink emerged as the winner out of several other possible tags
for annotating images that protest against censorship in Flickr. Such a
winner-takes-all phenomenon can only be explained if the tag choice of a
user is influenced by the behavior of the other users (see also [105]). Further
evidence for the influence of the second strategy can also be seen in the user
study of Held and Cress [45]. They showed that tag suggestions have an
influence on the semantic memory structure of users and their information
search and learning. But clarifying the question to which extent users apply
a mixture of the second and/or third strategy is out of the scope of this
thesis and subject to future research.
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4.2 Configurations of the Epistemic Model

In the previous section, we have described the three building blocks of our
Epistemic Dynamic Model that are modeling different influence factors on a
user’s tagging behavior. These building blocks can be combined in different
ways, leading to different configurations of the Epistemic Dynamic Model.
In this thesis, we are concentrating on three configurations of the Epistemic
Dynamic Model that we summarize in this section:

1. Epistemic Model with Word Frequencies (Subsection 4.2.1)

e Background knowledge is modeled with word frequencies

e Users get tag suggestions
2. Epistemic Model with Semantic Networks (Subsection 4.2.2)

e Background knowledge is modeled with semantic networks

e Users get tag suggestions
3. Natural Language Model (Subsection 4.2.3)

¢ Background knowledge is modeled with word frequencies

e Users do not get tag suggestions, i.e. the imitation probability [
is set to 0%.

These three configurations serve different purposes during our evaluation
in Chapter 5. By comparing the evaluation results of the first and the second
configuration, we are able to evaluate in how far random draws from word
frequency distributions or random walks on semantic networks are better
suitable for modeling the background knowledge of users. Furthermore, by
comparing the first two configurations to the third configuration and to the
Semantic Walker Model, we get more insights in how the exposure to each
others tags in form of tag suggestions influences the macro-level properties
from Chapter 3.

4.2.1 The Epistemic Model with Word Frequencies

The first configuration of the Epistemic Model uses predefined word fre-
quency distributions for modeling the background knowledge and the shared
terminology of the users (see Section 4.1.2). Furthermore, it includes the
building block for simulating the influence coming from the imitation of tag
suggestions that are shown to the user in the user interface of a tagging sys-
tem (see Section 4.1.3). Finally, the sizes of the postings, which are added
by the users, are modeled by the same distribution as it can also be observed
in the Delicious system (see Section 4.1.1).
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Parameter Description

1 Probability that a user imitates a previous tag assignment
from the stream.

BK Probability that a user selects a word from his/her active
vocabulary. Fixed to BK =1 — 1.

n Number of the most popular tags in the previous tag
stream that can be imitated. For simulating resource
streams, its value corresponds to the number of visible
popular tags in the Delicious tagging interface.

h The maximal number of previous tag assignments the
system uses to determine rankings for the n popular tags.

p(W|r) The word frequency distributions that give for each word

or w from the terminology W the probability that w will be

p(W|t) annotated in the context of resource r or topic t. p(W|r)
and p(W|t) are approximated by the word frequency dis-
tributions in Fig. 4.2.

p(s) The probability that a user adds a posting of size s to
a stream. p(s) is approximated by the distribution of
posting sizes in our Delicious corpus (see Fig. 4.1).

Table 4.2: Parameters of the Epistemic Model with Word Frequencies.

A summary of the model parameters is available in Tab. 4.2. Only the
parameters related to the imitation of tag suggestions, i. e. the parameters I,
n and h, are free parameters of the Epistemic Model with Word Frequencies.
All other parameters are fixed to certain, predefined values or distributions.
The parameter BK is fixed to the value BK =1 — I. The word frequency
distribution p(W|r) and/or p(W|t) as well as the posting size distribution
p(s) are fixed to the empirically estimated distributions shown in Fig. 4.2
and Fig. 4.1.

4.2.2 The Epistemic Model with Semantic Networks

The second configuration of the Epistemic Model uses semantic networks
for modeling the background knowledge and the shared terminology of the
users (see Section 4.1.2). This is the only difference to the previously de-
scribed Epistemic Model with Word Frequencies. Both configurations of the
Epistemic Model thus share the parameters I, BK, n, h and p(s). Only the
parameters g and d for simulating the semantic networks are replacing the
previously used word frequency distributions p(W|t) and p(W|r).
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Parameter Description

1 Probability that a user imitates a previous tag assignment
from the stream.

BK Probability that a user selects a word from his/her active
vocabulary. Fixed to BK =1 —1.

n Number of the most popular tags in the previous tag
stream that can be imitated. For simulating resource
streams, its value corresponds to the number of visible
popular tags in the Del.icio.us tagging interface.

h The maximal number of previous tag assignments the
system uses to determine rankings for the n distinct tags.

g Undirected graph representing a semantic network of
tags. The semantic network is generated by the Growing
Network Model (see Section 4.1.2) with mg, = 11.

d Degree of the node from which all random walks will be
initially started.

p(s) The probability that a user adds a posting of size s to
a stream. p(s) is approximated by the distribution of
posting sizes in our Delicious corpus (see Fig. 4.1).

Table 4.3: Parameters of the Epistemic Model with Semantic Networks.

A summary of the model parameters is available in Tab. 4.3. Besides the
free parameters I, n and h, the Epistemic Model with Semantic Networks
has the additional free parameter d that corresponds to the degree of the
node from which all random walks will be initially started. It can be used for
estimating the semantic breadth of the topic ¢ or the resource r for which
a co-occurrence or resource stream is simulated (see Section 4.1.2). The
parameter ¢ is a fixed parameter because we only use semantic networks
generated by the Growing Network Model with mg, = 11 so that g repro-
duces all properties of real semantic networks like the Words Association
Norms data set (see Section 4.1.2).

4.2.3 The Natural Language Model

The third configuration of the Epistemic Model removes the influence com-
ing from imitating tag suggestions. It thus only models the annotation of
tags due to the shared background knowledge and the shared terminology
of the users (i.e. their natural language). That’s why we also call it the
Natural Language Model. The Natural Language Model corresponds to the
Epistemic Model with Word Frequencies with I = 0.0, i.e. the probabil-
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Parameter Description

p(W|r) The word frequency distributions that give for each word
or w from the terminology W the probability that w will be
p(W|t) annotated. p(W|r) gives the probability for annotating
w to a resource r. p(W|t) gives the probability for anno-
tating w in the context of the topical area represented by
the tag t. p(W|r) and p(W|t) are approximated with the
probability of observing w in a text corpus (see Fig. 4.2).

p(s) The probability that a user adds a posting of size s to
a stream. p(s) is approximated by the distribution of
posting sizes in our Delicious corpus (see Fig. 4.1).

Table 4.4: Parameters of the Natural Language Model.

ity of imitating tag suggestions is 0%. The Natural Language Model can
be used for studying the dynamics in tagging systems as we expect them
to be caused by the shared background knowledge and the shared natural
language of the users. A summary of the model parameters is available in
Tab. 4.4. Both parameters are fixed to empirically observed values. Thus,
the Natural Language Model has no free parameters.

4.3 Related Work

There are two areas of work related to the Epistemic Dynamic Model. First,
there is the work related to which influence factors are relevant for explaining
the dynamics in tagging systems. Besides the shared background knowledge
and the exposure to each others tags, there are two further influence factors
discussed in the literature, namely the influence coming from the personal
organization objective of the users and the content of the resources (see
Subsection 4.3.1). Second, there exist quite a number of tagging models
in the literature that also have the objective to explain the emergence of
macro-level properties of the tagging system with the influence coming from
the micro-level behavior of users. The tagging models from the literature
are summarized in Subsection 4.3.2.

4.3.1 Influence Factors

Tagging is a complex process during which a user’s tagging decision is in-
fluenced by several factors. In Section 4.1, we have described the building
blocks of our Epistemic Dynamic Model that each correspond to an assumed
influence factor, namely the shared background knowledge of the users and
the exposure to each others tags, which facilitates the collaboration be-
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tween users. Besides these influence factors, two further influence factors
are discussed in the literature about tagging systems [71], (1) the personal
organization objective of the users, and (2) the content of a resource.

The personal organization objective of a user is an important mo-
tivation of users for contributing to a tagging system. It corresponds to the
motivation to use tagging for organizing a personal collection of resources
for later retrieval [77]. In [62], KOrner et al. show that this motivation
may result in two distinctive tagging styles according to which the users ei-
ther categorize or describe a resource. Often, users apply a mixture of both
styles. Most users have a tendency to the descriptive style. Categorizers can
be distinguished from describers by looking at the vocabulary size and the
tag frequency distribution in the personal vocabulary of a user, i. e. by look-
ing at the user stream view (see Definition 6). Categorizers have a smaller
vocabulary than describers and the tags have more equally distributed fre-
quencies [62]. In the Epistemic Dynamic Model, we model users that have
a tendency to the descriptive style (cf. Subsection 4.1.2).

The content of a resource may either have an indirect or a direct
influence on the tag assignments of a user. The indirect influence of the
content is via the background knowledge of a user. The indirect influence
affects which parts of our background knowledge get activated. In Subsec-
tion 4.1.2, the indirect influence is covered by the building block responsible
for simulating the background knowledge of the users “about the content
of the resource”. The indirect influence can occur for any kind of resource,
i.e. for textual resources as well as for non-textual resources like images.
Related to this indirect influence is the assumed, non-observable variable of
the semantic breadth of a resource (cf. Subsection 4.1.2 and [19, 34]).

In contrast, the direct influence can only occur if the resource has textual
content associated with it, like a title or description. In [71], Lipczak and
Milios found out that textual content influences the probabilities with which
users decide on which synonym out of a list of possible synonyms to use for
describing a certain topical aspect. The most simple example for the direct
influence of textual content is that on the probability of selecting either the
singular or plural form of a word. In [71], it has been shown that the plural
form of a word in the title of a resource makes it more likely that a user also
chooses the plural form as a tag and vice versa. According to Lipczak and
Milios, 15-26% of the tag assignments also occur in the title of a resource.

4.3.2 Tagging Models

Our Epistemic Dynamic Model, initially described in [26] in 2008, has not
been the first nor the last tagging model described in the literature. Several
authors have developed models that can be used for simulating the tagging
process, and that try to increase our understanding of it. In the following,
we describe the most important tagging models currently discussed in the
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literature. Tab. 4.5 summarizes which influence factors they model, and
against which observable properties they have been evaluated. The table
also includes our own Epistemic Dynamic Model.

Polya Urn and/or Simon Model

One of the earliest works in the field of tagging models is the work of Golder
and Huberman in [38]. They assume that there are two basic factors that
influence users during assigning tags to a resource: On the one hand, they
assume that a user selects a tag based on his/her background knowledge
about the content of the resource. On the other hand, the user is exposed to
previous tag assignments of other users that he/she may simply imitate in
order to reduce the effort required for assigning own tags. Nevertheless, the
model of Golder and Huberman only includes the imitation of previous tag
assignments. They have not modeled the influence coming from the shared
background knowledge of the users.

The model of Golder and Huberman corresponds to the stochastic Polya
Urn Model originally described in [30]. The model is best explained by the
metaphor of an urn containing balls with different colors. In each step of the
simulation, a ball is selected from the urn and then it is put back together
with a second ball of the same color. Transfered to the simulation of tag
streams, the different colors of the balls correspond to the distinct tags in
a stream. In [30], it has been shown analytically that the fraction of balls
of a given color stabilizes over time. The model may thus be suitable for
explaining the emergence of stable tag frequencies (see Section 3.2).

One major drawback of the Polya Urn Model is that it assumes a fixed
vocabulary size because no balls with previously unknown colors are added
during the experiment. This restriction of the original Polya Urn Model is
removed in the Simon Model [103], which assumes that with a low prob-
ability of p balls with new colors are added to the urn. Thus, the Simon
Model leads to a linear growth of the vocabulary size. Furthermore, it has
been shown in [103] that for the Simon Model the frequency distribution
converges to a plain power-law. Thus, it is not able to explain the cut-off
for the most frequent tags that can be observed in the Zipf plot of the tag
frequency distribution (see Section 3.2).

All in all, Golder and Huberman conclude from their findings that the
collaboration of users in form of imitating one another’s tags is an impor-
tant driving factor behind the stability observed in tagging systems. Nev-
ertheless, they also state that shared knowledge may also contribute to the
stability because the stability also persists for less common tags that are not
suggested to the users in the user interface of Delicious.



Influence Factors

Modeled Properties

o, el Pl T | g Py ot
Polya Urn Model [30, 38] v v v
Simon Model [103] v v v
Yule-Simon Model w. Memory [19] v v
Halpin et al. Model [42] v v v v
Organizing Model [88] v v v v
Semantic Walker Model [18] v v v
Semantic Imitation Model [34] v v v v v v

v v

Multinomial Tagging Model [98, 99]

Epistemic Dynamic Model

v

v

v

v

Table 4.5: Overview of the influence factors implemented in different tagging models described in the literature. Furthermore,

it is given against which observable properties the models have been evaluated.
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Yule-Simon Model with Memory

In [19], Cattuto et al. propose the Yule-Simon Model with Memory, which
is a variation of the Simon Model. Like the Simon Model, it assumes that
with a low probability of p,s a new tag is invented by the users. Thus,
also the Yule-Simon Model with Memory leads to a linear growth of the
vocabulary size. But when imitating a previously used tag, the Yule-Simon
Model with Memory takes the order of the tags in the stream into account.
Instead of imitating all previous tag assignments with the same probability
it introduces a kind of long-term memory. The long-term memory provides
a fat-tailed access to the previous tag assignments, i.e. the probability of
selecting a tag assignment located x steps into the past is given by a function
Q¢(x) that returns a power-law distribution of the selection probabilities:

Qua) = A1) (4.1)

T+ T

In this formula, ¢ is the number of tag assignments already simulated
and a(t) is a normalization factor so that > _, Q;(z) = 1. The parameter
T is the characteristic time scale over which recently added tag assignments
have comparable selection probabilities. Cattuto et al. suggest in [19] that
the parameter 7 can be interpreted to model the semantic breadth of the
topic currently simulated with the Yule-Simon Model with Memory. The
more general a simulated topic, the higher 7 should be.

All in all, the Yule-Simon Model with Memory is the first model that is
able to reproduce the characteristic slope of the Zipf plot of the tag frequency
distributions with its exponential cut-off for the most frequent tags (see
Section 3.2). Thus, Cattuto et al. conclude from their findings that the cut-
off in the observed tag distributions should be attributed to the long-term
memory of the users.

Halpin et al. Model

In [42], Halpin et al. propose a model that offers an information theoretic
perspective on the tag selection process of a user. In this model, users not
only collaborate by imitating one another’s previous tag assignments but
they also select tags based on their expected information theoretic value, i. e.
whether the tags help to quickly find the tagged resource. The information
theoretic value is used for modeling the personal organization objective of
users.

In the Halpin et al. Model, the imitation of the previous tag assignments
of other users is modeled as a Simon Model (see above). The Simon Model
is then amended with a model for selecting tags based on their information
theoretic value. The information theoretic value of a tag is 1 if it can be
used for selecting an cognitively appropriate number of resources, such as
the number of resources that fit on the screen. In practice, the number may
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vary between the users depending on which number of resources is perceived
as being appropriate. In terms of the tagging styles described in [62], this
modeled behavior corresponds to a categorizing user (cf. Section 4.3.1).

All in all, Halpin et al. show in their evaluation that the model leads to
a plain power-law distribution, i.e. it does not reproduce the exponential
cut-off for the most frequent tags in the Zipf plot of the tag frequency dis-
tribution. Furthermore, it only leads to a linear growth of the vocabulary
size. Thus, with regard to explaining these two observable properties, the
Halpin et al. Model has no advantages over the plain Simon Model. Thus,
the selection of tags based on their information theoretic value only seems
to have a minor influence on these properties.

Organizing Model

In [88], Rader and Wash propose the Organizing Model, which integrates
the influence coming from a user’s personal organization objective, and the
influence coming from the shared background knowledge of the users. The
personal organization objective is modeled by a preference of the users to
reuse tags from their own vocabulary. In the Organizing Model, users have
a 50% chance that they reuse tags that they previously applied to another
web page. If a user does not reuse previous tags then the tags are chosen
from the user’s background knowledge.

The shared background knowledge is simulated by randomly drawing a
tag from a power-law distribution. This approach is very similar to what is
described in Subsection 4.1.2. But instead of drawing from an empirically
observed distribution, like we do in our Epistemic Dynamic Model, Rader
and Wash draw from an artificially generated power-law distribution. In
[88], it is not explained which exponent has been used for generating this
artificial power-law distribution.

In [88], Rader and Wash have evaluated their model for two different
observable properties, namely the tag frequency distribution and the inter-
user agreement. The inter-user agreement measures how often different users
chose the same tag for describing a resource. The inter-user agreement is
influenced by the tag frequency distribution. For example, given a power-
law distribution, the inter-user agreement depends on the exponent of the
distribution.

Rader and Wash show in their evaluation that the Organizing Model
is able to reproduce a power-law like tag frequency distribution as well as
the level of inter-user agreement, which can be observed in tagging systems.
Overall, Rader and Wash conclude from these results that it is plausible
to assume that idiosyncratic processes, as they are driven by a personal
organization objective, influence the tag choice strategy of users. Based on
the evaluation results, the shared background knowledge of users seems to
explain that the tag frequency distribution belongs to the family of power-
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law distributions. The influence from the personal organization objective
of the users then leads to the concrete power-law exponent that is typically
observed in tagging systems.

Semantic Walker Model

In [18], Cattuto et al. propose the Semantic Walker Model. 1t only models
the influence coming from the shared background knowledge of the users.
The general idea of the Semantic Walker Model is to model the tagging
process as an exploration of a semantic network that represents the shared
background knowledge of the users. In Subsection 4.1.2, we have used the
Semantic Walker Model for providing an alternative implementation of the
building block in our Epistemic Dynamic Model that is used for simulating
the background knowledge of the users. More details about the Semantic
Walker Model are available in Subsection 4.1.2 on page 47.

During their evaluation of the Semantic Walker Model, Cattuto et al.
consider the sublinearity of the vocabulary growth (see Section 3.3) and
several properties that are suitable for characterizing the co-occurrence net-
work generated during the tagging process (see Section 3.4). The Semantic
Walker Model is the second model, together with our Epistemic Dynamic
Model, which is able to explain the sublinear vocabulary growth. Cattuto
et al. also analyze how the semantic network influences the simulated prop-
erties. They conclude that the nodes in the semantic network need to have
a finite average degree and that the semantic network needs to have a small
diameter in order to reproduce the observed properties, including the sub-
linearity of the vocabulary growth. These results suggest that most of the
properties emerging in tagging systems are mainly caused by the structure
of the users’ background knowledge.

Semantic Imitation Model

In [34], Fu et al. propose the Semantic Imitation Model. The Semantic Imi-
tation Model models the tag assignment process by means of a probabilistic
topic model [12]. According to the model, users try to infer the topics of a
resource by means of the words contained in the resource’s content and by
means of the tags already assigned by other users. The user then assigns
those tags to the resource that will help him/her in the future to recon-
struct the previously inferred topics. The Semantic Imitation Model thus
models the influence of the shared background knowledge as well as of the
collaboration and the personal organization objective of the users.

In the Semantic Imitation Model, the background knowledge of users
corresponds to two probability distributions p(c|w) and p(wl|c). p(clw) is
used for inferring a resource’s topics ¢ from the words w in the content of
the resource and from the tags already assigned by other users. p(w|c) is
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then used for determining the words w that should be assigned as tags to the
resource. The collaboration is modeled by applying p(c|w) not only on the
content of the resource but also on the already assigned tags. The personal
organization objective is modeled by selecting tags according to p(w|c) that
maximize the probability that the user can later correctly reconstruct the
previously inferred topics of the resource.

The Semantic Imitation Model is the only model that explicitly models
the content of a resource as a distribution of words. But also the Seman-
tic Imitation Model only covers the indirect influence of the content (see
Subsection 4.3.1) because its influence is mediated through the background
knowledge of the users. Nevertheless, it is the first model that uses an ob-
servable variable, i.e. the word distribution of the resource’s content, for
modeling this influence. All other models only use non-observable variables
corresponding to the semantic breadth of the content, e.g. 7 in case of the
Yule-Simon Model with Memory, or d in case of our extended version of the
Semantic Walker Model (see Subsection 4.1.2 on page 47).

Allin all, the evaluation in [34] shows that the Semantic Imitation Model
is able to reproduce the power-law like tag frequency distribution with ex-
ponential cut-off for the most frequent tags. Furthermore, it also predicts a
stabilization of the tag frequencies that is similar to what can be observed
in tagging systems. Later, in [35], Fu and Dong have shown for a slightly
modified version of the Semantic Imitation Model that it can predict the
vocabulary size of users in an artificial tagging experiment. The evaluation
results suggest that the internal knowledge structures p(c|lw) and p(w|c) are
the parameters with the most influence on the tagging process.

Fuzzy Trace Multinomial Model

In [99], Seitlinger and Ley propose a Fuzzy Trace Multinomial Model that
hypothesizes on the cognitive backgrounds of how users are influenced in
their tagging decision by being exposed to the tags of other users. In general,
the Fuzzy Trace Multinomial Model distinguishes between the explicit and
implicit processing and/or imitation of tags that the user has seen prior to
his/her tagging decision: If a user explicitly processes a tag then it increases
the probability that the user reminds the exact verbal form of the tag during
his/her tagging decision. In contrast, if a user implicitly processes a tag then
this leads to an activation of the tag itself as well as of semantically related
tags in the background knowledge of the user.

The influence of the explicit and implicit processing of tags is compara-
ble to the direct and indirect influence of the resources’ content discussed
in Subsection 4.3.1. Seitlinger and Ley show in [99] that it is possible to
distinguish between the explicit and implicit processing with the help of a
user experiment. The data from the experiment can be used for estimating
the probabilities with which users either explicitly or implicitly process the
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tags. Seitlinger and Ley conclude that the explicit processes have a stronger
influence on a user’s tagging decision than the implicit processes.

Models Similar to the Epistemic Model

Shortly after we have published our initial idea of the Epistemic Dynamic
Model in June 2008 in [26], Rader and Wash have presented their Imitation-
Popular Model in [88] together with their Organizing Model (see above).
The Imitation-Popular Model is very similar to the configuration of the
Epistemic Dynamic Model from Subsection 4.2.1 that uses empirically ob-
served word frequency distributions for simulating the shared background
knowledge of users. The most important difference to our configuration of
the Epistemic Dynamic Model from Subsection 4.2.1 is how the shared back-
ground knowledge is simulated. We use empirically observed word frequency
distributions. In contrast, Rader and Wash use artificially generated power-
law distributions for which they do not specify the used exponent. From
their description it does not become clear whether this exponent is a free
parameter of the model that can be adapted to the simulated co-occurrence
streams or whether it is fixed to some specific value.

Furthermore, Vojnovic et al. have presented their User’s Choice Model
in [116]. Again, it is very similar to the configuration of our Epistemic
Dynamic Model from Subsection 4.2.1. Its main difference to our model is
with regard to which frequency distribution is used for simulating the shared
background knowledge of the users. In [116], the frequency distribution is
not restricted to a power-law. Instead, any kind of distribution can be used.
But the work in [116] also has another objective than our work: We use the
model for reproducing and explaining observable properties. In contrast,
in [116] Vojnovic et al. analyze the mathematical properties of the User’s
Choice Model, e. g. whether one can reconstruct the “true rankings” of tags
when users are influenced by the suggestion of popular tags. Vojnovic et
al. define the true rankings to be the rankings of the tags as they would
emerge from the background knowledge of the users. This analysis becomes
important in the context of Chapter 6 where we evaluate how the suggestion
of popular tags influences the indexing quality in tagging systems.

4.3.3 Summary

In this section, we have presented an overview of further influence factors on
a user’s tagging decision that are discussed in the literature. Furthermore,
we have presented an overview of the most important tagging models from
the literature. For the tagging models, we have described their general idea
as well as (1) which influence factors on the users’ tagging behavior they
model, and (2) against which properties of observed tagging behavior they
have been evaluated. A summary of this information is available in Tab. 4.5.
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Historically, the research on tagging models started with very simple
models, like the Polya Urn Model suggested by Golder and Huberman in
[38], which only focus on modeling the collaboration between users. The
intuition behind these models is that the collaboration is able to explain the
emergence of a consensus between users about how to describe resources.
Consequently, the models have been used for analyzing how the collaboration
affects properties like the tag frequency distribution or its stabilization over
time.

But the results of more recent models suggest that the background
knowledge of the users is the factor that most influences the tagging be-
havior of the users and the principal nature of the observed properties.
For example, only models that include the background knowledge, i.e. the
Semantic Walker Model as well as our Epistemic Dynamic Model, are suc-
cessful in reproducing the sublinear vocabulary growth in tagging systems.
Furthermore, it seems that the exponential cut-off for the most frequent tags
is also caused by the structure of the users’ background knowledge (cf. the
Semantic Walker Model, the Semantic Imitation Model and our Epistemic
Dynamic Model). The collaboration between the users only seems to be
able to change details of the properties, e. g. the exponent of the power-law
like tag frequency distributions, but not their principal nature.

An alternative explanation for the exponential cut-off of the tag fre-
quency distribution is provided by the Yule-Simon Model with Memory. It
attributes this effect to the long-term memory of the users. But during our
evaluation in Chapter 5, we show that the Yule-Simon Model with Memory
can not as good reproduce the observed tag frequency distribution as our
own Epistemic Dynamic Model. In this light, the explanation provided by
our Epistemic Dynamic Model seems more plausible than that provided by
the Yule-Simon Model with Memory.

With regard to which influence factors are required for explaining the
observable properties of tagging systems it seems reasonable that all four in-
fluence factors currently discussed in the literature are required for covering
the complete dynamics in tagging systems. But it depends on the observable
properties and also on the specific view on tagging systems, which of the
influence factors are more important. The evaluation results of the current
tagging models suggest that especially the shared background knowledge,
which also includes the indirect influence of the resources’ content, and the
collaboration between users are important for explaining the emergence of
the tag frequency distribution and the vocabulary growth in co-occurrence
and resource streams. The influence of the personal organization objective
of the users may become more important when looking at the properties in
user streams.



Chapter 5

Evaluation of the Epistemic
Model

In the previous chapter, we have presented our Epistemic Dynamic Model
of tagging systems. It is based on the assumption that users are influenced
in their tagging decision by (1) their shared background knowledge and
language, and (2) by being exposed to the tags of other users. The model
corresponds to a theory about how these influence factors interact with each
other and how their interaction leads to the emergence of the macro-level
properties of tagging systems described in Chapter 3.

In Section 4.3, we have presented competing models that have been
designed with the same objective as the Epistemic Dynamic Model, i.e.
to explain how the interaction of influence factors leads to the emergence
of specific macro-level properties. Given such a list of competing models,
how can we evaluate whether it is rational to prefer one model over another
model? In such a case, Popper [86] suggests to develop test statements whose
truth or falsity can be checked for the different models (see also Section 1.1).
We shall then prefer those of the competing models “whose falsity has not
been established” [86, p. 8] by the test statements.

In case of tagging models, natural test statements are whether the models
are able to reproduce properties that can be observed in tagging systems.
Such test statements are natural because they are connected to the initial
objective of using the models to explain the emergence of specific properties.
In Fig. 5.1, the general idea of this evaluation methodology is shown. It can
be used for comparing models with each other that try to explain the same
properties. Thus, our Epistemic Dynamic Model is in principle comparable
to models that also target the tag frequency distribution or the sublinear
vocabulary growth.

The remainder of this chapter is structured as follows: In Section 5.1,
we start with an overview of different methods for evaluating the truth or
falsity of our test statements. Then, in Section 5.2, we explain the different
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Figure 5.1: Methodology for evaluating tagging models that try to explain
the emergence of specific properties in tagging systems. It is checked in how
far the same properties emerge in the simulated tagging behavior as in the
real tagging behavior.

measures that we use during our evaluation. In Section 5.3, we present the
outline of our evaluation. The outline gives an overview of the compared
models and the objectives of the comparison. In Section 5.4, we present the
evaluation results of the different configurations of our Epistemic Dynamic
Model, of the Yule-Simon Model with Memory and the Semantic Walker
Model. Finally, in Section 5.5 we discuss our evaluation results.

5.1 Comparing Simulated and Observed Proper-
ties

In this thesis, we evaluate tagging models by testing whether they are able to
reproduce properties that can be observed in tagging systems (cf. Fig. 5.1).
This kind of test is also commonly used in the literature about tagging mod-
els. The intuition of this test is, the more accurate a model can reproduce
the observed properties, the better is the model capturing the processes that
lead to the emergence of the observed property.

Although the evaluations of the models described in Section 4.3 are all
based on this method, they still differ in the properties against which the
models are evaluated. The choice of the property depends on the original ob-
jective of the respective model. For example, our Epistemic Dynamic Model
and most of the other tagging models from Tab. 4.5 have been designed for
explaining the emergence of the tag frequency distribution, and how it is
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influenced by different factors. Two tagging models are only comparable if
they target the same property.

Furthermore, the evaluations differ in how the simulated and the ob-
served properties are compared to each other. Three different methods are
used in the literature about tagging models:

1. Analytical Evaluation: This method is used for showing mathemat-
ically that the simulated tagging behavior has certain properties. For
example, for the Polya Urn and the Simon Model it has been shown in
[30, 103] that the models are able to explain power-law tag frequency
distributions. But the problem of the analytical evaluation is that
it can only be used for showing properties of the simulated tagging
behavior. For comparing the simulated and the observed tagging be-
havior, one has still to use one of the other two evaluation methods
described in the following.

2. Visual Comparison: For the visual comparison, the selected prop-
erty of the simulated and the real tagging behavior is visually plotted.
For example, the simulated and the observed tag frequency distribu-
tion may be plotted together in a Zipf plot (see Section 3.2). The
closer together the plots are visually, the better is the model in repro-
ducing and explaining the emergence of the respective property. The
problem with this technique is that it only provides a rather subjective
and very coarse measure of the goodness-of-fit between the simulated
and the observed property.

3. Goodness-of-Fit Tests: Goodness-of-fit tests consist of two consec-
utive steps. In a first step, an objective measure of distance between
the simulated and the observed property is defined and applied on
the data. The outcome of this first step already provides a relative
measure of the goodness-of-fit to an observed property, i.e. it may be
used for objectively deciding which of two competing tagging models
provides a better fit. Then, in a second step, this distance may be
used for computing an absolute measure of the goodness-of-fit, i.e. it
can objectively be decided whether the simulated and the observed
property are statistically indistinguishable or not. While the first step
can be applied on any property, e.g. on the vocabulary growth, the
second step can only be applied on properties that can be represented
as probability distributions, e.g. on the tag frequency distribution.

In this thesis, we use a goodness-of-fit test for evaluating the different
configurations of our Epistemic Dynamic Model and for comparing them
to models described in the literature. The reason for this decision is that
only goodness-of-fit tests can be used for objectively comparing two com-
peting models. In contrast, the visual comparison of simulated and real
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properties can only be used for getting a first intuitive impression of the
ability of a model to reproduce the respective property. Nevertheless, most
of the tagging models reported in the literature have been evaluated with
the visual comparison method, sometimes in combination with an analytical
evaluation. Only Rader and Wash have used goodness-of-fit tests in their
evaluation [88].

5.2 Evaluation Measures

Most of the models described in the literature, including our own Epistemic
Dynamic Model, have been designed with the objective to explain the emer-
gence of the tag frequency distribution in tagging systems (see Tab. 4.5).
Thus, we primarily use the tag frequency distribution for comparing our
Epistemic Dynamic Model to the other models. Only for the Semantic
Walker Model we also include the sublinear vocabulary growth into our
evaluation and comparison to the Epistemic Dynamic Model. Accordingly,
we distinguish between measures of the goodness-of-fit of the simulated tag
frequency distributions (Subsection 5.2.1), and measures of the difference be-
tween simulated and observed vocabulary size and growth (Subsection 5.2.2).

5.2.1 Comparing Tag Frequency Distributions

When we speak of tag frequency distributions, we imply a certain stochastic
view on the process of assigning tags to resources. In this stochastic view,
tag assignments are modeled as a stochastic experiment that consists of
randomly drawing for each of the distinct tags its usage frequency in the
stream. The frequencies of the tags then sum up to the length of the stream.
Modeling the tag frequencies in a stream as a stochastic experiment is a
prerequisite for applying statistical methods like goodness-of-fit tests.

During our stochastic experiment, the frequencies of the tags can be
described in form of their probability function f(x), which gives the prob-
ability of drawing a tag that has the frequency x. Because tag frequencies
are measured on an ordinal scale, i.e. we can arrange them from the small-
est to the largest value, we can furthermore define the distribution function
F(x) =), f(t), which describes the accumulated probability of observing
a tag that has a frequency of x or higher.

Of course, if we use tagging models for simulating tag streams, we are
not really drawing the tag frequencies from an explicitly defined distribution
function F'(x). The distribution function is only implicitly defined by the
tagging model and the chosen parameter values. Instead, we empirically
observe tag frequencies in the simulated tag stream. The same holds for
the real tag streams, where we also only empirically observe tag frequencies.
These empirically observed tag frequencies can be used for constructing
the empirical distribution function S(z). For a tag stream with n distinct
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Figure 5.2: Zipf plot (left) and empirical distribution function S(z) (right)
of the tag frequency distribution of the filtered ringtones and social streams
from Tab. 3.2. Zipf plots are the most common representation of the tag fre-
quency distribution in the literature about tagging systems. The empirical
distribution function S(x) forms the basis for applying statistical methods
during our evaluation.

tags and the tag frequencies z; € N;7 = 1,...,n, the empirical distribution
function S(x) is a step function defined by Equation 5.1.

;>
S(z) = number of z; > x (5.1)

n

The empirical distribution function gives the probability of observing a
tag that occurs at least x times. In Fig. 5.2, this view of the tag frequency
distribution in form of its empirical distribution function is compared to the
previously used representation in form of a Zipf plot (cf. Fig. 3.5). Like for
the Zipf plots, we also use a logarithmic scaling of the axes for the plots of
the empirical distribution function so that a power-law distribution results
in a straight line.

Given this view on the tag frequency distributions in form of their em-
pirical distribution functions, we can now use statistical goodness-of-fit tests
for comparing a simulated to a real tag frequency distribution. In the fol-
lowing, we use the Smirnov test [23, p. 456ff] for this purpose. The Smirnov
test is a nonparametric test for comparing in how far two empirical dis-
tribution functions Sj(x) and Sa(x) can possibly be drawn from the same
unknown distribution function F'(z). In our case, Si(x) and Sa(x) are based
on the tag frequencies observed in a simulated and a real tag stream. The
Smirnov test has to be preferred over other tests if non-normal distributions
are tested, like the heavy-tailed tag frequency distribution, and if at least an
ordinal measurement scale is used. Examples of the usage of the Smirnov
test are available in [22, 88]. In [22], it is used for evaluating whether ob-
served distributions follow a power-law. In [88], it is used for evaluating the
Organizing Model (see Subsection 4.3).
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Given two empirical distribution functions S (x) and Sz(x), the Smirnov
test first measures the maximum distance D between the two functions:

D= max |Si(x)— S(z)] (5.2)
—oo<x <00

This distance D can be used in two ways: First, we can compare the
distances achieved by different tagging models with each other. One model
provides a better explanation for the emergence of the tag frequencies than
another model if it achieves lower distances between the simulated and the
real tag frequency distributions. Second, we can also compute the level of
significance p of a concrete D value. A low p-value provides evidence of a
discrepancy between the two compared distributions that goes beyond what
would be expected if Si(z) and S2(z) are two independent empirical ob-
servations of the same, unknown distribution function F'(z). In contrast, a
high p-value means that the compared distributions are consistent with the
hypothesis that they are empirical observations of the same, unknown distri-
bution function. Given the distance D between two mutually independent
empirical distribution functions Si(z) and S2(x), the level of significance p

can be computed as follows [87, p. 624]:

p = Qs([v/Ne +0.12+0.11/y/N,]D) (5.3)

Q@s is a monotonic function with the limiting values @Qg(0) = 1 and
Qs(c0) = 0. N, is a normalization factor that accounts for the size of the
data sets. If Si(x) contains n distinct tags and Sa(x) contains m distinct
tags, then Qg(\) and N, are defined as follows:

o0

Qs(N) = 2D (~1)i e ¥ (5.4)
Jj=1
N, = :Jr"?; (5.5)

Given this p-value, one would typically reject the hypothesis that S;(x)
and Sa(z) are empirical observations of the same F(z) if p < 0.1. For
p > 0.1 the hypothesis would be accepted (cf. [79]). If Si(z) and S2(x) are
not mutually independent, e. g. if the simulation parameters have been fitted
according to the real distribution, then Equation 5.3 will only give an upper
bound for the actual p-value (cf. [39]). In that case, one can use the p-value
from Equation 5.3 only for rejecting the hypothesis that they are drawn
from the same F(x), i.e. if p < 0.1. In order to accept the hypothesis, we
would have to numerically compute the exact p-value with a Monte Carlo
like approach [22].
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5.2.2 Comparing Vocabulary Size and Growth

In the introduction to this section, we have said that we primarily use the
tag frequency distribution for comparing our Epistemic Dynamic Model to
the other models. But in [5, 113] it has been shown that there exists a
relationship between the tag frequency distribution and the vocabulary size
and growth (see Section 3.3 and Fig. 3.7). Thus, depending on the tag
frequency distribution F'(x), we expect to observe a certain vocabulary size
|T| in a tag stream with |Y'| tag assignments. For example, in [5, 113] it has
been shown that |T'| ~ |V |/ if F(z) ~ 2~

How |T'| and |Y| are exactly correlated with each other depends on the
actual distribution function F'(x). In our case, F'(x) is unknown. Neverthe-
less, due to this correlation, we expect to observe comparable vocabulary
sizes in two streams that contain the same number of tag assignments, given
that the tag frequencies are empirical observations of the same F'(z). The
larger the difference in the final vocabulary size of two streams, the more
unlikely they are empirical observations of the same F(x).

In this thesis, we use two different measures that give an impression of
how well the different models explain the emergence of a certain vocabulary
size and growth. They are both based on Equation 5.6 for calculating the
difference A; between the real and the simulated vocabulary size at the time
of tag assignment 4:

|-y
Ty

ast ’

A (5.6)

In Equation 5.6, |T?| is the vocabulary size after i tag assignments in the
simulated stream. |T?| is the vocabulary size that can be observed after i tag
assignments in the real stream. |T} | is the final vocabulary size observed
at the end of the real stream. During our evaluation, we report the following
two concrete measures:

e First, we report Aj.s for all evaluated models. It gives the difference
between the simulated and the real vocabulary size at the end of the
stream.

e Second, we report A, for all evaluated models that are able to
explain the emergence of a sublinear vocabulary growth. A, corre-
sponds to the A; value where |A;| reaches its maximum.

The sign of Ay and A indicates whether the simulated vocabulary
size is above (+) or below (—) the real vocabulary size at that point in
time. Ay.e is reported for all evaluated models, irrespective of whether
they simulate a sublinear vocabulary growth or whether they approximate
it with a linear vocabulary growth. Even if a linear vocabulary growth
is simulated, it is reasonable that the simulation should approximate the
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vocabulary size observed in real streams. In contrast, A, is only reported
for models that simulate a sublinear vocabulary growth because only there
we can reasonably expect that the vocabulary size is not only approximated
at the end of the stream but over the whole stream.

In case of the tag frequency distribution (see Subsection 5.2.1), we apply
statistical goodness-of-fit tests. Such goodness-of-fit tests are not only able
to report the raw difference, i.e. D in case of the Smirnov test, but also
the level of significance p. For Ay, and A4 we are not able to compute
such a level of significance because neither the final vocabulary size nor the
vocabulary growth can be viewed as a stochastic experiment, which is a
prerequisite for computing the level of significance.

5.3 Evaluation Outline

In Section 5.4, we evaluate our Epistemic Dynamic Model and compare it
to models described in the literature (see Tab. 4.5). The evaluation can be
divided into three steps, which fulfill different objectives:

In a first step, we evaluate in how far we can explain the emergence of
the tag frequency distribution and of the sublinear vocabulary growth (see
Chapter 3) with the influence coming from the shared background knowledge
of the users and the imitation of tag recommendations. This is done by eval-
uating the Epistemic Model with Word Frequencies from Subsection 4.2.1.
The evaluation of the Epistemic Model with Word Frequencies is used as
a benchmark against which we compare the evaluation results of the other
models that are evaluated in the subsequent steps.

In a second step, we evaluate in how far the black box implementation of
the background knowledge as random draws from word frequencies is equiv-
alent to the implementation of the background knowledge that is based on
random walks in semantic networks. For this purpose, we evaluate whether
the Epistemic Model with Semantic Networks (see Subsection 4.2.2) achieves
evaluation results comparable to those of the Epistemic Model with Word
Frequencies.

In a third step, we evaluate in how far the Epistemic Model with Word
Frequencies and the Epistemic Model with Semantic Networks are minimal
models, i.e. we evaluate whether really both of their influence factors are
required for explaining the emergence of the tag frequency distribution and
the sublinear vocabulary growth. For this purpose we compare the results
from the first two steps to evaluation results achieved for the Natural Lan-
guage Model (see Subsection 4.2.3), the Semantic Walker Model [18] and the
Yule-Simon Model with Memory [19]. The Natural Language Model and the
Semantic Walker Model are representative for models that only include the
influence from the shared background knowledge of the users. The Yule-
Simon Model with Memory is representative for models that only include
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Model Name Tag Frequencies  Vocabulary Growth
Polya Urn Model [30, 38] ° fixed size
Simon Model [103] ° linear
Yule-Simon Model with n linea
Memory [19] weat
Halpin et al. Model [42] o linear
Organizing Model [88] + N/A
Semantic Walker Model .

+ sublinear
[18]
[S?)ei]nantlc Imitation Model n N/A

Table 5.1: Evaluation results reported in the literature for the models from
Tab. 4.5 for the properties from Chapter 3. The Multinomial Tagging Mod-
els are excluded from this overview because they neither target the tag
frequency distribution nor the vocabulary growth. For the tag frequency
distribution, it has been visually evaluated whether a power-law like distri-
bution with exponential cut-off is reproduced (+) or whether only a plain
power-law without the cut-off (o). With regard to reproducing the sublinear
vocabulary growth, no information is available from the respective papers
about the Organizing Model and the Semantic Imitation Model.

the influence of imitating tags of other users. We do not explicitly compare
our Epistemic Model to the Polya Urn Model [30, 38] and the Simon Model
[103], which are also only modeling the influence of imitating tags, because
already based on the available literature it can be seen that they are outper-
formed by the Yule-Simon Model with Memory with regard to explaining
the tag frequency distribution (see Tab. 5.1).

In Tab. 5.1, three further models are listed that have not yet been con-
sidered in our three step evaluation plan, namely the Halpin et al. Model
[42], the Organizing Model [88] and the Semantic Imitation Model [34]. All
three models include, amongst others, the personal organization objective of
the users (see Subsection 4.3 and Tab. 4.5) but only the Organizing Model
and the Semantic Imitation Model are able to explain power-law like tag
frequency distributions with exponential cut-off. Comparing our Epistemic
Dynamic Model to these two models would be a reasonable next step for
showing whether the personal organization objective of users is able to ex-
plain additional observations whose emergence can not be explained with
our Epistemic Dynamic Model. But this step is out of the scope of this
thesis and is subject to future research.
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5.4 Results

In the following, we report the evaluation results for our Epistemic Model
and for models from the literature. The structure of this section follows the
evaluation outline described in Section 5.3. For each model, we evaluate its
ability to reproduce the tag frequencies and the vocabulary growth of the
co-occurrence streams that we extracted from Delicious and Bibsonomy (see
Tab. 3.2 in Section 3.1).

5.4.1 Fitting of Model Parameters

Most of the evaluated models have free parameters whose values can not be
determined a-priori. Instead, they have to be fitted to the observations in the
respective co-occurrence stream. Thus, during the evaluation we systemati-
cally test the parameter space created by a model’s free parameters in order
to find the best fitting parameter combination. For each parameter com-
bination, several repeated simulations are done. This is necessary because
due to the stochastic nature of the models there might be larger fluctuations
between the single simulations with the same parameter combination.
From the measurements for the repeated simulations with the same pa-
rameter combination we report in the following the median value. The num-
ber of simulation runs per parameter combination is dynamically adapted
to the variance between the single results. The simulations and measure-
ments for a parameter combination are stopped when the upper and lower
bound of the median’s 95% confidence interval differs by less than 2%. In
the following, we do not report the upper and lower bound of the confi-
dence interval but only the single, empirically computed median value. The
confidence interval is computed with the method described in [23, p. 143f].
The more free parameters a model has, the larger is the search space for
the best fitting parameter combination. The search space can be narrowed
down by using the relationship between the vocabulary size and the tag
frequency distribution (see Subsection 5.2.2). This relationship implies that
we can only reproduce the tag frequency distribution if we also reproduce
the vocabulary size and/or growth. Accordingly, we first identify the region
in the search space where the simulated and real vocabulary size and/or
growth are comparable to each other. In this region, we then search for
the parameter combination with the best fitting tag frequency distribution.
During our evaluation, we use a 10% difference between simulated and real
vocabulary size and/or growth as a threshold for identifying the relevant
region. For models that reproduce a sublinear vocabulary growth, we check
this threshold for the whole stream by using |A;,4.| < 0.1. For models that
reproduce a linear vocabulary growth, we check only the final vocabulary size
with |Ajgst| < 0.1. If no such region can be identified, then only parameter
combinations are tested where |A,q2| or [Agst| is minimized.
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Tag Frequencies | Vocab. Growth Free Parameters
stream D P Aoz Dast I n h
ringtones 0.0497 0.0 0.48 0.46 0.97 1,500 11,000
setup 0.0288 0.03 -0.09 0.08 0.905 1,000 5,000
boat 0.0181 0.37 | -0.10 0.02 0.685 1,000 3,000
historical 0.0123 0.86 0.10 0.09 0.505 2,000 5,000
messages 0.0152 0.85 0.07 0.04 | 0.51 500 1,000
decorative 0.0546 0.03 -0.20  -0.20 0.96 200 1,000
costs 0.0118 0.99 0.09 0.08 0.475 2,000 5,000
fif 0.0244 0.72 0.10 0.10 0.635 1,000 3,000
checkbox 0.0492 0.51 0.64 0.62 0.97 150 1,000
datawarehouse | 0.0687 0.06 -0.10 0.02 0.9 200 1,000
tools 0.0631 0.0 0.08 -0.06 0.94 1,000 5,000
social 0.0568 0.0 0.09 -0.02 0.765 2,000 7,000
design 0.0394 0.03 0.10 0.00 0.84 750 3,000
analysis 0.0805 0.0 0.34 -0.07 | 0.97 200 1,000
blogs 0.0374  0.09 0.10 -0.08 0.775 750 3,000

Table 5.2: Evaluation results for the Epistemic Model with Word Frequen-
cies. Highlighted are the D values for the co-occurrence streams from Deli-
cious (top) and Bibsonomy (bottom) where this configuration of the Epis-
temic Model achieves the lowest D value of all evaluated models. Further-
more, the p-values are highlighted for which it can not be safely rejected
that simulated and real tag frequencies are drawn from the same distribu-
tion function, i.e. where p > 0.1. Finally, all Ay, and Ajee values are
highlighted where the simulated vocabulary size and growth differs by at
most £10% from the real vocabulary size and growth.

5.4.2 The Epistemic Model with Word Frequencies

Tab. 5.2 contains the evaluation results for Epistemic Model with Word Fre-
quencies (see Subsection 4.2.1). This configuration of the Epistemic Dy-
namic Model has three free parameters I, n and h, whose values can not
be determined a-priori but which have to be fitted to the observations in
the respective co-occurrence stream. Especially the two parameters n and
h can not be determined a-priori because they also model in an abstract
way the influence coming from the number of resources aggregated in the
co-occurrence stream and from the semantic breadth of the topic (see Sub-
section 4.1.3). Additionally, this configuration has the empirically estimated
parameters p(s) and p(W|t) for which the distributions from Fig. 4.1 and
Fig. 4.2 are used (see also Tab. 4.2).

For finding the best fitting parameter combination, we have systemati-
cally tested different parameter combinations in the three-dimensional pa-
rameter space spanned by the three free parameters of the model. For the
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parameter we have tested values from I = 0 to I = 0.97 with a step width
of 0.005. For the h parameter, we have tested values from h = 1000 to
h = 31000 with a step width of 1,000. For the n parameter, we have tested
values from n = 100 to n = 5000 with a variable step width: From 100 to
500, we have used a step width of 50. From 500 to 1,000 we have used a
step width of 250. From 1,000 onward we have used a step width of 1,000.
The concrete step widths have been selected during a pretest so that the
measured evaluation results only slightly change between two neighboring
parameter combinations. The search for the best fitting parameter combi-
nation has been restricted to the region where A, < 0.1 or, if no such
region exists, where |A,,4| reaches its minimum.

5.4.3 The Epistemic Model with Semantic Networks

Tab. 5.3 contains the evaluation results of our Epistemic Model with Seman-
tic Networks (see Subsection 4.2.2). Compared to the Epistemic Model with
Word Frequencies, this configuration additionally has the free parameter d
(see Tab. 4.3). For the semantic network g, we have used the Growing Net-
work Model with mgy,,, = 11 for simulating a network with 50,000 nodes
that has properties comparable to the Word Association Norms data set (see
Subsection 4.1.2).

Like for the evaluation in Subsection 5.4.2, we have systematically tested
the four-dimensional parameter space spanned by the free parameters of the
model. For the I, n and h parameters we have used the same parameter
range and step width as in Subsection 5.4.2. For the d parameter, we have
tested values from d = 11 to d = 101 with a step width of 10. The search
for the best fitting parameter combination has been restricted to the region
where Ajuqe < 0.1 or, if no such region exists, where |A;,q.| reaches its
minimum.

5.4.4 The Natural Language Model

Tab. 5.4 contains the evaluation results for the configuration of our Epis-
temic Dynamic Model that corresponds to the Natural Language Model
(see Subsection 4.2.3). In the Natural Language Model, the influence com-
ing from the tag suggestions is deactivated. The Natural Language Model
has no free parameters, which can be tuned according to the observed tag
frequency distributions. The only empirically estimated parameters of the
Natural Language Model are the parameters p(s) and p(W|t) (see Tab. 4.4)
for which the distributions from Fig. 4.1 and Fig. 4.2 have been used. Thus,
no parameter fitting is necessary for the Natural Language Model.
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Tag Frequencies | Vocab. Growth Free Parameters
stream D D Aoz Dast | 1 n h d
ringtones 0.1595 0.0 0.63 0.63 | 0.805 100 3,000 41
setup 0.0506 0.0 -0.07 0.03 | 0.85 150 1,000 31
boat 0.0163 0.50 0.11 0.07 |0.435 200 1,000 71
historical 0.0115 0.92 | -0.03 -0.02 | 0.42 750 3,000 101
messages 0.0225 0.42 0.07 0.04 | 0.35 1,000 5,000 11
decorative | 0.1440 0.0 0.17 -0.11 | 0.82 100 5,000 21
costs 0.0165 0.87 |-0.05 0.05 |0.35 1,000 3,000 91
ff 0.0202 0.90 |-0.05 0.04 | 0.46 300 1,000 51
checkbox 0.1324 0.0 0.82 0.8 |0.825 100 1,000 11
datawareh. | 0.1552 0.0 -0.11 -0.04 | 0.815 100 1,000 41
tools 0.2096 0.0 0.12 -0.03 | 0.79 100 1,000 11
social 0.0424 0.01 0.10 -0.04 | 0.65 300 1,000 71
design 0.0339 0.10 0.10 0.01 |0.76 1,000 7,000 11
analysis 0.1248 0.0 0.44 0.12 |0.825 100 1,000 11
blogs 0.0229 0.61 0.12 -0.03 | 0.59 750 3,000 31

Table 5.3: Evaluation results for the Epistemic Model with Semantic Net-
works. Highlighted are the D values for the co-occurrence streams from
Delicious (top) and Bibsonomy (bottom) where this configuration of the
Epistemic Model achieves the lowest D value of all evaluated models. Fur-
thermore, the p-values are highlighted for which it can not be safely rejected
that simulated and real tag frequencies are drawn from the same distribu-
tion function, i.e. where p > 0.1. Finally, all Ay, and Ajnee values are
highlighted where the simulated vocabulary size and growth differs by at
most +£10% from the real vocabulary size and growth.
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Tag Frequencies | Vocab. Growth
stream D P JANSGS Ajst
ringtones 0.0827 0.0 4.03 4.03
setup 0.0815 0.0 2.14 2.14
boat 0.0606 0.0 1.04 1.04
historical 0.0770 0.0 0.71 0.71
messages 0.0531 0.0 0.70 0.70
decorative 0.0968 0.0 2.23 2.23
costs 0.1198 0.0 0.71 0.71
ff 0.1648 0.0 1.24 1.23
checkbox 0.1334 0.0 5.24 5.24
datawarehouse | 0.2000 0.0 2.59 2.59
tools 0.2083 0.0 2.34 2.34
social 0.1979 0.0 1.35 1.35
design 0.1644 0.0 1.78 1.78
analysis 0.1327 0.0 2.74 2.74
blogs 0.1949 0.0 1.40 1.40

Table 5.4: Evaluation results for the Natural Language Model. For none
of the streams from Delicious (top) and Bibsonomy (bottom), the Natural
Language Model achieves the lowest D value, compared to all other models,
or stays in the +£10% band around the real vocabulary growth, i.e. for all
streams Ay, > 0.1. The significance value p is 0% for all tested streams,
i.e. there are significant differences between the simulated and the real tag
frequencies.
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5.4.5 The Semantic Walker Model

The Semantic Walker Model, originally described in [18], has the empirically
estimated parameter p(s), which corresponds to the distribution of posting
sizes in Fig. 4.1. Furthermore, it has the free parameter d, which corresponds
to the degree of the start node of the random walks in the semantic network,
and the free parameter g, which corresponds to the semantic network. For
the Semantic Walker Model, two different configurations are tested, which
use different models for simulating the semantic network.

Using the Watts-Strogatz Model

In the first configuration, we use the Watts-Strogatz Model [119] for simulat-
ing semantic networks with 500,000 nodes. The Watts-Strogatz Model has
the free parameters m,s and pys (see Subsection 4.1.2), which influence the
regularity of the semantic network and the average node degree (see [119]).
In [18], the Semantic Walker Model in conjunction with the Watts-Strogatz
Model has led to the best evaluation results. In Tab. 5.5, our evaluation
results for this configuration of the Semantic Walker Model are shown.

For finding the best fitting parameter combination, we have systemat-
ically tested the three-dimensional parameter space spanned by the three
free parameters of the model. For the m,,s parameter, we have tested values
between 4 and 8 with a step width of 1. For the p,s parameter, we have
tested values between 0.01 and 0.2 with a step width of 0.005. In this value
range, the Watts-Strogatz Model generates small-world networks [119] with
a small diameter and high clustering coefficient. For the d parameter, we
have tested values around the average node degree in the simulated semantic
network, i. e. we have tested values between 2 - m,,s — 2 and 2 - my,s + 2 with
a step width of 1. The search for the best fitting parameter combination has
been restricted to the region where A, < 0.1 or, if no such region exists,
where |A, 42| reaches its minimum.

Using the Growing Network Model

In the second configuration, we use the Growing Network Model [106] for
simulating semantic networks with 100,000 nodes. Because we want to use
the Growing Network Model for simulating semantic networks that have
the same properties as empirically observable semantic networks, we fix
the parameter mgp,;, of the Growing Network Model to 11 (see [106] and
Subsection 4.1.2). The Semantic Walker Model in conjunction with the
Growing Network Model has only the free parameter d. For finding the best
fitting parameter value, we have systematically tested different values over
the range of the node degrees in the semantic network, i.e. from d = 11 to
d = 101 with a step width of 5. In Tab. 5.6, our evaluation results for this
configuration of the Semantic Walker Model are shown.
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Tag Frequencies | Vocab. Growth Free Parameters
stream D p Anaz AV d Pws Mays
ringtones 0.1050 0.0 -0.21 -0.14 | 18 0.02 7
setup 0.1326 0.0 -0.10 -0.04 |20 0.04 8
boat 0.1598 0.0 0.11 0.07 |19 0.08 7
historical 0.1756 0.0 -0.04 -0.04 |16 0.11 6
messages 0.1382 0.0 -0.09 -0.09 |12 0.14 4
decorative 0.0649  0.01 -0.25 -0.25 |14 0.035 6
costs 0.1956 0.0 -0.11  -0.03 |10 0.18 4
ff 0.1762 0.0 0.08 0.06 |14 0.105 5
checkbox 0.0798  0.09 0.20 0.17 | 14 0.02 7
datawarehouse | 0.1062 0.0 0.13 0.10 | 15 0.035 6
tools 0.2122 0.0 -0.17 -0.17 |15 0.045 6
social 0.2425 0.0 0.12 0.03 |20 0.065 8
design 0.1808 0.0 0.14 0.02 |15 0.065 6
analysis 0.0560 0.04 -0.45 -0.45 | 18 0.015 8
blogs 0.2100 0.0 -0.20 -0.19 |18 0.0565 8

Table 5.5: Evaluation results for the Semantic Walker Model in conjunction
with the Watts-Strogatz Model for the streams from Delicious (top) and
Bibsonomy (bottom). Highlighted is the D value for the stream where this
configuration of the Semantic Walker Model achieves the lowest value of
all evaluated models. For all tested streams, the significance value p is
below 10%, i.e. there are significant differences between the simulated and
the real tag frequency distributions. Finally, all Ay, and A values are
highlighted where the simulated vocabulary size and growth differs by at
most +£10% from the real vocabulary size and growth.
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Tag Frequencies | Vocab. Growth | Free Parameters
stream D P Apazr Dast d Mgnm
ringtones 0.1564 0.0 3.19 3.19 26 11
setup 0.1702 0.0 1.85 1.85 11 11
boat 0.1608 0.0 0.84 0.84 51 11
historical 0.1779 0.0 0.42 0.41 21 11
messages 0.1573 0.0 0.37 0.37 11 11
decorative 0.2019 0.0 1.87 1.79 31 11
costs 0.2085 0.0 0.40 0.40 16 11
ff 0.2153 0.0 0.74 0.74 16 11
checkbox 0.2250 0.0 4.79 4.79 51 11
datawarehouse | 0.2641 0.0 1.74 1.74 16 11
tools 0.2832 0.0 1.64 1.64 11 11
social 0.2759 0.0 1.06 1.06 11 11
design 0.2377 0.0 1.17 1.16 16 11
analysis 0.2067 0.0 2.04 2.04 16 11
blogs 0.2541 0.0 0.90 0.90 21 11

Table 5.6: Evaluation results for the Semantic Walker Model in conjunction
with the Growing Network Model. For none of the streams from Delicious
(top) and Bibsonomy (bottom), this configuration achieves the lowest D
value, compared to all other models, or stays in the +210% band around the
real vocabulary growth, i.e. for all streams A4, > 0.1. The significance
value p is 0% for all tested streams, i.e. there are significant differences
between the simulated and the real tag frequencies.



84 CHAPTER 5. EVALUATION OF THE EPISTEMIC MODEL

Tag Frequencies | Vocab. Size | Free Parameters

stream D P AV Dys T ng
ringtones 0.1487 0.0 0.10 0.066 400 100
setup 0.1471 0.0 0.09 0.129 500 100
boat 0.1280 0.0 0.10 0.239 500 100
historical 0.0926 0.0 0.10 0.308 500 100
messages 0.1096 0.0 0.09 0.352 480 100
decorative 0.1556 0.0 -0.08 0.159 500 100
costs 0.0509 0.0 0.10 0.382 500 100
ff 0.0705 0.0 0.10 0.332 500 100
checkbox 0.1753 0.0 0.08 0.103 500 100
datawarehouse | 0.0899 0.0 0.06 0.198 500 100
tools 0.0620 0.0 0.08 0.145 460 100
social 0.0655 0.0 0.09 0.242 500 100
design 0.0835 0.0 0.06 0.203 500 100
analysis 0.1559 0.0 -0.08 0.136 500 100
blogs 0.0565 0.0 0.04 0.262 500 100

Table 5.7: Evaluation results for the Yule-Simon Model with Memory for the
streams from Delicious (top) and Bibsonomy (bottom). Highlighted is the
D value for the stream where the Yule-Simon Model with Memory achieves
the lowest value of all evaluated models. The significance value p is 0% for
all tested streams, i. e. there are significant differences between the simulated
and the real tag frequencies. The free parameter p,s has been adapted such
that the simulated vocabulary size differs by at most 10% from the real
vocabulary size, as it is shown by the Ay, values.

5.4.6 Yule-Simon Model with Memory

Tab. 5.7 contains the evaluation results for the Yule-Simon Model with Mem-
ory [19]. As described in Subsection 4.3, the Yule-Simon Model with Memory
has the two free parameters pys and 7. Furthermore, it has the free param-
eter ng, which is used for initializing the simulated co-occurrence stream
with ng tag assignments from the corresponding real co-occurrence stream.
Because a pretest has shown that ng has no influence on the vocabulary size
or the tag frequency distribution in the simulated co-occurrence streams, we
have fixed this parameter to ng = 100.

The Yule-Simon Model with Memory, as it is described in [19], can orig-
inally only simulate postings with size s = 1. In order to make the results
of the Yule-Simon Model with Memory better comparable to the results
achieved for the other models, in this thesis we instead use the empirically
observed distribution of posting sizes from Fig. 4.1. If the simulation would
lead to a duplicate tag within a posting, the duplicate tag is removed and
the corresponding simulation step is repeated.
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For finding the best fitting parameter combination, we have systemati-
cally tested different parameter combinations in the two-dimensional param-
eter space spanned by the two free parameters p,, and 7 of the model. The
free parameter ng has been fixed to ng = 100 (see above). First, we have
identified the region in the parameter space where |Aj,s| < 0.1. Because
the Yule-Simon Model with Memory only reproduces a linear vocabulary
growth, we have only checked the £210% threshold for Ay, 1. e. for the final
vocabulary size, but not for A,q. Then, within this region we have searched
for the minimal distance D between simulated and real tag frequencies.

Given the size |T'| of the vocabulary in a real co-occurrence stream and
the number of tag assignments |Y| in it, we have constrained the parameter
range of the p,s parameter by Equation 5.7. This constraint on p,, enforces
that |Ajgst| < 0.1. The step width for pys has been adapted such that 20
different values have been tested within this range of pys.

0.9-@<ps<1.1-m (5.7)
v ="y

For the parameter 7 we have tested values between 20 and 500 with a
step width of 20. The parameter range has been chosen according to the
numbers in [19] where values between 7 = 40 and 7 = 120 are reported.
We have increased this range in order to be sure to not miss the best fitting
parameters.

5.5 Discussion

In the following, we discuss and compare the evaluation results from Sec-
tion 5.4 for the different models. In Subsection 5.5.1 and 5.5.2, we discuss
the ability of the different models to reproduce the tag frequency distribu-
tion and the vocabulary growth in co-occurrence streams. Then, in Sub-
section 5.5.3, we discuss for our Epistemic Dynamic Model which influence
it predicts for the imitation of tag suggestions on the tag frequencies and
the vocabulary growth. Together, these three parts of the discussion helps
us in answering whether our Epistemic Dynamic Model can explain the tag
frequencies and the vocabulary growth in tagging systems, and whether re-
ally background knowledge and imitation are required for explaining the
emergence of these properties (see the first and third step in our evaluation
outline in Section 5.3). Finally, in Subsection 5.5.4, we discuss in how far
the predictions of our Epistemic Model with Word Frequencies differ from
the predictions of our Epistemic Model with Semantic Networks. This part
of the discussion is related to the second step in our evaluation outline in
Section 5.3.
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Figure 5.3: Comparing the Epistemic Model with Word Frequencies to other
models that include the shared background knowledge as an influence factor.
The Epistemic Model with Word Frequencies and the Epistemic Model with
Semantic Networks additionally model the influence coming from the col-
laboration between users. The comparison is based on the D values reported
for the respective models in Tab. 5.2, 5.3, 5.4 and 5.6.

5.5.1 Reproducing the Tag Frequency Distribution

In Fig. 5.3 and 5.4 the evaluation results from Tab. 5.2-5.7 are summa-
rized. The figures compare for the different models how good they are in
reproducing the tag frequency distributions in co-occurrence streams. For
this comparison, we use the results of the Epistemic Model with Word Fre-
quencies as a baseline, i.e. we use the D values reported in Tab. 5.2 as a
baseline by defining them as 100%. Thus, only if one of the other models
achieves a value < 100% in Fig. 5.3 or Fig. 5.4 then it is better in repro-
ducing the tag frequency distribution of the respective co-occurrence stream
than our Epistemic Dynamic Model. In Fig. 5.3, all differences between the
D values achieved by the models are significant except the difference be-
tween the Epistemic Model with Word Frequencies and the Epistemic Model
with Semantic Networks in case of the boat, historical, ff and design stream.
In Fig. 5.4, all differences are significant except the difference between the
Epistemic Model with Word Frequencies and the Yule-Simon Model with
Memory in case of the tools stream. The difference between two D values is
considered significant if their 95% confidence intervals do not overlap. The
confidence interval is computed with the method described in [23, p. 143f].

From the compared models, the Epistemic Model with Word Frequencies
is the model that best explains the emergence of the tag frequency distri-
butions observed in the co-occurrence streams. For 12 out of the 15 tested
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Figure 5.4: Comparing the Epistemic Model with Word Frequencies to mod-
els from the literature that only model either the influence of the shared
background knowledge (Semantic Walker Model + Watts-Strogatz; Tab. 5.5)
or the influence of the collaboration (Yule-Simon Model with Memory;
Tab. 5.7).

co-occurrence streams, it is among the models that achieve the lowest D
value.! The second best model is the Epistemic Dynamic Model with Se-
mantic Networks. For 8 of the tested co-occurrence streams, it is among
the models that achieve the lowest D value. In contrast, the Semantic
Walker Model in conjunction with the Watts-Strogatz Model and the Yule-
Simon Model with Memory are only for 1 co-occurrence stream among the
models with the lowest D value. All other models are never among the
models with the lowest D value. Based on the median D value over all
tested co-occurrence stream (see Tab. 5.8), one gets the following ranked
order of the different models with regard to their ability to reproduce the
tag frequency distributions in co-occurrence streams: (1) Epistemic Model
with Word Frequencies, (2) Epistemic Model with Semantic Networks, (3)
Yule-Simon Model with Memory, (4) Natural Language Model, (5) Semantic
Walker Model in conjunction with the Watts-Strogatz Model, (6) Semantic
Walker Model in conjunction with the Growing Networks Model.

After giving this general overview on the evaluation results of the dif-
ferent models, we now discuss how the evaluation results are related to our
initial outline of the evaluation (see Section 5.3). According to this outline,
our evaluation should fulfill three objectives:

In some cases, two models both achieve the lowest D value because the difference
between the two D values is not significant. This is the case for the boat, historical,
ffidesign and tools stream (see above).
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name Average Median  Min Max

Epistemic Model + | 0407 0.0394 0.0118 0.0805
Word Frequencies
Epistemic Model +

Semantic Networks 0.0775  0.0424 0.0115 0.2096

Natural Language

Model 0.1312  0.1327 0.0531 0.2083

Semantic Walker —+

Growing Networks 0.2130  0.2085 0.1564 0.2832

Semantic Walker +

Watts Strogatz 0.1490  0.1598 0.0560 0.2425

Yule-Simon  Model

with Memory 0.1086  0.0943 0.0526 0.1763

Table 5.8: Average, median, minimum and maximum of the D values re-
ported for the different models in Tab. 5.2-5.7. The Epistemic Model with
Word Frequencies achieves the best values, closely followed by the Epistemic
Model with Semantic Networks.

The first objective has been to evaluate in how far the Epistemic Model
with Word Frequencies is able to explain the emergence of the properties
from Chapter 3. According to our summary of the evaluation results (see
above), we can already say that it provides the best explanation compared
to all other tested models. But the Smirnov test from Subsection 5.2.1 not
only allows to have a relative comparison to other models. The level of
significance p of the evaluation results can be used for assessing whether
the simulated tag frequency distributions can be considered statistically in-
distinguishable from the observed tag frequency distributions. With this
regard, the p-values achieved by the Epistemic Model with Word Frequen-
cies (see Tab. 5.2) show that it is still possible to improve it. In case of
9 tested co-occurrence streams we can directly reject the hypothesis that
simulated and observed tag frequencies are indistinguishable. In case of 6
streams, only a more precise measurement of the p-value would be able to
finally decide whether they are indistinguishable.

The second objective has been to evaluate in how far random walks on
semantic networks, as they have been originally proposed by the Semantic
Walker Model, are suitable for replacing the black box implementation of
the shared background knowledge that uses random drawings from word
frequency distributions. For this purpose, we have to compare the evalua-
tion results of the Epistemic Model with Word Frequencies to the Epistemic
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Model with Semantic Networks. The two models only differ in how the back-
ground knowledge of the users is simulated. As can be seen in Fig. 5.3, using
random walks on semantic networks for simulating the background knowl-
edge leads to minor improvements of the D value for the social and the
blogs stream. In case of 4 streams, the D values of the two models do not
differ significantly. In case of 8 streams, the implementation with semantic
networks leads to a worse D values. Nevertheless, the Epistemic Model with
Semantic Networks is the second best model of all tested models and there
is only a minor difference in the median of the D values if compared to the
Epistemic Model with Word Frequencies (see Tab. 5.8). All in all, both con-
figurations of the Epistemic Model can be considered to reproduce almost
equally well the tag frequency distributions in co-occurrence streams.

The third objective has been to evaluate in how far the background
knowledge of users as well as the collaboration between users have to be
part of a tagging model in order to explain the tag frequencies. With this
regard, our evaluation shows that neither models solely based on the in-
fluence of the background knowledge of users, i.e. the Natural Language
Model and the two configurations of the Semantic Walker Model, nor mod-
els solely based on the influence of the collaboration between users, i.e. the
Yule-Simon Model with Memory, are sufficient for explaining the emergence
of the tag frequency distributions in co-occurrence streams. The integration
of both factors into a unified model like the Epistemic Model with Word
Frequencies leads to significantly better results. For example, by deactivat-
ing the influence of the collaboration between users in the Epistemic Model
with Word Frequencies, thus leading to the Natural Language Model, the
average D value gets three times higher (see Tab. 5.8). The same increase
in the D value can also be observed when deactivating the influence of the
collaboration in the Epistemic Model with Semantic Networks, thus lead-
ing to the Semantic Walker Model that uses the Growing Network Model.
Also the best models from the literature that only include one of the two
influence factors, i.e. the Semantic Walker Model in conjunction with the
Watts-Strogatz Model and the Yule-Simon Model with Memory, can not
explain the emergence of the tag frequencies nearly as good as the two con-
figurations of our Epistemic Model that integrate both factors.

5.5.2 Reproducing the Vocabulary Growth

In the previous subsection, we have shown that the Epistemic Model with
Word Frequencies and the Epistemic Model with Semantic Networks are
by far the best performing models with regard to reproducing the tag fre-
quencies in co-occurrence streams. In this subsection, we discuss in how far
the different tested models are able to additionally reproduce the correct
vocabulary growth. Reproducing both properties at the same time is an
important requirement for a valid model of co-occurrence streams. In the
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following, we do not take the Yule-Simon Model with Memory into account
because it only simulates a linear vocabulary growth.

With regard to the sublinear vocabulary growth, by far the best perform-
ing model is the Epistemic Model with Word Frequencies. In Tab. 5.2, we can
see that it can be parametrized such that the simulated vocabulary growth
stays in the +10% band around the real vocabulary growth for 11 out of 15
streams, i.e. |Apaz| < 0.1. The second best model is the Epistemic Model
with Semantic Networks (7 out of 15 streams; Tab. 5.3), closely followed by
the Semantic Walker Model in conjunction with the Watts-Strogatz Model
(4 out of 15 streams; Tab. 5.5). By far the worst performing models are
the Natural Language Model (Tab. 5.4) and the Semantic Walker Model in
conjunction with the Growing Network Model (Tab. 5.6). They exceed the
observed growth in all cases. For example, in case of the Natural Language
Model the median deviation from the observed vocabulary growth is +178%
and in case of the Semantic Walker Model in conjunction with the Growing
Network Model it is +117%. And even in the best case, the two models ex-
ceed the observed vocabulary growth by +70% and +37% respectively. In
the following, we discuss two observations with regard to these evaluation
results in more detail:

First, by comparing the A, values of the different models from Tab. 5.2—
5.6 it is noticeable that none of the tested models can be parametrized such
that is able to reproduce the vocabulary growth of the ringtones, decorative,
checkbor and analysis streams. These are the only streams for which also
the Epistemic Model with Word Frequencies fails to reproduce the vocabu-
lary growth. We show that the failure to reproduce the vocabulary growth
for these streams is caused by the assumption common to all models that
the average number of contributing users and resources does not change over
the time of the stream. This assumption is violated in case of these four
streams.

Second, by comparing the A4, values of the two configurations of the
Semantic Walker Model in Tab. 5.5 and 5.6 it is noticeable that they differ
in which vocabulary growth speeds they can explain. We show that these
differences in the predicted growth speeds are caused by the topology of
the semantic networks as they are generated by the Watts-Strogatz Model
and the Growing Network Model. We discuss implications of these findings
for modeling the background knowledge of users with the help of semantic
networks.

Influence of the Average Number of Resources and Users

As mentioned before, none of the tested models is able to reproduce the vo-
cabulary growth of the ringtones, decorative, checkbox and analysis streams.
In Fig. 5.5, the detailed plots of the vocabulary growth for these streams
are shown. One can observe alternating phases of high and low vocabulary
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Figure 5.5: Plots of the vocabulary growth in the (a) ringtones, (b) decora-
tive, (c) checkbor and (d) analysis co-occurrence streams. Below the plots
with the vocabulary growth it is shown at which time of the stream tag
assignments of a certain user or resource have been added to the stream.
The observable phases of low vocabulary growth correspond to phases dur-
ing which a single user or resource dominates the tag assignments in the
co-occurrence stream.

growth speeds. But all of our tested models can only explain the emergence
of a sublinear growth where the growth speed is constantly decreasing. None
of the models is able to explain such irregular patterns of alternating high
and low vocabulary growth speeds.

A closer inspection of the four streams with the irregular vocabulary
growth patterns reveals that the phases with the lower vocabulary growth
speeds correspond to long phases where either only single users or single
resources are contributing to the postings of the co-occurrence stream. For
example, in case of the ringtones stream, between tag assignment 10,000 and
tag assignment 55,000 only 3 users are contributing new tag assignments to
the stream. All in all, the 3 users are contributing 44,811 or 60.4% of
the tag assignments to the ringtones stream. Also for the decorative and
the analysis stream, three users can be identified who are the only users
that contribute to the co-occurrence stream during such a phase of low
vocabulary growth speed. In contrast, in case of the checkbox stream, the
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phases of low vocabulary growth speeds are not caused by single users but
by four resources that dominate the tag assignments during these phases.

In case of the ringtones stream and the decorative stream, the closer in-
spection reveals that the three dominating users are spammers that haven’t
been detected by our heuristics described in Appendix B in Section B.1.
They neither used many words from the blacklist of spam tags nor they
have used extremely large postings. But in case of the analysis stream, the
dominating users are regular users who did a mass import of bookmarks
from which many have been annotated with the tag analysis. In case of the
checkbox stream, the dominating resources are regular resources that have
been tagged by several regular users within a short period of time.

Thus, in all four cases, the sudden changes in the vocabulary growth
speed corresponds to phases where the respective co-occurrence stream ei-
ther degenerates to a stream of a single user or a single resource. For this
observation it seems to be irrelevant whether the tag assignments are pro-
vided by regular users, as in the case of the analysis and the checkboz stream,
or by spammers, as in the case of the ringtones and the decorative stream.
With this regard, it would be subject to future research whether the usage
patterns of spammers may cause such a degeneration more often than the
usage patterns of regular users. If this is the case, one may use it as a feature
for detecting spammers in tagging systems. But this is out of the scope of
this thesis.

Influence of the Topology of Semantic Networks

By comparing the A4, values in Tab. 5.5 and 5.6 it can be seen that the
Semantic Walker Model predicts completely different vocabulary growth
speeds, depending on the used semantic network. If the Watts-Strogatz
Model is used for generating the semantic network then the predicted vocab-
ulary growth is close to what can be observed in real co-occurrence streams.
In contrast, if the Growing Network Model is used for generating the seman-
tic network then the predicted vocabulary growth is in average more than
twice as high as the observable vocabulary growth. With this regard, the
Semantic Walker Model in conjunction with the Growing Network Model is
very similar to the Natural Language Model (see Tab. 5.4).

How can these differences in the predicted vocabulary growth speeds be
explained? According to the supporting information of [18], the speed of the
predicted vocabulary growth depends on two factors: (1) On the distribution
of posting lengths p(s), and (2) on the number of nodes reachable by random
walks with a certain length. The more nodes can be reached by a random
walk of length [, the higher is the predicted vocabulary growth. Because the
distribution of posting lengths p(s) has been fixed in all our experiments to
the distribution shown in Fig. 4.1, the differences between the simulations
with the Growing Network Model and the Watts-Strogatz Model can only
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be explained with different numbers of reachable nodes for random walks
of length [. In [18], it has not been further analyzed how the topology of a
network influences this number of reachable nodes. But in the following we
argue that the average node degree k and the average clustering coefficient
C can be used for estimating this influence:

The number of reachable nodes for a random walk of length [ corresponds
to the sum of the nodes contained in the rings NV; around the start node with
i <1 [18]. A node is contained in ring N; if its shortest path to the start
node has length i [8]. For example, the ring Ny contains the start node itself
and the ring N; contains all nodes that are directly connected with the start
node, i.e. Ng = 1 and Ny = d. Then, given an average node degree k, the
ring N;41 may contain in average up to N; - (k — 1) nodes. Thus, the higher
the average node degree k, the more nodes are reachable for a random walk
of length [ + 1.

But not all connections from ring /NV; are also to nodes in ring Ni4i.
Instead, there also exist connections to other nodes in ring N;_; and N;.
The number of connections to the previous ring or within the same ring is
measured by the average clustering coefficient C'. Altogether, the number of
nodes in ring Ny can be approximated with N;-(1—C)-(k—1). Thus, the
higher the value of (1 — C) - (k — 1), the higher the increase in the number
of reachable nodes and the higher the vocabulary growth.

Because of this dependency between (1 — C) - (k — 1) and the vocabu-
lary growth, it is important to align this value with empirical evidence for
reproducing a vocabulary growth as it might also be caused by empirically
observed semantic networks. For example, in case of the Words Associa-
tion Norms data set we have C' = 0.186 and k = 22 (see [106]) and thus
(1-C)-(k—1)=17.91. In case of our experiments with the Growing Net-
work Model reported in Tab. 5.6, all networks have an average clustering
coefficient of C' = 0.164 and an average node degree of kK = 22 and thus
(1-C)-(k—1) =17.56. In conclusion, the networks simulated with the
Growing Network Model lead to a realistic vocabulary growth given that
random walks on semantic networks are appropriate for modeling how the
users’ tagging behavior is influenced by the users’ background knowledge.

In contrast, the clustering coefficient C, the average node degree k£ and
the (1—C)-(k—1) values of the networks simulated with the Watts-Strogatz
Model significantly deviate from those of the Words Association Norms data
set (see Tab. 5.9). During our experiments, semantic networks with (1—C)-
(k — 1) values between 4.27 and 6.75 have led to the best-fitting vocabulary
growth, i.e. values that are approximately one-third of the value observed
in the Word Association Norms data set. Thus, the semantic networks
simulated with the Watts-Strogatz Model lead to a much lower vocabulary
growth than expected based on empirically observable semantic networks.

These findings suggest that it is important to align the topology of ar-
tificially generated semantic networks with the topology of real semantic
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Parameters | Network Properties
stream Pws Muws | k C 1-C) - (k-1)
ringtones 0.02 7 14 0.64 4.68
setup 0.04 8 16 0.60 6.00
boat 0.085 7 14 0.51 6.37
historical 0.11 6 12 0.46 5.94
messages 0.14 4 8 0.39 4.27
decorative 0.035 6 12 0.60 4.40
costs 0.185 4 8 0.34 4.62
ff 0.105 5 10 0.46 4.86
checkbox 0.02 7 14 0.64 4.68
datawarehouse | 0.035 6 12 0.60 4.40
tools 0.045 6 12 0.58 4.62
social 0.065 8 16 0.55 6.75
design 0.065 6 12 0.54 5.06
analysis 0.015 8 16 0.66 5.10
blogs 0.055 8 16 0.57 6.45

Table 5.9: Average node degree k and clustering coefficient C' of the semantic
networks that have been generated with the Watts-Strogatz Model and that
led to the best fitting vocabulary growth and tag frequency distribution in
Tab. 5.5. The values significantly deviate from the average node degree and
clustering coefficient empirically observed in the Word Association Norms
data set from [81], where k =22, C =0.186 and (1—-C) - (k—1) = 17.91
(cf. [106]).

networks like the Words Association Norms data set. Otherwise, the Seman-
tic Walker Model can be tuned to predict an arbitrary vocabulary growth.
Thus, only the results of the Semantic Walker Model in conjunction with
the Growing Network Model (see Tab. 5.6) allow to conclude on the vocabu-
lary growth as it originates from the shared background knowledge of users.
In this case, the Semantic Walker Model in conjunction with the Growing
Network Model predicts a vocabulary growth that is similar to what is pre-
dicted by the Natural Language Model, which is also aligned with empirical
evidence. Thus, if we align any of the two available models of the users’
shared background knowledge with empirical evidence, both models agree
in the prediction that one would expect a much higher vocabulary growth
in co-occurrence streams if the users are only influenced by their shared
background knowledge.

5.5.3 Influence of Imitating Tag Suggestions

In this section, we predict with the help of our Epistemic Dynamic Model
how the imitation of tag suggestions effects the properties observable in
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tagging systems. We derive hypotheses how tag suggestions influence the
vocabulary growth and the tag frequency distribution. We are evaluating
these hypotheses by looking into our tagging data sets whether we can ob-
serve the predicted effects, and by looking into results of independent user
experiments that are reported in the literature.

Vocabulary Growth

First, we are predicting how the imitation of tag suggestions influences the
speed of the vocabulary growth in tagging systems. With this regard, we
have shown in Subsection 5.5.2 that models predict a higher vocabulary
growth if they are solely based on the users’ shared background knowledge
and not also on the imitation of tag suggestions. Thus, we expect that the
imitation of tag suggestions reduces the vocabulary size in co-occurrence
streams:

Hypothesis 1 The imitation of tag suggestions leads to a reduced vocabu-
lary size compared to systems without tag suggestions. The higher the im-
itation probability, the smaller the vocabulary and the lower the vocabulary
growth.

In Fig. 5.6, the correlation between vocabulary growth and imitation
probability [ is shown, as we would expect it based on the Epistemic Model
with Word Frequencies. Thus, the model not only helps us in determining
the general influence, as it is expressed in Hypothesis 1, but it also helps
us in quantifying the expected effect on the vocabulary growth and size
given that we know the approximate probability with which users imitate
tag suggestions. For example, after 5,000 tag assignments the FEpistemic
Model with Word Frequencies predicts a vocabulary size of approximately
3,300 tags if the users do not imitate tag suggestions (I = 0.0). In contrast,
a vocabulary size of approximately 1,700 tags is predicted if 60% of the tag
assignments are imitations of tag suggestions (I = 0.6). Thus, the Epistemic
Dynamic Model predicts a reduction of the vocabulary size by 48% in case
of I =0.6.

Such a quantified prediction of the Epistemic Dynamic Model can be
evaluated with the help of a user experiment like it is reported by Kowatsch
and Maass in [64]. In this experiment, the users were split into two groups.
Both groups were asked to assign any number of tags to different resources
but only the second user group also got a set of popular tags suggested.
Thus, the users in the first group were only influenced by their own back-
ground knowledge, and the users in the second group were additionally in-
fluenced by tag suggestions.

In [64], the average imitation probability of the second user group was
around 60%, i.e. I = 0.6. Given this average imitation probability, the
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Figure 5.6: Influence of the probability of imitation I on the vocabulary
growth in streams simulated with the Epistemic Model with Word Frequen-
cies. For each of the streams, 20.000 tag assignments have been simulated.
The higher I, the lower the vocabulary growth.

tag suggestions have led to a reduction of the vocabulary size by 30-50%.
Thus, the user experiment not only confirms the general expectation that
imitation reduces the vocabulary size (see Hypothesis 1) but also the more
specific expectation that a reduction of the vocabulary size by 48% can be
expected if I = 0.6, as it has been predicted by the Epistemic Dynamic
Model in Fig. 5.6. This experiment shows that the Epistemic Dynamic
Model is well capturing the influence of tag suggestions on the vocabulary
growth.

Tag Frequency Distribution

The imitation of tag suggestions not only influences the vocabulary growth
but also the tag frequency distribution. In the following, we distinguish
between the influence on the tag frequency distribution in co-occurrence
streams and in resource streams. In Fig. 5.7a, the expected correlation be-
tween the tag frequency distribution and the imitation probability is shown
for co-occurrence streams. In co-occurrence streams, the parameters n and
h are abstract parameters that have no concrete meaning in the user inter-
face. Instead, they capture amongst others the influence of the number of
resources in a co-occurrence stream (see Subsection 4.1.3). In general, based
on the Epistemic Dynamic Model we expect the following influence of tag
suggestions on the tag frequency distribution:

Hypothesis 2 The imitation of tag suggestions leads to an increased prob-
ability of the most frequent tags in a stream and a decreased probability for
the infrequent tags.
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Figure 5.7: Plots of how the occurrence probabilities of tags are influenced
by the imitation of tag suggestions. In (a), the predictions of the Epistemic
Model for different imitation probabilities are shown. This plot is based on
the simulation of 20,000 tag assignments. In (b), the average occurrence
probabilities of tags are shown which have been observed for the two exper-
imental groups in [13]. In both cases, the imitation of tag suggestions leads
to increased occurrence probabilities of the most often used tags. The data
shown in (b) is used with kind permission of the authors of [13].

The user experiment by Bollen and Halpin [13] can be used for evaluating
Hypothesis 2. In this experiment, two user groups were asked to assign
tags to 11 web pages. The web pages were randomly selected from web
pages that are annotated with the tag lifestyle in Delicious. The first group
of users got no tag suggestions, and the second group of users got 7 tag
suggestions for each of the web pages. Overall, the first group made 3,556
tag assignments and the second group 3,694. The resulting tag frequencies
are shown in Fig. 5.7b. Overall, the experiment confirms Hypothesis 2 of
how tag suggestions influence the tag frequencies.

In contrast, if we use the Epistemic Dynamic Model for predicting the
influence of tag suggestions in resource streams, we have to adapt the param-
eter n to the number of tags actually suggested in the user interface. Fur-
thermore, we eliminate the parameter h by setting it such that all previous
tag assignments are taken into account for computing the set of suggested
tags (see Subsection 4.1.3). If we now parametrize the Epistemic Dynamic
Model for simulating the user interface of Delicious by setting n = 7, we
get the tag frequency distribution shown in Fig. 5.8. A sudden drop in the
relative occurrence probabilities for tags around rank 7 is visible.

This sudden drop in the relative occurrence probabilities is very similar
to what has been discovered by Halpin et al. in [42] for resource streams
in Delicious (see Section 3.2 and Fig. 3.4). In [42], it has been speculated
that this sudden drop (1) may be related to cognitive effects during tagging,
or (2) it may be an artifact of the Delicious user interface. The simulation
with the Epistemic Dynamic Model shows that the artifact can plausibly be
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Figure 5.8: Simulation of a resource stream in Delicious with the help of the
Epistemic Model with Word Frequencies. The simulated resource stream
contains 5,000 tag assignments and the parameter n has been adapted to
the number of popular tags that are visible in the Delicious user interface (see
Fig. 2.1). The relative occurrence probability corresponds to the occurrence
probability normalized by the occurrence probability of the most frequent
tag.

explained as being an artifact of the Delicious user interface. Thus, we favor
the following hypothesis:

Hypothesis 3 The sudden drop in the occurrence probabilities for tags be-
tween rank 7 and 10, as it has been observed by Halpin et al. [42] in Deli-
cious’ resource streams, is an artifact of the number of popular tags shown
in the user interface of Delicious.

As a consequence, we expect to not observe this artifact if a tagging sys-
tem does not recommend a set of n popular tags. An example for a tagging
system that does not recommend a set of n popular tags is the Bibsonomy
system (see Fig. 2.2). Instead of a set of popular tags, it presents a set of
recommended tags that can be generated by various recommendation algo-
rithms (see [55] and the Online Tag Recommendation Task in [31]). Fig. 5.9
shows the average relative occurrence probability that can be observed in
Bibsonomy’s resource streams. As expected, no sudden drop in the rela-
tive occurrence probabilities for tags between rank 7 and 10 is visible. This
confirms Hypothesis 3.



5.5. DISCUSSION 99

T

~< —— Average Relative Occurrence Probability
- —- Best-fitting power-law

L
L R
U
1

Relative Occurrence Probability

0,01 L
1 10

Tag Rank

Figure 5.9: Relative occurrence probabilities in the resource streams of Bib-
sonomy. The average relative occurrence probability in the graph has been
computed by averaging the relative occurrence probabilities for the 30 re-
source streams from our Bibsonomy data set (see Tab. 3.1) to which more
than 100 users contributed. As a guide for the eye, a line for the best-fitting
power-law distribution is also included in the graph.

5.5.4 Influence of the Background Knowledge

In the following, we discuss in how far the background knowledge of the users
about the topic of a stream influences the speed of the vocabulary growth in
co-occurrence streams. Depending on whether we use the Epistemic Model
with Semantic Networks or the Epistemic Model with Word Frequencies,
we have different expectations with regard to this influence. In case of the
Epistemic Model with Semantic Networks, we expect that for broader topics
a higher vocabulary growth can be observed than for narrower topics. In
case of the Epistemic Model with Word Frequencies, we do not expect such
influence (see below). The reason for this difference between the models is
the additional parameter d, which is introduced in the Epistemic Model with
Semantic Networks. Thus, showing the expected influence of the broadness
of a topic on the vocabulary growth would support the introduction of the
additional parameter d into the Epistemic Model.

In case of the Epistemic Model with Semantic Networks, the influence of
the users’ background knowledge is simulated by random walks on an artifi-
cially generated semantic network. Depending on the topic of a stream, the
random walks start at different nodes in the network. In Subsection 4.1.2,
we have proposed to introduce the degree d of the start node as a further
parameter into our model. We have interpreted d as a measure of the se-



100 CHAPTER 5. EVALUATION OF THE EPISTEMIC MODEL

3000 — 4= | T | T | T ]
— = d=11
2500 | .. .. 4-14 —
& 2000 — et
g i - -
S 1500 |- et —
3 . . ;;:” - -
G .
S 1000 — e —
3 L B 1
o
500 — v};;’ |
- 2 -
0 | | | | | | |
0 5000 10000 15000 20000

# of tag assignments

Figure 5.10: Influence of the degree d of the start node on the vocabulary
growth in streams simulated with the Epistemic Model with Semantic Net-
works. The vocabulary growth increases with increasing start node degree
d. For each of the streams, 20.000 tag assignments have been simulated.
Except the d-parameter, all other parameters of the model have been kept
constant during simulating the different streams.

mantic breadth of the topic that is described by the start node. The higher
d, the broader is the topic of the simulated co-occurrence stream.

In Fig. 5.10, it is shown how the parameter d influences the speed of the
simulated vocabulary growth. Thus, according to the Epistemic Model with
Semantic Networks we expect to observe a higher vocabulary growth speed
for co-occurrence streams that cover broad topics. The explanation for this
influence of d is that with increasing value of d a higher number of nodes
in the network can already be reached with very short random walks thus
leading to a faster vocabulary growth (cf. Subsection 5.5.2).

This assumed influence of a stream’s broadness on the speed of the vo-
cabulary growth can be confirmed with the help of our Delicious data set
from Tab. 3.1. For this purpose, we have extracted from it all co-occurrence
streams for tags that have a direct correspondence in WordNet. WordNet?
is a lexical database of English nouns, verbs, adjectives and adverbs. These
words are grouped into sets of cognitive synonyms, the so-called synsets,
each expressing a distinct concept. If a word belongs to several synsets,
then it has multiple meanings. In the following, we take this number of
meanings of a word as an indicator of the number of topics covered in the
corresponding tag’s co-occurrence stream. The more meanings a word or
tag has, the broader the topical area covered in the co-occurrence stream.

’http://wordnet.princeton.edu/
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Figure 5.11: Influence of the number of meanings of a tag on the vocabulary
size in its co-occurrence stream after 1,000 tag assignments. The number of
meanings of a tag has been extracted from WordNet. The single vocabulary
sizes are shown as a scatter plot in the background. The median vocabulary
size and its trend are shown as lines in the foreground.

In Fig. 5.11, the vocabulary sizes of the extracted co-occurrence streams
after 1,000 tag assignments is shown in dependency on the number of mean-
ings of the corresponding tag in WordNet. It can be seen that the median
vocabulary size of the co-occurrence streams increases with the number of
meanings of a tag. This confirms our expectation based on simulations with
the Epistemic Model with Semantic Networks that the broader a topic, the
higher the vocabulary growth in its co-occurrence stream. This influence
coming from the broadness of a co-occurrence stream’s topic may also ex-
plain to some extent the high variance in the vocabulary growth speeds that
can be observed in Fig. 3.6.

In how far can the observation from Fig. 5.11 also be explained by the
Epistemic Model with Word Frequencies? In this case, the influence of the
users’ background knowledge is simulated by randomly drawing from the
word frequency distributions p(W|t) shown in Fig. 4.2. In [5] it has been
shown that the exponent of the power-law distribution, which can be used for
approximating the distributions in Fig. 4.2, influences the speed of the sim-
ulated vocabulary growth (see also Section 3.3). Thus, the word frequency
distributions p(W|t) may indeed cause different speeds of vocabulary growth
given that their exponent changes for different topics. But as can be seen in
Fig. 4.2, there only exists a small variance in the exponents of the different
p(Wt) distributions. Thus, this effect can only explain to a minor extent
the variance in the vocabulary growth speeds from Fig. 3.6.
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5.6 Conclusions

In this chapter, we have evaluated the ability of our Epistemic Dynamic
Model to explain the emergence of the tag frequency distribution and the
vocabulary growth in co-occurrence streams. Our evaluation has shown that
the combined influence of shared background knowledge and imitation, as
modeled by our Epistemic Dynamic Model, leads to improved evaluation
results with regard to these two properties, if compared to models that only
rely on one of these two influence factors.

According to the Epistemic Dynamic Model, the general shape of the tag
frequency distribution as well as the sublinearity of the vocabulary growth
emerge from the shared background knowledge and terminology of the users.
This can be shown by deactivating the influence of the imitation in the
Epistemic Dynamic Model by setting I = 0.0, thus leading to the Natural
Language Model and/or the Semantic Walker Model. Both models are still
able to reproduce the general shape of the tag frequency distribution and a
sublinear vocabulary growth. The imitation of tag suggestions leads to (1)
a reduced vocabulary growth speed, to (2) an increased probability of the
most frequent tags, and to (3) a decreased probability of the infrequent tags
(see Subsection 5.5.3).

With regard to modeling the influence of the shared background knowl-
edge, we have tested two alternative implementations. On the one hand, we
have tested a black box implementation that is based on randomly drawing
from empirically observed word frequency distributions. On the other hand,
we have tested an implementation that models the background knowledge as
random walks on semantic networks. If we use semantic networks that are
aligned with empirical evidence, i.e. if we use the Growing Network Model
for generating them, then both implementations of the background knowl-
edge are very similar with regard to the simulated tagging behavior. For
example, both implementations agree in their prediction that a much higher
vocabulary growth would be expected if the tag assignments of the users are
only influenced by the shared background knowledge (see Subsection 5.5.2).

All in all, the implementation that is based on the empirically observed
word frequencies can be considered to provide a simple black box model of
the users’ background knowledge that approximates the more sophisticated
implementation that is based on semantic networks. The black box imple-
mentation has the advantage that it is slightly better in reproducing the
exact shape of the tag frequency distribution and of the vocabulary growth
(see Subsection 5.5.1 and 5.5.2). In contrast, the implementation based on
semantic networks has the advantage that it is better suitable for explaining
the high variance in the vocabulary growth speeds as it might be caused by
the differences in the broadness of a stream’s topic (see Subsection 5.5.4).



Chapter 6

Tag Recommendations and
Indexing Quality

In this chapter, we analyze how tag recommendations influence the indexing
quality in tagging systems. The indexing quality is related to the retrieval
of resources, i. e. to searching and browsing resources (see Section 2.4). The
question is: In how far are users better able to find and discover resources
in tagging systems in which the tagging decision of users is influenced by
tag recommendations?

In the previous chapters, we have analyzed how tag recommendations
that are based on popular tags of a resource change the tag frequency distri-
bution and the vocabulary size. Both properties are related to the emergence
of the shared community vocabulary, and indirectly also to the indexing
quality. For example, the size of the vocabulary associated with a resource
influences how many query terms can be used for accessing it, and how easy
it can be reached when browsing the tagging system. But although a large
vocabulary may be an indicator for a high indexing quality, additional re-
quirements have to be met for a high indexing quality, like that only relevant
tags are annotated to a resource. Without this requirement, in the extreme
case, spammers who maximize the number of tags at a resource would be
perceived to produce tag assignments with a high indexing quality.

This is where the tag frequency distribution comes into play, which can
be used for measuring the inter-indexer consistency of the tag assignments.
The inter-indexer consistency corresponds to the degree to which the users
have agreed on a common vocabulary for describing the single resources. In
the literature [33, 38, 64, 77, 100], it is assumed that increasing the inter-
indexer consistency is important for dealing with the uncontrolled nature
of the vocabulary in tagging systems, and thus for getting better indexed
resources. But even the inter-indexer consistency is not directly correlated
with the indexing quality. The additional requirement has to be met that
the tag assignments are not only consistent for the single resources but also
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across several resources. In the following, we call the consistency across sev-
eral resources the inter-resource consistency (see [122] and Subsection 6.1.1).

In [127], it has been pointed out that the inter-indexer consistency is pos-
itively correlated with the inter-resource consistency if the indexing terms
are “selected individually and independently by each of the indexers”. But
what happens if the users are influenced in their tagging decision by tag rec-
ommenders? In this chapter, we show that one can then not automatically
assume their positive correlation. Thus, one has to always use measures of
the inter-resource consistency instead of measures of the inter-indexer con-
sistency for analyzing how tag recommenders influence the indexing quality
in tagging systems.

This chapter is structured as follows: In Section 6.1, we present two con-
crete measures of the inter-resource and inter-indexer consistency in tagging
systems. Furthermore, we discuss additional aspects of good tag recommen-
dations that might be measured during an evaluation. Then, in Section 6.2,
we derive for two of the tag recommenders from Delicious, how they influ-
ence the inter-resource and inter-indexer consistency in a tagging system.
According to our hypotheses we expect that the inter-indexer and inter-
resource consistency are not positively correlated with each other for these
two exemplary tag recommenders. In Section 6.3, we describe the user ex-
periment that we use for evaluating our hypotheses. The results of the
experiment are presented and discussed in Section 6.4 and 6.5.

6.1 Measures of Indexing Quality

One typical question with regard to tag recommendation algorithms is how
to measure the quality of the generated tag recommendations and how to
compare different algorithms to each other (see Subsection 2.2.3). Two com-
plementary dimensions of tag recommendations can be identified: (1) On
the one hand, one may see tag recommendations as a tool for improving the
quality of the tag assignments, thus leading to better indexed resources. (2)
On the other hand, one may see tag recommendations as a tool for reducing
the effort that is required by a user for indexing a resource. Depending on
the dimension, one has to choose other evaluation measures. Ideally, tag rec-
ommendation algorithms should generate tag recommendations that score
high in both dimensions.

In the following, we concentrate on measures for evaluating the influ-
ence of tag recommenders on the quality of the tag assignments. In Sub-
section 6.1.1, we introduce a measure and methodology that can be used
for measuring the inter-resource consistency of annotations in information
systems that use the vector-space model during retrieval, like it is the case
for tagging systems that produce broad folksonomies. Then, in Subsec-
tion 6.1.2, we discuss existing measures of the inter-indexer consistency in
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broad folksonomies and select one of the existing measures for our evalu-
ation. Finally, in Subsection 6.1.3 we discuss for the evaluation measures
from Subsection 2.2.3 how they are connected to measuring the influence of
tag recommenders on the indexing quality.

6.1.1 Inter-Resource Consistency

In general, the inter-resource consistency measures in how far indexers are
successful in linking similar resources by indexing their common aspects
with common terms. Assuming the match between indexing terms and
query term, it has been argued in [127, 122] that an improved inter-resource
consistency leads to an improved precision and recall for the results of a
query. For example, only if similar resources are linked to each other by
indexing them with terms that express their common aspects, one gets a
high recall when searching or browsing a tagging system with the respective
terms. Furthermore, for achieving a high precision, the indexing terms have
to be discriminative, i.e. they have to link similar resources but not also
dissimilar resources. It has been argued in [122] that measuring the inter-
resource consistency leads to a critique not of the total retrieval system,
which includes the ranking algorithms et cetera, but of one of its modifiable
components, the indexing.

All in all, measuring the inter-resource consistency of tag assignments
corresponds to comparing the tag vector based similarity of the resources
to an independent indicator of resource similarity. The inter-resource con-
sistency in a system correlates with the indexing quality if the independent
indicator of resource similarity reflects how potential users of the system
perceive the similarity of the resources. In case of tagging systems, the
independent indicator of resource similarity should thus reflect how the in-
dexers perceive the similarity of resources because the indexers are at the
same time users of the tagging system and vice versa. This distinguishes
tagging systems from other information systems like library catalogs where
indexers and users of the system are mostly disjoint from each other.

In Fig. 6.1, an example is shown that illustrates this comparison of the
tag vector based similarity of resources to the user perceived similarity of
resources: In Fig. 6.1 three resources are shown together with their tag
vectors. Each of the resources has been tagged by 10 indexers. According
to its tag vector, resource 7 is implicitly linked to the other two resources. 8
of the 10 indexers assigned the tag news to 79, thus creating an implicit link
between 7y and ri. Furthermore, 6 of the 10 indexers implicitly linked 7o
to r3 via the term humor. The inter-resource consistency measures in how
far the strength of the implicitly created links correlates with the strength
of the links that can be acquired by explicitly asking the indexers. For
example, based on the cosine similarities sim(v1,vs) and sim(ve,vs) (see
Equation 2.1 in Subsection 2.4.1), we expect that resource rq is perceived
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user perceived similarity
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Figure 6.1: Example of tag vectors describing three resources. During re-
trieval, the similarity of the tag vectors influences how close together the
corresponding resources get ranked. In order to get high precision and recall,
the similarity of the tag vectors needs to correlate with the user perceived
similarity of the resources.

by a majority of the indexers as more similar to ry than to r3. Otherwise,
their tag assignments are inconsistent with how they perceive the similarity
of the resources. In consequence, when querying with the terms that cause
such an inconsistency, the indexers likely get results that are inconsistent
with their expectations, thus decreasing precision and/or recall of the query
results.

According to this general idea, measuring the inter-resource consistency
requires two-steps: In a first step, we have to acquire the resource similarities
as they are explicitly perceived by the indexers of the resources. In a second
step, we can then compare in how far the implicit resource similarities, as
they are given by the cosine similarities of the tag vectors, are consistent
with the explicit resource similarities from the first step.

Acquiring Explicit Resource Similarities

For measuring the inter-resource consistency we need pairwise similarities
between the resources that are based on explicitly asking the indexers for
their perception of the resources’ similarities. But collecting the pairwise
similarities from each indexer is not feasible already for very small collections
of resources because the number of pairwise similarities increases quadrat-
ically with the number of resources. For example, already for 10 resources
we would have to collect 45 pairwise similarities from each indexer. Thus,
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a more efficient method is required that can be used for concluding on the
explicit, pairwise similarities of resources:

In the following, we propose to ask each indexer to group the resources
according to their similarity. As a result, we get from each indexer u; a set
of topical clusters C;. By putting two resources into the same cluster ¢ € Cj,
the indexer wu; indicates that he/she perceives the two resources as similar
to each other with regard to at least one aspect. Furthermore, we add the
constraint that each resource can only be contained in exactly one cluster.
Thus, if an indexer sees a resource related to more than one topical cluster,
he/she has to decide in which of the potential clusters to put the resource.
Due to this constraint, the amount of data to be acquired from each indexer
increases only linearly with the number of resources.

By acquiring from each indexer uw; € U such a set of topical clusters,
we are then able to reconstruct the relative strength of the pairwise simi-
larities between the resources. The more indexers have put two resources
together in one topical cluster, the higher the perceived similarity between
the two resources. The tag assignments of the indexers are consistent with
this independent indicator of resource similarities if the probability of two
resources to be in the same cluster is correlated with the probability of the
two resources having a tag in common. For example, the tag assignments
in Fig. 6.1 are consistent with the user perceived similarity of the resources
if more users cluster ro together with r; than with rs.

A very similar approach for acquiring the explicit resource similarities
has been used by White and Griffith in [122] for measuring the inter-resource
consistency of annotations that have been created by professional indexers in
online bibliographic data bases. White and Griffith compare the annotations
of the professional indexers to topical clusters that are based on co-citations
of the annotated bibliographic references. By citing two bibliographic ref-
erences together in a paper, the author of the paper indicates that the two
references are subject-related to each other and should thus also have an-
notations in common that identify this common subject. It makes sense
to use the co-citations as an independent indicator of resource similarities
because the authors of papers are at the same time potential users of online
bibliographic data bases. Thus, the annotations should be consistent with
their judgment about the relatedness of two bibliographic references.

Comparing Explicit and Implicit Resource Similarities

Given a set of resources R = {r1,...,r,} and a set of topical clusters C;
from indexer u;, the idea of inter-resource consistency is as follows: (1) If
two resources are contained in the same topical cluster ¢ € C; then this
should be reflected by a high cosine similarity of their tag vectors. (2) If two
resources are contained in different topical clusters ¢ and ¢’ then this should
be reflected by a low cosine similarity of their tag vectors.
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Technically, this idea of inter-resource consistency may be implemented
by computing the ratio between the similarities in the same cluster and
the similarities across the clusters. In the following, we propose to use
the Silhouette Coefficient for computing this ratio, and thus for measuring
the inter-resource consistency. The Silhouette Coefficients has been first
introduced in [91] for evaluating in how far a clustering algorithm identifies
clusters that are consistent with the distances between the vectors that
describe resources. We use it the other way round for evaluating in how
far the distances between the tag vectors are consistent with the clusters
identified by an indexer.

The Silhouette Coefficient is individually computed for each of the re-
sources contained in the set of topical clusters C; = {ci,..., ¢} identified
by indexer wu;. Instead of similarities between tag vectors, the Silhouette
Coefficient uses distances between the tag vectors of the resources in C;. In
the following, we use the angle © = arccos(sim(vy,v2)) (cf. Equation 2.1)
for measuring the distance between two tag vectors. © is the complement
to the cosine similarity on which most ranked retrieval tasks are based (see
Subsection 2.4.1). Given a resource r; and a corresponding set of topical
clusters Cj, its Silhouette Coefficient s;; is computed as follows:

First, the average distance a;; of r; to all other resources in its cluster
c € C; is computed. Second, from all clusters in C; that do not contain 7;,
we identify the cluster ¢ € C; whose resources have in average the lowest
distance to r;. We call this minimal average distance b;;. The distance of
two resources corresponds to the angle © between the tag vectors describing
the two resources. Finally, a;; and b;; are set into relation to each other as
follows:

bij — Qg5

(6.1)

%ij max(al-j, bl])

The Silhouette Coefficient s;; ranges between —1 and +1. s;; takes a
positive value if resource r; is closer to the resources in the same cluster c
than to resources in the closest other cluster ¢’. It reaches its maximal value
if the average distance a;; to the resources in c is 0. If s;; > 0, we say that
the tag vector of resource r; is consistent with regard to the topical clusters
in C; and the tag vectors of the other resources (see Fig. 6.2). In contrast,
si; takes a negative value if r; is farther away from the resources in ¢ than
from the resources in /. It reaches its minimal value if the average distance
bi; to the resources in cluster ¢ is 0. If s;; < 0, we say that the tag vector of
resource r; is inconsistent with regard to the topical clusters in C; and the
tag vectors of the other resources. Furthermore, s;; is undefined if resource
rj is in a cluster of size 1 in C;. The reason is that in such a case the average
distance a;; to all other resources in r;’s cluster is not well defined (cf. [91]).

In order to get a global measure of the inter-resource consistency, we
propose to average the Silhouette Coefficient over all resources in R =
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Figure 6.2: Three examples of topical clusters, which illustrate the idea
of measuring the Silhouette Coefficient for resource r; (white circle). The
lengths of the arrows correspond to the distances between the tag vectors
of the resources. The average length of the arrows with continuous lines
corresponds to a;;. The average length of the arrows with dotted lines
corresponds to b;;.

{r1,...,rm} and over all sets of topical clusters of the indexers in U =
{ui,...,up}. The average Silhouette Coefficient E(s;;) (see Equation 6.2)
measures the inter-resource consistency of the tag vectors V- = {v1,..., v}

of the resources in R with regard to how the indexers in U perceive in average
the similarity of the resources.

n m

E(sif) —7m Z 5ij (6.2)

The higher the E(s;;)-value, the higher the inter-resource consistency
of the tag vectors. The E(s;;)-values for two sets of tag vectors V; and V5
can be compared given that they describe the same set of resources R and
given that they are compared to the same sets of topical clusters provided
by the indexers in U. Only if these preconditions are fulfilled, we can be
sure that a difference in the two E(s;;)-values indicates a difference in the
inter-resource consistency for V; and/or Va. Otherwise, two E(s;;)-values
are incomparable.

In Equation 6.2 it is assumed that none of the s;;-values is undefined,
i.e. that none of the resources is in a cluster of size 1 (see above). If there
exist undefined s;j-values then they are excluded from the calculation of
the average Silhouette Coefficient E(s;;). Nevertheless, the tag vector of
resource r;, for which s;; is undefined, still takes part in the computation of
the b;;-values of the remaining resources clustered in Cj.
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6.1.2 Inter-Indexer Consistency

In general, the inter-indexer consistency measures in how far the indexers
have agreed on a common vocabulary for describing the relevant aspects of a
resource. It is assumed that the inter-indexer consistency of a tag vector is an
indicator of how good the tag vector describes the resource. In Fig. 6.1, the
inter-indexer consistency is related to the connection between a tag vector
and its corresponding resource. It is not checking the relations between
several tag vectors and/or resources. Nevertheless, according to [127], one
can assume a positive correlation between the inter-indexer consistency and
the inter-resource consistency of the tag vectors if the tags are “selected
individually and independently by each of the indexers”.

In the literature about tagging systems, it is a common assumption that
a high inter-indexer consistency indicates a high indexing quality, also if the
indexers are influenced by tag recommendations. Accordingly, measures of
inter-indexer consistency are used by many authors for concluding on the
indexing quality and how it is influenced by certain kinds of tag recommen-
dations [33, 38, 64, 77, 100]. Two different measures are available in the
literature:

The first measure analyzes how the vocabulary size in a tagging system
is influenced by giving tag recommendations [33, 57, 64, 77]. Given the same
number of indexers, a smaller vocabulary size is taken as an indicator of a
less idiosyncratic vocabulary of each indexer, and thus of a higher inter-
indexer consistency. But the vocabulary size is not a very robust measure
of inter-indexer consistency because it is not only influenced by the overlap
of the users’ individual vocabularies, which indicates the inter-indexer con-
sistency, but also by the average size of the users’ individual vocabularies.
Furthermore, a large vocabulary may also have a positive influence on the
indexing quality in a tagging system because more search terms can be used
for accessing the resources during retrieval.

The second measure analyzes how the tag reuse rate is influenced by
giving tag recommendations. In [100], the tag reuse rate is defined as “the
average number of users who apply a tag”. If an indexer reuses the tag of
another indexer then this is seen as an indicator that the tag is perceived
as relevant for describing the resource. In the following, we use the tag
reuse rate for measuring the inter-indexer consistency of the tag vectors.
We define the tag reuse rate as follows:

Given a set of resources R = {r1,...,7rm}, we first measure the tag reuse
rate tr; for each of the resources r; € R individually. The tag reuse rate tr;
corresponds to the number of tag assignments aggregated in r;’s tag vector
divided by the number of distinct tags in the tag vector (see Equation 6.3).
Given the tag reuse rates for the individual resources in R, the global tag
reuse rate over all resources is measured by the average E(tr;) over the
individual reuse rates (see Equation 6.4).
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The higher the E(tr;)-value, the higher the inter-indexer consistency of
the tag vectors that describe the resources in R. But the tag reuse rate is also
influenced by the number of tag assignments for which it is measured: By
dividing the number of the tag assignments through the vocabulary size, the
tag reuse rate is basically measuring the speed of the vocabulary growth.
Because of the sublinearity of the vocabulary growth, the ratio between
the two values changes over time, even if the inter-indexer consistency re-
mains unchanged. Thus, one can only conclude from the tag reuse rate on
a changed inter-indexer consistency if one compares it between two tag vec-
tors v; and ve describing the same resource r; and aggregating the same
number of tag assignments. Nevertheless, with increasing number of tag
assignments, the tag reuse rate becomes more and more robust with regard
to smaller differences in the number of tag assignments aggregated in two
tag vectors.

6.1.3 Further Measures

In the literature about tag recommenders, additional measures and method-
ologies are proposed for evaluating and comparing recommendation algo-
rithms to each other. In Subsection 2.2.3, an overview of the two most
widespread evaluation methodologies are given. These two methodologies
have in common that the quality of tag recommenders is measured by the
precision and recall of the set of recommended tags. Precision and recall are
used for comparing the given tag recommendations against a gold standard.
It depends on the chosen gold standard how to interpret the measurements:

In case of the offline evaluation methodology (see Subsection 2.2.3 and
[56]), the uninfluenced tag assignments of the individual users are used as
the gold standard. According to this methodology, the perfect tag recom-
mender knows exactly which tags the user would assign to a resource without
seeing the recommendations. By seeing the recommendations, the user no
longer has to type tags but can simply accept the recommendations. In
consequence, tag recommendations are primarily seen as a tool for reducing
the effort that is required by a user for indexing a resource. A further conse-
quence is that the methodology judges any deviation from the uninfluenced
behavior of users as negative, i.e. it neglects that a tag recommender might
be able to improve the quality of the tag assignments. This point of view
is also taken in [108, 116] where it is studied in how far users deviate from
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their true preferences, i.e. from their uninfluenced behavior, when seeing
tag recommendations.

In case of the online evaluation methodology (see Subsection 2.2.3 and
[55]), the gold standard consists of the influenced tag assignments of the
individual users after seeing the respective tag recommendations. Thus, it
measures in the context of a user experiment how often users really accept
one of the recommendations. In [55], it is even proposed to measure it live
in the Bibsonomy system. According to the online evaluation methodology,
the perfect tag recommender knows exactly which tags the user assigns to a
resource after seeing the recommendations. Thus, also the online methodol-
ogy sees tag recommendations primarily as a tool for reducing the indexing
effort. But in contrast to the offline methodology, it is able to cope with a
changed behavior of the users due to seeing the recommendations. Never-
theless, it is not able to distinguish a positive change in the behavior, e. g.
due to better indexed resources, from a negative change in the behavior.

6.2 Research Hypotheses

In this section, we analyze for two of the tag recommenders from Delicious
(see Fig. 2.1 and Section 2.2) how we expect that they influence the inter-
resource and inter-indexer consistency in a tagging system. For the two tag
recommenders we derive the hypotheses that in their case the inter-resource
consistency and the inter-indexer consistency are not positively correlated.
If we are able to show with the help of our user experiment in Section 6.3
that our hypotheses hold then only the inter-resource consistency and not
also the inter-indexer consistency can be used for evaluating the influence
of tag recommenders on the indexing quality.

6.2.1 Increasing the Inter-Indexer Consistency

One important way for increasing the inter-indexer consistency in a tagging
system is to add a feedback mechanism that exposes the users to each others
tags. An example of a tag recommender that adds this feedback mechanism
is the Popular Tags recommender of Delicious (see Fig. 2.1). It is an example
of a tag recommender that is based on the first paradigm of recommending
tags, i.e. it recommends tags based on the tag assignments of other users
(see Section 2.2). The Popular Tags recommender suggests the seven most
popular tags of a resource.

In several studies [33, 38, 57, 64, 77, 100], it has been shown that the
recommendation of popular tags leads to a slower vocabulary growth in a
tagging system. With the help of our Epistemic Model, we are able to re-
produce these results (see Subsection 5.5.3). The decrease in the vocabulary
growth speed depends on the probability with which the users select one of
the recommended popular tags (see Fig. 5.6).
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In this thesis, we use the tag reuse rate tr; (see Equation 6.3) for mea-
suring the influence of a tag recommender on the inter-indexer consistency.
It corresponds to the ratio between the number of tag assignments and the
number of distinct tags. Thus, if the suggestion of popular tags decreases
the vocabulary growth speed in a tagging system, i.e. less distinct tags oc-
cur in the same number of tag assignments, we expect that the inter-indexer
consistency increases:

Hypothesis 4 Suggesting the users a list with the most popular tags at a
resource increases the inter-indexer consistency in a tagging system.

How does the Popular Tags recommender influence the inter-resource
consistency and the indexing quality in a tagging system? According to
[127], a positive correlation between inter-indexer consistency and inter-
resource consistency can be expected if the indexing terms are “selected
individually and independently by each of the indexers”. But what happens
if users are influenced by popular tags, and thus if their tag assignments are
no longer completely independent of each other? Again, we can use tagging
models for predicting the influence of popular tags, but this time on the
inter-resource consistency:

In [116], it has been argued with the User’s Choice Model, which is very
similar to our Epistemic Model with Word Frequencies (see Subsection 4.3.2
on page 65), that a recommender based on popular tags may distort the
true tagging preferences of a user. Thus, the user applies different tags then
without seeing the recommendations. But distorting the true tagging pref-
erences is not necessarily a negative thing: Increasing as well as decreasing
the inter-resource consistency of the tag assignments of users requires dis-
torting the true tagging preferences. However, in [38] it has been argued
that in case of the Popular Tags recommender, the tag frequencies converge
to a random limit. In consequence, the tag frequencies no longer only ex-
press the importance of an aspect for describing the resource but they are
also influenced by a random process. In the following, we expect that the
influence of this random process decreases the inter-resource consistency of
the tag assignments:

Hypothesis 5 Suggesting the users a list with the most popular tags at a
resource decreases the inter-resource consistency in a tagging system.

6.2.2 Increasing the Inter-Resource Consistency

One important way for increasing the inter-resource consistency in a tagging
system is to remember a user which aspects he/she has identified before for
other resources and which tag has been used for describing the correspond-
ing aspect. This increases the probability that (1) a user does not forget
to describe aspects that span several resources in his/her collection, and
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that (2) the same tag instead of a synonym or slightly different spelling is
used for describing the corresponding aspect. From the three recommenders
available in Delicious, the User Tags recommender offers this kind of sup-
port to the user (see the Your Tags suggestions in Fig. 2.1). The User Tags
recommender is an example of a tag recommender that is based on the sec-
ond paradigm of recommending tags, i.e. it recommends tags based on the
previous tag assignments of the current user (see Section 2.2). The User
Tags recommender simply recommends all previously used tags of the user.
We expect that by helping the individual user in establishing a consistent
tagging vocabulary and in consistently applying it in his/her resource col-
lection, we are able to not only increase the inter-resource consistency of the
tag assignments of the single user but also the inter-resource consistency in
the whole tagging system:

Hypothesis 6 Suggesting the user his/her own previously used tags in-
creases the inter-resource consistency and indexing quality in a tagging sys-
tem.

How does the User Tags recommender influence the inter-indexer con-
sistency of the tag assignments in a tagging system? For this purpose, we
discuss how the Epistemic Model has to be adapted in order to simulate the
influence of the User Tags recommender. When tagging the first resource in
a user’s collection, the user does not get any recommendations because no
previous tag assignments are available. Thus, when describing the aspects
of the first resource, the user picks tags according to the probabilities in
his/her background knowledge. In consequence, the tag assignments at the
first resource reflect the level of inter-indexer consistency that is naturally
emerging from the background knowledge of the users. Subsequently, when
tagging the second resource, the user can either choose tags from his/her
background knowledge or from the tags previously used at the first resource.
Both sources for tag assignments reflect the naturally emerging level of inter-
indexer consistency. Thus, independent of whether a user picks tags from
the background knowledge or from the recommendations of the User Tags
recommender, the resulting tag assignments for the second resource can also
be assumed to reflect the level of inter-indexer consistency that is naturally
emerging from the background knowledge of the users. This argument can
be repeated for all subsequent resources in the collection of a user, thus
leading to the following hypothesis:

Hypothesis 7 Suggesting the user his/her own previously used tags does
not lead to a significant increase or decrease of the inter-indexer consistency
i a tagging system.
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6.3 User Experiment

In this section, we describe the web-based user experiment that we use for
evaluating our hypotheses from Section 6.2. The experiment is divided into
two phases:

During the first phase (see Subsection 6.3.1), we distinguish three exper-
imental conditions. Under all three conditions, the participants are asked to
assign tags to a set of ten web pages. But depending on the experimental
condition, the participants get different kinds of tag recommendations or no
recommendations at all. Under the first experimental condition, the partic-
ipants do not get any tag recommendations. The tag assignments of these
participants are used for determining the level of inter-resource consistency
and inter-indexer consistency that naturally emerge in tagging systems due
to the shared background knowledge of the participants. Under the second
experimental condition, tag recommendations of the Popular Tags recom-
mender are shown to the participants. By comparing the results of the first
and second experimental condition, we are able to evaluate Hypothesis 4
and 5. Under the third experimental condition, tag recommendations of
the User Tags recommender are shown to the participants. By comparing
the results of the first and the third experimental condition, we are able to
evaluate Hypothesis 6 and 7.

During the second phase (see Subsection 6.3.2), the participants are
asked to group the previously seen web pages into topical clusters. The
clusters indicate which of the web pages are perceived by the participants to
be about similar topics, and should thus also have similar tag vectors. The
groupings are used as the independent indicator of the resources’ similarity
to each other that is required for computing the inter-resource consistency
of the tag assignments from the first phase of the experiment (see Subsec-
tion 6.1.1).

Finally, in Subsection 6.3.3, we describe our strategy for recruiting par-
ticipants and the sizes of the data set that has been collected during the
experiment.

6.3.1 Phase 1: Tagging of Web Pages

During the first phase of the experiment, the participants should assign tags
to ten web pages that are shown sequentially in a random order. Fig. 6.3
shows the instructions given to the participants prior to starting the first
phase. The number of shown web pages is restricted to 10 in order to restrict
the effort required for the experiment to approximately 15 minutes. This
time restriction is important for avoiding high drop-out rates of the volun-
tary participants (see Subsection 6.3.3), and for retaining the participants’
level of motivation over the duration of the experiment.



116 CHAPTER 6. RECOMMENDATIONS AND INDEXING QUALITY

Background of the Experiment

This experiment is part of my PhD thesis in which I'm studying
tagging systems (What are tagging systems?). The experiment helps
to better understand how keywords are used for organizing
collections of web pages. Effort: ~15 minutes.

Running the Experiment

¢ 10 web pages will be shown to you, one after another.

e Assign any number of keywords to each web page.

¢ Keywords are like categories and/or they describe the content of a
page. Example: You may use the keyword "work" for grouping
web pages relevant for your work.

¢ The keywords are primarily for yourself, to find your way in your
own collection of web pages.

Figure 6.3: Instructions given to the participants of our experiment.

For the experiment, we use the same set of web pages as in an experi-
ment reported by Bollen and Halpin in [13]. For their experiment, Bollen
and Halpin randomly selected 11 web pages that are tagged with the tag
lifestyle on Delicious. With this selection strategy, Bollen and Halpin wanted
to ensure that the web pages appeal to the general public, and that no spe-
cialized background is required by the participants for understanding the
pages. This helps to avoid an influence of the participants’ familiarity with
a specialist subject matter on the experimental results [13]. Nevertheless,
from Bollen and Halpin’s set of 11 web pages, we remove one web page
because a pretest has shown that participants have problems in understand-
ing the topic of the web page based on a screenshot of it. The URLs of
the remaining 10 web pages that are used in our experiment are given in
Tab. 6.1.

In Fig. 6.4, the tagging interface is shown that is used during the first
phase of our experiment for tagging the web pages from Tab. 6.1. The web
pages are shown to the participants in sequential random order. At the
top of the tagging interface, the participants see a progress bar that gives
an impression how many pages they still have to tag. It is our objective
to reduce the drop-out rate of participants by showing them their progress
in the experiment. Below the progress bar, the input field for the tags is
available. The input field is scrollable such that no restriction on the number
of tags is imposed. When tagging the first web page, the participants see a
pop-up notice for the input field, which instructs them to separate multiple
tags by comma, and to leave the input field blank if the shown web page is
incomprehensible to them.

Depending on the experimental condition, the input field for the tags is
followed by a tag cloud, which gives tag recommendations to the participant.
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ID | URL
http://www.theonion.com/

http://news.bbc.co.uk/2/hi/uk_news/6057734.stm
http://uk.moo.com/

http://www.tvtrip.com/
http://www.panoramas.dk/
http://www.sleeptracker.com/

N O O e W N -

http://blisstree.com/feel/what-happens-to-your-body-if-you-
drink-a-coke-right-now/

Qo

http://www.patentlysilly.com/
http://www.whfoods.com/

10 | http://www.webmd.com/balance/features/your-guide-to-never-
feeling-tired-again/

Table 6.1: URLs of the 10 web pages used during the experiment.

progress: L
Assigning keyword

Popular keywords of other users

alarm device gadget health shop sleap  tracker

Nextweb page

v Sleeptracker: Sleep Phase Clock, Sleep Cycle Watch, Vibrating Alarm Clock - Mozilla Firefox
Datei Bearbeiten Ansicht Chionik Lesezeichen Extras Hilfe

¢ &> (18] http:/www slesptracker. com/ v [f[coogle | @ v
@ The Onion - ... ™8 BBCNEWS | ... & MOO | Custo.... 1ii The hotel vi... (] Panoramas.... | @ Sleeptra... 3 |3 Updated Pos...| ps Patently Sill... = The World's ... 5% Your Guide t... & ~

|11 SLEEPTRACKER!I|

WAKING UP HAS NEVER BEEN EASIER WVEWCART | MYAGCOUNT | LOGIN | CONTACT

™ works | DISTRIBUTORS

Wicoms.
Sleeptruckar: Sisep Phase Clock, Siean Cycia Watch, Vbrating Alam Clock

|11 Featured Products i
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e S G e e $59.00 |suxnon,

|Iin The News
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ONLY 3 EASY PAYMENTS OF ' Jaad
$59.00 |suxsow, - O

|liHow Sleeptracker Works

© Record yos ity sieep pattem

© Uiy ze our seep s
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» |4 [omr2ss | D |22

|11Why Sleeptracker Works

Figure 6.4: The tagging interface used for assigning tags to the 10 web
pages. Depending on the experimental condition, a tag cloud with the tag
recommendations is displayed below the input field for the tags. Here, the
interface for the Popular Tags condition is shown.
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By clicking on one of the recommended tags, the participant adds it to the
input field from where the tag can also be removed again. In our experiment,
we distinguish the following three conditions:

e No Suggestions: Under this condition, the participants do not get
any tag recommendations while tagging the ten web pages. This par-
ticipant group is the control group to which we compare the results of
the other two experimental conditions.

e Popular Tags: Under this condition, the seven most popular tags for
the current web page are shown to the participants. The participants
are informed that the recommended tags correspond to “Popular key-
words of other users” (see Fig. 6.4). The most popular tags are based
on the tag assignments of the previous participants of the same ex-
perimental condition for the same web page. Prior to the experiment,
each of the web pages has been initialized with the tags of a random
user from Delicious for the same web page (see Tab. 6.2). The ini-
tialization with a random posting from Delicious is necessary in order
to introduce a comparable level of randomness to the tag assignment
process as in a real system like Delicious. In a real system, the web
pages would also be first tagged by different users. Without this ini-
tialization with a random posting, the first tag assignments would all
come from the first participant of the Popular Tags condition.

e User Tags: Under this condition, a participant sees all tags that
he/she previously used in the experiment. For the first web page, no
tag recommendations are shown to the participant. The participant is
informed that the recommended tags correspond to “Your previously
used keywords”.

Together with the tagging interface, the experiment participants see a
screenshot of the respective web page. Showing a screenshot instead of the
live version of the web page has two reasons: The most important reason
is to ensure that all participants get the same stimulus, i.e. that they see
exactly the same version of the web page. This is especially important
for web pages that are portals with fast changing content like The Onion
(URL-1), Panoramas.dk (URL-5) or Patently Silly (URL-8). The second
reason is to avoid that the participants get distracted from their tagging
task by starting to browse the linked web pages. Because the title and the
URL of the web page may provide important information that influence the
tag assignments of the participants [71], the screenshot shows the complete
browser window in which the web page is opened. The used screenshots
of all web pages are available in the materials accompanying this thesis
(see Appendix C). Furthermore, the user experiment is still accessible under
http://userpages.uni-koblenz.de/~klaasd/experiment/.


http://userpages.uni-koblenz.de/~klaasd/experiment/

6.3. USER EXPERIMENT 119

S

URL
theonion, news, america

bbc, news, evolution, human

moo, business cards, post cards, printing
tvtrip, travel, hotels, reviews

panorama, background image

sleep, alarm, shop

health, coke, diet

funny, patents

health, food

sleep, health, guide

© 00 N O O = W N

—
)

Table 6.2: Tags used for bootstrapping the Popular Tags condition.

6.3.2 Phase 2: Grouping of Web Pages

During the second phase of the experiment, the participants should group
the previously tagged web pages into topical clusters. The topical clusters
are required for computing the inter-resource consistency of the tag assign-
ments (see Subsection 6.1.1). As can be seen in Fig. 6.5, the instructions
for the second phase are given to the participants together with the user in-
terface for grouping the web pages. Thus, the participants are not aware of
the second phase until it is started (see the initial instructions in Fig. 6.3).
This avoids that a participant may guess the purpose of the experiment,
thus leading to a possibly adapted tagging behavior during the first phase
of the experiment.

When entering the second phase, the participant sees in the left column
of the user interface the screenshots of the previously tagged web pages.
In order to recall the details of a web page, the participant may enlarge a
screenshot by clicking on it. On the right side, the participant may create
an arbitrary number of clusters. Initially, no clusters are shown on the right
side of the user interface in order to avoid biasing the participant to a certain
number of clusters. Furthermore, when creating a cluster, the participant is
asked to provide a name for it. The name of the cluster fulfills two purposes:
First, the name is important for the participant in order to be able to keep
track of his/her clusters and their content. Second, during our evaluation
of the experiment in Section 6.4 and 6.5 we can use the name for analyzing
the intention of the participants, i.e. with regard to which topic they see a
connection between the web pages in a cluster.

The grouping phase can not be finished until all web pages are assigned
to a cluster. A web page is assigned to a cluster by dragging its screenshot
from the left column to the area of the cluster on the right. Afterwards,
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proaress:

Group Web Pages Which Have Similar Content

» Create a new group or select an existing group.

o Hold down the lsft mouse button and drag the web page into the gray area of the group.

« Single click on a web page to enlarge and to minimize it again,

« If a web page is not similar to any of the other web pages, then put it into a separate group.

2| _Create new group Finish the Grouping! =
News 7 /@

Figure 6.5: The user interface for grouping the web pages into topical clus-
ters. Instructions on how to use the interface are given at the top.

the screenshot of the web page is removed from the left column, i.e. a web
page can only be assigned to one cluster. Thus, if a participant thinks that
a web page is possibly related to different clusters, then the participant is
forced to decide to which of the clusters the web page is more related (see
Subsection 6.1.1 for the rationale of this restriction).

6.3.3 Recruiting the Participants

We used several channels for recruiting participants for the experiment: (1)
We approached colleagues and friends. (2) We promoted the experiment
during the poster session of the Web Science Conference 2011'. (3) We pub-
lished the call for participation on Twitter.? (4) We published the call on
several public mailing lists that address the information retrieval or the infor-
mation science community.® (5) We distributed the call in an internal news
group of the University of Koblenz. The participation in the experiment
was completely voluntary, no incentives were given to finish the experiment.

All in all, 877 users accessed the web page of the experiment. 639 of
these users started the first phase of the experiment and 582 users also

"http://www.webscill.org
*https://twitter.com/ststaab/status/83170417975635968
3Example: http://mail.asis.org/pipermail/asis-1/2011-July/005953.html


http://www.websci11.org
https://twitter.com/ststaab/status/83170417975635968
http://mail.asis.org/pipermail/asis-l/2011-July/005953.html
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German Ul |T| Y] |Y]/|U]
No Suggestions | 74 706 2,134 28.84
User Tags 79 466 1,507  19.08
Popular Tags 78 531 2,228  28.56
English Ul T P Y|/
No Suggestions | 115 973 3,150  27.39
User Tags 118 819 2919 24.74
Popular Tags 118 550 3,003 25.45

Table 6.3: Sizes of the experimental data sets. Only participants who fin-
ished tagging all ten web pages are included.

finished the first phase. 530 of the users who finished the first phase also
clustered the web pages during the second phase of the experiment. In
Section 6.4, we only use the tag assignments and clusters of the 582 users
who finished at least the first phase. According to a questionnaire at the
end of the experiment, approximately 53% of the participants use tagging
systems for searching regularly or sometimes. The rest tried it either once
or not all. Furthermore, 45% of the participants upload content to tagging
systems regularly or sometimes. More detailed results of the questionnaire
are available in Appendix C in Section C.1.

Due to our recruiting strategy, we expected to observe a homogeneous
subgroup of native German speakers. Thus, we decided to not only offer
an English variant of our experiment but also a German variant. In both
variants, the same English web pages are shown but in the German variant
we instruct the participants to preferably use German keywords. Thus,
German participants are able to use their larger and more accurate active
German vocabulary during tagging. Each participant decided on his/her
own whether to participate in the German or English variant. All in all,
231 participants finished the experiment in the German variant and 351
participants in the English variant (see Tab. 6.3).

After choosing between the German or the English variant of the ex-
periment, each participant has been randomly assigned to one of the three
conditions described in Subsection 6.3.1. The experimental condition with
the most participants was excluded from the random assignment, if it al-
ready contained at least 5 participants more than the condition with the
fewest participants. This ensured a balanced distribution of participants
over the experimental conditions. The participants were not aware that dif-
ferent experimental conditions exist and that they have to create topical
clusters at the end of the experiment. They were only told that the experi-
ment analyses how keywords are used for organizing collections of web pages
(see Fig. 6.3).
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6.4 Results

In this section, we are presenting the results of our user experiment. The
results help us in evaluating our hypotheses from Section 6.2 about how the
two tested recommenders influence the inter-resource and the inter-indexer
consistency in a tagging system. In a first step, we evaluate in Subsec-
tion 6.4.1 in how far the participants of the different experimental condi-
tions have in average the same perception of the resources’ similarity, like
it is expressed by their topical clusters. Only if the participants under two
experimental conditions perceive the similarity of the resources in the same
way, we can compare the level of inter-resource consistency between the sets
of tag vectors created under the two experimental conditions. The compar-
ison of the inter-resource consistency of the tag vectors created under the
different experimental conditions, and thus the evaluation of Hypothesis 5
and 6, is then available in Subsection 6.4.2. Finally, in Subsection 6.4.3 we
compare the inter-indexer consistency of the tag vectors created under the
different experimental conditions. This comparison is used for evaluating
Hypothesis 4 and 7.

6.4.1 Similarity of Topical Clusters

In Subsection 6.1.1, we have described how to use the average Silhouette
Coefficient E(s;j) for measuring the inter-resource consistency of the tag
assignments. But before we can apply this method on our data, we have to
verify that the participants of the different experimental conditions have in
average identified the same topical clusters during the second phase of the
experiment (see Subsection 6.3.2). Otherwise, the differences in the F(s;;)-
values may not only be caused by the influence of the respective experimental
condition but also by differences in the topical clusters.

During the second phase of the experiment, we received feedback from
530 of our participants. A participant was only able to finish the second
phase if every web page was assigned to one cluster. The participants were
allowed to provide a name for each cluster in order to make it easier for them
to keep track of their clusters. On average, each participant separated the 10
web pages into 4.76 clusters, i.e. 2,521 clusters have been created. Together,
the participants identified 140 distinct clusters. Two topical clusters are
considered as equal if they contain the same web pages.

In Fig. 6.6, the probabilities of the eleven most frequently identified clus-
ters are shown. The probabilities are based on data from all 530 participants
who completed the second phase of the experiment. Altogether, the eleven
clusters from Fig. 6.6 represent 70.25% of all identified topical clusters. Ac-
cording to the names of the clusters, the 10 web pages are roughly related
to 6 different topics. URL-1, URL-5 and URL-6 are each on the border
between two topics. For example, the web page The Onion (URL-1) pub-
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Figure 6.6: Visualization of the 11 most frequently identified clusters of
web pages. Each box in the gray area corresponds to one cluster. Within
the box of each cluster it is given by how many participants the cluster
has been identified. For example, 28% of all participants put the BBC
web page (URL-2) alone into a cluster, leading to cluster cl-1. Another
34% of the participants instead decided to group BBC (URL-2) together
with The Onion (URL-1), leading to cluster cl-2. The remaining 38% of the
participants have put URL-2 into other, less frequent clusters. Nevertheless,
an analysis of the names used for cl-1 and cl-2 reveals that both clusters
are seen as related to the News topic.

lishes satirical news articles. 34% of the participants think that it is more
related to the News-topic and thus they group it with an article from the
BBC web page (URL-2), leading to cluster cl-2. In contrast, 22% of the par-
ticipants emphasize more the Humor-topic and thus group it with Patently
Silly (URL-8), which lists funny and strange patents, leading to cluster cl-3.
In the following, we evaluate in how far significant differences can be
observed between the cluster probabilities if the probabilities are only based
on the topical clusters of participants from a single experimental condition.
This evaluation helps us to answer in how far the participants of the dif-
ferent experimental conditions have in average the same perception of the
resources’ similarity. During our evaluation, we use the x2-Test [23, p. 199ff].
Only if the x2-Test tells us that in two experimental conditions the clusters
have been identified with the same probabilities, we can compare the E(s;;)-
values between the two experimental conditions (cf. Subsection 6.1.1).

The Y?-Test

The y2-Test [23, p. 199ff] is a nonparametric test that can be applied on
nominal data, i. e. on data where each observation can be categorized into ex-
actly one of several categories. For the y2-Test, all observations are arranged
in a contingency table with r rows and ¢ columns. Each row corresponds
to one random sample of observations, and each column corresponds to one
of the categories. In our case, a row in the contingency table contains how
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often participants from one of the experimental conditions identified one
of the 140 distinct clusters. Given a contingency table with r rows and ¢
columns, we denote the number of observations in row ¢ and column j with
O;j. Furthermore, we define n; = 25:1 O;j and ¢j = > O;;. Given these
definitions, the test statistic 7' of the y?-Test is computed as follows:

T C
(035 — Eyj)° ni - ¢
T = Y UL where By = e 6.5
Sy O SR

The lower T, the more similar to each other are the probabilities with
which participants identified the same cluster. The level of significance p of
a concrete T value corresponds to the probability of the y? distribution with
(r —1) - (c—1) degrees of freedom to exceed the observed value of T' [23,
p. 201]. For p > 0.1 we accept the hypothesis that there exist no significant
differences between the probabilities of the different clusters (cf. [79]).

In [23, p. 201f], it has been pointed out that the validity of the y2-Test
may be endangered if not most of the E;;-values in Equation 6.5 are greater
than 1.0. In our case, we observe Fjj-values less than 1.0 for columns that
only contain 1 observation. In [23], it is suggested to merge the observations
of two or more columns in order to eliminate such small E;;-values. In
our case, we merge the observations of all columns that only contain 1
observation into a single column. The single column then contains how
often a participant in one of the compared experimental conditions identifies
a cluster that none of the other participants has identified.

i=1 j=1

Comparing the Experimental Conditions

After defining the y?-Test, we can now apply it for comparing the cluster
probabilities across the different experimental conditions. In a first test, we
compare the cluster probabilities from the English variant of the experiment
with those from the German variant of the experiment. The test reveals
that the clusterings differ significantly (7' = 161.69, n; = 1519, ny = 1002,
p < 0.01). Thus, we cannot compare the E(s;;)-values across the two lan-
guage variants of the experiment. But for evaluating our hypotheses from
Section 6.2, it is more important whether we can compare the E(s;;)-values
from the No Suggestions condition to the E(s;j)-values of the other two
experimental conditions within the same language variant:

No Suggestions vs. Popular Tags Only for the German variant of the
experiment the clusterings from the No Suggestions condition and from
the Popular Tags condition can be considered as equal. For the English
variant, the clusterings from the two conditions differ significantly.
Possible explanations for the significant differences are discussed in
Section 6.5.
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German: T = 39.25, n1 = 339, ny = 323, p = 0.75;
English: T = 63.04, ny = 489, ny = 515, p = 0.06

No Suggestions vs. User Tags For the English variant of the experi-
ment as well as for the German variant the clusterings from the No
Suggestions condition and from the User Tags condition can be con-
sidered as equal. For the German variant, the differences between the
clusterings are smaller than for the English variant.

German: T = 35.03, n1 = 339, ny = 340, p = 0.86;
English: T'= 51.99, n; = 489, ny = 515, p = 0.36

Allin all, the results in this subsection show that there are only minor dif-
ferences in the cluster probabilities between the three German experimental
conditions. Thus, we can compare the E(s;;)-values between all three Ger-
man experimental conditions. In contrast, in the English experiment variant
we can only compare the No Suggestions and the User Tags condition. The
English No Suggestions and the English Popular Tags condition cannot be
compared because of the differences in the identified topical clusters.

6.4.2 Measuring the Inter-Resource Consistency

In this subsection, we evaluate Hypothesis 5 and 6, which are related to the
influence of tag suggestions on the inter-resource consistency. In the follow-
ing, we use the average Silhouette Coefficient F (sfj) from Subsection 6.1.1
for measuring the inter-resource consistency for a tagging system X. We
compare the E(s};)-value of the No Suggestions condition to the E(SZ)—
value of the Popular Tags condition. Furthermore, we compare E(s};) to
the E(sj;)-value of the User Tags condition. Based on Hypothesis 5 and 6,
we expect the following relations between the E(sf;)-values:

E(s)) < E(sf;) and  E(sf;) < E(s3;) (6.6)

For computing the E(s];)-values, we have to compare the tag vectors
from the different experimental conditions to a set of topical clusters. For
the German experiment variant, we compare the tag vectors to the union
of all topical clusters that have been given by participants of the German
variant. This way, we ensure that differences between the F (sfj)—values are
only caused by differences in the tag vectors and not also by slight differences
in the cluster probabilities between the experimental conditions. Creating
the union of all topical clusters from the German experiment variant is valid
because we have shown in Subsection 6.4.1 that the slight differences in the
probabilities are not significant. In contrast, for the English experiment
variant, we only compare the tag vectors from the No Suggestions and the
User Tags condition to the union of the topical clusters from these two
conditions. The clusters and tag vectors from the English Popular Tags
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Controlled for Users Controlled for TAS

German E(Sij) E(trij) E(Sij) E(t?“ij)
No Suggestions 0.1847 2.44 0.1670 2.07
User Tags 0.2367 2.39 0.2470 2.34
Popular Tags 0.1474 3.60 0.1478 3.23
English

No Suggestions 0.1713 2.76 0.1682 2.57
User Tags 0.1915 2.68 0.1946 2.71
Popular Tags N/A 4.67 N/A 4.44

Table 6.4: Influence of the experimental conditions on the inter-resource
consistency and on the inter-indexer consistency. For the results on the
left, we have restricted the number of users such that under each of the
experimental conditions the same number of users contributed to the tag
vectors. For the results on the right, we have restricted the number of tag
assignments (TAS) such that the tag vectors for the same resource contain
the same number of tag assignments.

condition have to be excluded from the evaluation because of the significant
differences in the cluster probabilities as it is shown in Subsection 6.4.1.

A summary of the experimental results is shown in Tab. 6.4. For the
results, we have restricted the number of participants such that under each of
the experimental conditions the same number of participants contributed to
the tag vectors. For the German variant, we have restricted it to the first 74
participants of each of the experimental conditions. For the English variant,
we have restricted it to the first 115 participants. Thus, we control that
different numbers of participants do not cause the differences in the results.
Additionally, we control that different numbers of tag assignments do not
cause the differences in the results. For this purpose, we have restricted
the number of tag assignments such that under each of the experimental
conditions the tag vectors for the same resource contain the same number
of tag assignments.

Significance of Results

For checking whether the results reported in Tab. 6.4 are significant, we
apply a two-tailed Mann-Whitney Test [23, p. 272ff]. The Mann-Whitney
Test is a nonparametric test that can be applied on ordinal data, i.e. on
data where the observed values can be arranged from smallest to largest.
The two-tailed version of the test compares for two random samples X and
Y of observed values whether they tend to the the same average value,
i.e. E(X) = E(Y), or whether they tend to different average values, i.e.
E(X)# E(Y).
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Given a random sample X of size n and a random sample Y of size m, the
Mann-Whitney Test first assigns the ranks 1 to n+m to the observed values
from smallest to largest. If several sample values are equal to each other,
then the average of the ranks is assigned that would have been assigned to
them had there been no ties (cf. [23, p. 272]). The test statistic 7" of the
Mann-Whitney Test then corresponds to the sum of the ranks assigned to

the values in X. If the observed values from ){ and Y tend to the same
average value, then T is close to m Otherwise, T' deviates

from this expected value. If there are many ties, the value of T has to be
corrected to the value 77 in order to account for the ties. Details on how to
calculate T7 are available in [23, p. 272ff].

In case of the E(s;j)-values in Tab. 6.4, we have to calculate the corrected
test statistic 77 because there are many tied values in the data. If the
observed values from X and Y tend to the same average value, then the
expected value of T3 is 0. Otherwise, T} deviates from this expected value.
If Ty is positive then this means that the values from X have in average a
higher rank than the values in Y. In consequence, the larger T, the more
likely E(X) > E(Y). If T} is negative then this means that the values from
X have in average a lower rank than the values in Y. In consequence, the
lower T7, the more likely E(X) < E(Y).

Based on the T or the T} value, we can calculate the level of significance
p. In the two-tailed version of the test, p can be used for accepting or
rejecting the hypothesis E(X) = E(Y). If p > 0.1, then we can accept the
hypothesis that there are no significant differences between F(X) and E(Y'),
i.e. we can accept that E(X) = E(Y). Otherwise, if p < 0.1, we have to
accept the alternative hypothesis that there are significant differences, i. e.
we have to accept that E(X) # E(Y).

Effect Size

In addition to the two-tailed Mann-Whitney Test, we also apply the Hodges-
Lehmann Estimator of Shift [23, p. 281f] on our results. The Hodges-
Lehmann Estimator of Shift can be used for measuring the effect size, i.e.
it can be used for determining the 95% confidence interval for the difference
E(X)— E(Y) between the average values for two random samples X and Y
of observed values. The Hodges-Lehmann Estimator of Shift can be applied
on ordinal data.

Given a random sample X of size n and a random sample Y of size m,
we first have to compute the pairwise differences of all possible pairs of a
value from X and a value from Y. As a result, we get n - m differences,
which we arrange from smallest to largest. From these differences, the k"
smallest difference and the k' largest difference correspond to the lower
and upper limit of the confidence interval for the difference E(X) — E(Y)
between the average values of X and Y. The value of k depends on the
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values of n, m and on which confidence interval we want to calculate. More
details about how to calculate k are available in [23, p. 281f]. In our case,
we calculate a 95% confidence interval, i.e. with a probability of 95%, the
true difference of F(X) — E(Y) is between the calculated lower and upper
limit of the confidence interval.

No Suggestions vs. Popular Tags

In the following, we use the Mann-Whitney Test and the Hodges-Lehmann
Estimator of Shift for evaluating the effect of suggesting popular tags on
the inter-resource consistency as it is measured by the average Silhouette
Coefficient. For this purpose, we compare the E(s%)—value of the No Sug-
gestions condition to the E(s’z?j)—value of the Popular Tags condition as they
are shown in Tab. 6.4. According to Hypothesis 5 we expect E(s};) < E(sf}).
Because of the differences in the perception of the resources’ similarity for
the English variant of the experiment (see Subsection 6.4.1) we can test
Hypothesis 5 for the German experiment variant only.

For the German experiment variant, we can confirm that E(s!.) <
E(sf;). The two-tailed Mann-Whitney Test shows that the difference be-
tween the corresponding E(sj;)-values in Tab. 6.4 are significant. If we
control for the influence of the number of participants, we get 17 = 7.42,
n=m = 1798, and p < 0.01. According to the Hodges-Lehmann Estimator
of Shift, suggesting popular tags decreases the average Silhouette Coeffi-
cient by 0.0472 with a 95% confidence interval of [0.0337,0.0582]. If we
control for the influence of the number of tag assignments, we get 77 = 4.84,
n=m = 1798 and p < 0.01. In this case, suggesting popular tags decreases
the average Silhouette Coefficient by 0.0262 with a 95% confidence interval
of [0.0164, 0.0360].

Thus, our experimental results show that recommending the seven most
popular tags of a resource has a significant influence on the inter-resource
consistency and the indexing quality in tagging systems. The results support
Hypothesis 5 that recommending the popular tags decreases the inter-resource
consistency in tagging systems.

No Suggestions vs. User Tags

Now, we test the effect of suggesting the user his/her own previously used
tags on the inter-resource consistency as it is measured by the average Sil-
houette Coefficient. We compare the E(s%)—value for the No Suggestions
condition to the E(s;;)-value for the User Tags condition as they are shown
in Tab. 6.4. According to Hypothesis 6 we expect that E(s};) < E(s};). For
both language variants of the experiment, we can confirm that this relation
holds.



6.4. RESULTS 129

If we control for the influence of the number of participants, the two-
tailed Mann-Whitney Test shows that the differences between the corre-
sponding E(s7;)-values in Tab. 6.4 are significant (German: 71 = —8.11,n =
m = 1796, p < 0.01; English: 77 = —3.0563,n = m = 1721,p < 0.01). For
the German variant, suggesting the user his/her own previously used tags
increases the average Silhouette Coefficient by 0.0775 with a 95% confidence
interval of [0.0584,0.0955]. For the English experiment variant, the average
Silhouette Coefficient increases by 0.0306 with a 95% confidence interval of
[0.0106, 0.0434].

If we control for the influence of the number of tag assignments, the
differences in Tab. 6.4 are also significant (German: 73 = —9.53, n = m =
1798, p < 0.01; English: 71 = —4.24, n = m = 1721, p < 0.01). For
the German variant, suggesting the user his/her own previously used tags
increases the average Silhouette Coefficient by 0.1259 with a 95% confidence
interval of [0.1051,0.1437]. For the English experiment variant, the average
Silhouette Coefficient increases by 0.0401 with a 95% confidence interval of
[0.0218,0.0583].

Thus, our experimental results show that suggesting the user his/her own
previously used tags has a significant influence on the indexing quality. The
results support Hypothesis 6 that recommending the user’s tags increases the
mter-resource consistency in tagging systems.

6.4.3 Measuring the Inter-Indexer Consistency

In this subsection, we evaluate Hypothesis 4 and 7, which are related to
the influence of tag suggestions on the inter-indexer consistency. In the
following, we use the average tag reuse rate E(trfj) from Subsection 6.1.2
for measuring the inter-indexer consistency for a tagging system X. We
compare the E(tr};)-value of the No Suggestions condition to the E(trfj)—
value of the Popular Tags condition. Furthermore, we compare E(tr];) to
the F (tr}fj)-value of the User Tags condition. Based on Hypothesis 4 and 7,
we expect the following relations between the E(tr];)-values:

E(try;) = E(tr];) and  E(trj;) < E(trfj) (6.7)

A summary of the results is available in Tab. 6.4. Like in Subsec-
tion 6.4.2, we control for the influence of different number of participants
and for the influence of different number of tag assignments (TAS). For con-
trolling the significance of the results and for determining the effect size, we
use the two-tailed Mann-Whitney Test and the Hodges-Lehmann Estimator
of Shift described in Subsection 6.4.3.
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No Suggestions vs. Popular Tags

In the following, we evaluate the effect of suggesting popular tags on the
inter-indexer consistency. For this purpose, we compare the E(try;)-value
of the No Suggestions condition to the E(trfj)—value of the Popular Tags
condition as they are shown in Tab. 6.4. According to Hypothesis 4 we
expect that E(tr]}) < B (trfj). For both language variants of the experiment,
we can confirm that this relation holds.

If we control for the influence of the number of participants, the two-
tailed Mann-Whitney Test shows that the differences between the corre-
sponding E(trf;)-values are significant (German: 7' = 58,n = m = 10,p <
0.01; English: T' = 55,n = m = 10,p < 0.01). For the German variant,
suggesting popular tags increases the average tag reuse rate by 1.2274 with
a confidence interval of [0.6912,1.6111]. For the English variant, the av-
erage tag reuse rate increases by 1.7955 with a 95% confidence interval of
[1.2760, 2.4027].

If we control for the influence of the number of tag assignments, the
differences in Tab. 6.4 are also significant (German: 7" = 57,n = m =
10,p < 0.01; English: 7' = 55,n = m = 10,p < 0.01). For the German
variant, suggesting popular tags increases the average tag reuse rate by
1.2384 with a confidence interval of [0.7922,1.5386]. For the English variant,
the average tag reuse rate increases by 1.7038 with a 95% confidence interval
of [1.2727,2.1866].

Thus, our results show that recommending the seven most popular tags of
a resource has a significant influence on the inter-indexer consistency. The
results support Hypothesis 4 that recommending the popular tags increases
the inter-indexer consistency in tagging systems.

No Suggestions vs. User Tags

Now, we test the effect of suggesting the user his/her own previously used
tags on the inter-indexer consistency. We compare the F (tr?j)-value for the
No Suggestions condition to the E (trffj)—value for the User Tags condition
as they are shown in Tab. 6.4. According to Hypothesis 7 we expect that
E(tr;) = E(trj;). For both language variants of the experiment, we can
confirm that this relation holds.

If we control for the influence of the number of participants, the two-
tailed Mann-Whitney Test shows that the differences between the corre-
sponding E(tr{;)-values in Tab. 6.4 are not significant (German: T'= 104,n =
m = 10,p = 0.97; English: 7' = 113,n = m = 10,p = 0.57). Accordingly,
the 95% confidence interval for E(tr};) — E(tr};) is [—0.392,0.3437] for the
German variant and [—0.392,0.2804] for the English variant.

If we control for the influence of the number of tag assignments, the
differences in Tab. 6.4 are also not significant (German: 7' = 85.5,n = m =
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10, p = 0.15; English: T'=93,n = m = 10,p = 0.41). Accordingly, the 95%
confidence interval for E(trj;) — E(tr;) is [—0.0964, 0.6021] for the German
variant and [—0.2531, 0.4738] for the English variant.

Thus, our results show that recommending the user his/her own previ-
ously used tags has no significant influence on the indexing quality. The
results support Hypothesis 7 that recommending the user’s tags does not lead
to a significant increase or decrease of the inter-indexer consistency.

6.5 Discussion

In Section 6.4, we have presented the results how the User Tags recom-
mender and the Popular Tags recommender influence the inter-resource
consistency and the inter-indexer consistency in tagging systems. The re-
sults are in agreement with our hypotheses from Section 6.2 according to
which we have expected that the inter-resource consistency and inter-indexer
consistency are not necessarily positively correlated with each other if tag
recommendations are given to users. Thus, we have been able to show that
one can not use the less complex measures of inter-indexer consistency for
concluding on the influence of tag recommendations on the indexing quality
in tagging systems. Instead one has to use measures of the inter-resource
consistency, which check an additional requirement for a high indexing qual-
ity, namely that the users not only agree on how to annotate single resources
but also on how to annotate a complete set of resources.

Our methodology for measuring the inter-resource consistency, which is
described in Subsection 6.1.1, is able to evaluate in how far the tag assign-
ments of the users are consistent with how the users perceive the similarity
of resources. It can be used for comparing the indexing quality of the tag
assignments in different tagging systems, given that the users in both tag-
ging systems perceive the similarity of the resources in average in the same
way. If this precondition of similar perception is not fulfilled, then it can not
be said to which extent the differences in the tag assignments are reflecting
different levels of inter-resource consistency or simply a different perception
of the similarity of the resources.

Due to this restriction of our methodology, we have only been able to
evaluate Hypothesis 5 for the German experiment variant. For the English
variant, the levels of inter-resource consistency are incomparable because of
differences in the perceived similarity of resources between the English No
Suggestions and the English Popular Tags condition. In the following, we
discuss possible explanations for the differences, and in how far they may
be caused by the influence of the tag recommendations.

We start in Subsection 6.5.1 with discussing possible explanations for
the differences between the English and the German experiment variant. We
show that these differences are caused by the fact that the participants of the
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English and the German experiment variant are random samples from two
different populations, which differ in their level of comprehension of the web
pages. Then, in Subsection 6.5.2, we show that the differences between the
English No Suggestions condition and the English Popular Tags condition
can not be explained in the same way. Instead, the results of our experiment
point into the direction that seeing the popular tags at a resource may lead
to learning effects that change how the users perceive the similarity between
resources.

6.5.1 Influence of Comprehension of the Web Pages

In Subsection 6.4.1, we have shown that there exist significant differences
between the participants of the German and English experiment variant how
they perceive the similarity between the resources. In the following, we take
a closer look at these differences and discuss in how far they can be caused
by different levels of comprehension of the shown web pages. This level of
comprehension especially plays an important role when judging for one of
the web pages, namely The Onion (URL-1), whether it is more related to
the topic News or to the topic Humor. The Onion is one of the three web
pages that are seen by the participants on the border between two topical
clusters (see Fig. 6.6).

In Fig. 6.7, we give an overview of how the participants of the two lan-
guage variants have clustered the three web pages that are seen on the
border between two topical clusters. It can be seen that the two groups
of participants mainly differ in their decision of how to cluster The Onion
(URL-1), which publishes satirical news articles. In the German variant, the
vast majority of participants perceive the web page The Onion as related
to the News topic, which is represented by cluster cl-2 from Fig. 6.6. In
contrast, the participants of the English variant see it more related to the
Humor topic, which is represented by cluster cl-3. For the web pages Sleep-
tracker (URL-6) and Panoramas.dk (URL-5), no such significant differences
between the two language variants can be observed.

As can be seen in Fig. 3.6, at the first glance The Onion (URL-1) gives
the impression of a regular news web page. Even the headline of the main
article about the Yellowstone National Park may be perceived as a regular
news article if not carefully reading and fully understanding it. In the fol-
lowing, we show that the participants’ decision of how to cluster The Onion
correlates with their level of comprehension of the web pages. The lower the
level of comprehension, the higher the probability that a participant clusters
The Onion according to its News aspect into cluster cl-2. In contrast, the
higher the level of comprehension, the higher the probability to cluster it
according to its Humor aspect into cluster cl-3.

An indicator of the level of comprehension is the self-assessment of the
participants in the questionnaire from the end of the experiment. The de-
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Figure 6.7: Overview of how the participants of the two language variants
of the experiment have clustered the three web pages from Fig. 6.6 that
are on the border between two topics. For each of the three web pages
the probabilities are given with which they have been put into one of the
eleven most popular clusters from Fig. 6.6, or in another of the 140 overall
identified clusters.

tailed questions and results of the questionnaire are available in Appendix C
in Section C.1. In the questionnaire, the participants were amongst others
asked to rate the comprehensiveness of the web pages on a scale from 1
(poor) to 6 (good). In this self-assessment, the participants who clustered
The Onion according to its News aspect have rated the comprehensiveness
of the web pages in average with 5.23. In contrast, the participants who
clustered The Onion according to its Humor aspect have rated the com-
prehensiveness of the web pages in average with 4.80. A two-tailed Mann-
Whitney Test (see Subsection 6.1.1) shows that the difference between the
two average ratings is significant (77 = —2.31,n = 182, m = 115,p = 0.02).
This correlation between the self-assessed level of comprehensiveness and
the clustering decision can also be confirmed by only looking at the average
ratings of either of the two experiment variants (German: 5.00 vs. 4.66;
English: 5.29 vs. 4.95).

These findings suggest that a larger number of participants had problems
in comprehending the content of The Onion. A lower level of comprehension
increases the probability that a participant emphasizes the News aspect of
The Onion by clustering it with a BBC' web page into cluster cl-2. It is
plausible that this level of comprehension is also correlated with the English
language skills of a user. This additional correlation would also explain why
in the German variant more participants had problems than in the English



134 CHAPTER 6. RECOMMENDATIONS AND INDEXING QUALITY

@ the ONION

America’s Finest News Source

Video LA

Sports

KEYS TO THE MATCHUP
Stanley Cup Finals vs.
NBA Finals

NEWS IN PHOTOS

Man Dies All By Himself
-
(

INFOGRAPHIC
Would-Be Assassin Ruled
Unfit For Trial

Entertainment

>

AR A

STATSHOT
What Are We Yelling At
Our Children's
Graduation?

Yellowstone National Park Concerned
About Competing "Yello-Stone Natural
Park’ Built Right Across Street

GARDINER, MT—With the summer tourist season now in full gear, officials

NEWS IN PHOTOS»
Pool Noodle Has
Another Season
In Her

AMERICAN
Weiner

L le

SLIDESHOW »

Summer

. o
Area Freak Hides In Cave

VOICES »
Can't Say Photo Isn’t Of Him

“With a name like that, I'm not surprised he
sent out pics of his Andrew.”

Create an account or log in to see
what your friends are doing

Church Cancelled Due to Lack of God
30,648 people shared this

Prince William Divorces Kate
Middleton After 5 Weeks
311,937 people shared this

at Yellowstone National Park expressed a growing sense of concern and | Planet Earth Doesn’'t Know How To
agilation Monday about a competing 3,500-square-mile nature reserve that ﬁ Make It Any Clearer It Wants
recently opened directly across th... MOREs * Editors Of '401 Best Soups' Everyone To Leave
Cookbook Still Fighting 59,684 people shared this
EM VIDEO » + Point Of Story Apparently
That Man Ate At Restaurant
B roce

» Educated Bigot That Much
More Terrifying 1

Onion News Network Fridays at 11/10c on IFC

Figure 6.8: Screenshot of The Onion (URL-1) that was shown to the exper-
iment participants.

variant: In the German variant, presumably only non-native English speak-
ers participated. In the English variant, due to our recruiting strategy (see
Subsection 6.3.3) it can be assumed that the participants are a mixture of
(1) non-native English speakers who likely have language skills compara-
ble to the participants in the German variant, and (2) the native English
speakers.

6.5.2 Influence of Learning Effects

In Subsection 6.4.1 it has been shown that also significant differences exist
between the English No Suggestions condition and the English Popular Tags
condition. In Fig. 6.9 it can be seen that these differences are also mainly
caused by the decision of the participants of how to cluster The Onion (URL-
1). In the following, we discuss in how far these differences can be caused
by learning effects of the participants due to being exposed to the tags of
other users, as it is also discussed in [35].

In Subsection 6.5.1, we have shown that the self-assessed level of com-
prehension correlates with the decision of the participants of how to cluster
The Onion. Thus, before we can discuss whether the observations in Fig. 6.9
can be explained with learning effects, we first have to be sure that they
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Figure 6.9: Overview of how the participants of the three English exper-
imental conditions have clustered the three web pages from Fig. 6.6 that
are on the border between two topics. For each of the three web pages
the probabilities are given with which they have been put into one of the
eleven most popular clusters from Fig. 6.6, or in another of the 140 overall
identified clusters.

may not again be caused by the level of comprehension of the participants.
For this purpose, we compare the self-assessed levels of comprehension be-
tween the English No Suggestions and the English Popular Tags condition.
In case of the English No Suggestions condition the self-assessed level of
comprehension is in average 5.09, and in case of the English Popular Tags
condition it is 4.95. According to a two-tailed Mann-Whitney Test (see
Subsection 6.1.1), the difference between the two conditions is just barely
significant (77 = 1.71,n = 101, m = 102, p = 0.09) but pointing to a slightly
higher level of comprehension under the No Suggestions condition. Due
to these results, we can exclude that the differences in the topical clusters
between the two experimental conditions are caused by the level of compre-
hension because this would require a higher level of comprehension under
the Popular Tags condition, and not the other way round.

Instead, it seems more plausible to explain the differences in Fig. 6.9
for The Onion with the influence of the tag recommendations under the
Popular Tags condition. Indeed, under the English Popular Tags condition,
for 107 of the 118 participants the list of recommended tags contained the
tag “satire”. Additionally, the tag “fun” was contained 104 times in the
list, and “humor” 89 times. Thus, for 89 participants almost half of the
recommendations were pointing to the humorous aspects of The Onion. We
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Figure 6.10: Overview of how the participants of the three German exper-
imental conditions have clustered the three web pages from Fig. 6.6 that
are on the border between two topics. For each of the three web pages
the probabilities are given with which they have been put into one of the
eleven most popular clusters from Fig. 6.6, or in another of the 140 overall
identified clusters.

assume that seeing these tags helped to increase the likelihood of recognizing
this aspect and finally clustering it with Patently Silly (URL-8) into cluster
cl-3.

Why can a similar effect not be observed for the German Popular Tags
condition? Instead, in Fig. 6.10 we can even see a decreased probability of
clustering The Onion according to its humorous aspects under the German
Popular Tags condition. It seems that in the German experiment variant
not enough participants recognized the humorous aspects of The Onion in
order to push corresponding tags into the list of popular tags. Indeed, un-
der the German Popular Tags the list of popular tags contains only for 1
participant a tag related to the humorous aspects, namely the tag “lustig”
(=funny). Consequently, no increased probability of clustering The Onion
with Patently Silly into cluster cl-3 can be observed. Quite contrary, the
dominance of news related tags in the list of popular tags for the German
Popular Tags condition even decreases the probability of cluster c¢l-3 from
13% for the other two German experimental conditions to 3%. But this
decrease of c¢l-3’s probability has no significant influence on the overall dis-
tribution of topical clusters (see Subsection 6.4.1).

All in all, it thus seems that suggesting the popular tags has the potential
to not only influence the tag vectors but also the perception of the users. But
our experiment also suggests that certain preconditions have to be fulfilled
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for this learning effect to occur because in our experiment it can only be
observed for a single web page. It would be subject to further research to
identify these preconditions. Knowing them is required for discussing in how
far the effect occurs regularly in tagging systems, or in how far The Onion
is a rather isolated case, but this discussion is out of the scope of this thesis.
Nevertheless, our methodology of measuring the inter-resource consistency
has proofed to be useful for spotting and isolating the learning effects, which
affect the perception of the users. It helps to distinguish the learning effects
from changes that only affect the tag assignments of the users.

6.6 Conclusions

In this chapter, we have discussed how to measure the influence of tag rec-
ommenders on the indexing quality of tagging systems. We have proposed to
use the inter-resource consistency as the main target parameter to be opti-
mized by tag recommenders because it influences the precision and recall of
queries in a tagging system [127]. In contrast, improving the inter-indexer
consistency should only be a secondary target of tag recommenders. We
have applied our methodology for measuring the inter-resource and inter-
indexer consistency for two exemplary baseline recommenders: (1) The Pop-
ular Tags recommender, which recommends the seven most popular tags of
a resource, and (2) the User Tags recommender, which recommends a user
his/her previously used tags.

During our user experiment with 582 participants, we have contrasted
our measure of the inter-resource consistency with a measure of the inter-
indexer consistency. In the literature about tagging systems, the inter-
indexer consistency is often used as a measure of indexing quality. But
we have shown that the inter-indexer consistency is not positively corre-
lated with the inter-resource consistency and the indexing quality if users
are influenced by tag recommendations. In case of the Popular Tags recom-
mender, the recommendations have increased the inter-indexer consistency
and decreased the inter-resource consistency in our experiment. In case of
the User Tags recommender, the recommendations didn’t have an influence
on the inter-indexer consistency while they have increased the inter-resource
consistency.

From these results of the user experiment one can conclude that the tag
vectors of related resources get more dissimilar to each other if the Popular
Tags recommender is used in a tagging system like Delicious. In contrast,
the tag vectors of related resources get more similar to each other if the
User Tags recommender is used. Thus, the User Tags recommender not
only helps a user to better organize his/her own collection of resources but
it also helps to improve the global indexing quality in a tagging system, as
it is measured by the inter-resource consistency.
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Chapter 7

Conclusions

Two central questions have guided the research reported in this thesis. The
first question has been how the micro-level behavior of the individual users
leads to the emergence of certain properties on the macro-level of a tagging
system? With this regard, we have formulated our assumptions about the
dynamic processes in tagging systems in form of the Epistemic Dynamic
Model (Chapter 4). Our evaluation (Chapter 5) has shown that our model
can explain the emergence of the tag frequency distribution and the sublin-
ear vocabulary growth in tagging systems. The second question has been
whether it is possible to control and selectively influence the dynamic pro-
cesses in tagging systems in order to achieve a certain desired behavior?
With this regard, we have used the findings from the Epistemic Dynamic
Model for predicting for two tag recommenders how they influence the in-
dexing quality in tagging systems (Chapter 6). Our predictions have been
confirmed by a user experiment (also Chapter 6). In the following, we list
the most important findings of this thesis in more detail.

7.1 The Epistemic Dynamic Model

Our Epistemic Dynamic Model is based on the assumption that the com-
bined influence of the shared background knowledge of users and the imita-
tion of tag recommendations are sufficient for explaining the emergence of
the tag frequency distributions and the sublinear vocabulary growth in tag-
ging systems. In this thesis, we have concentrated on these two properties
of tagging systems because they are closely related to the emergence of the
shared community vocabulary in a tagging system (see Chapter 3).

We have used the Epistemic Dynamic Model for evaluating our assump-
tion about the relevance of the two influence factors and for studying how
their interaction leads to the emergence of the observed macro-level proper-
ties of tagging systems. In Chapter 5, we have shown in our evaluation that
the general shape of the tag frequency distribution and of the vocabulary
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growth likely have their origin in the shared background knowledge of the
users. In our evaluation, we have used two alternative implementations for
modeling the shared background knowledge of users (see Subsection 4.1.2):
One implementation based on word frequency distributions in corpora of
natural language texts, and one implementation based on semantic net-
works. Both implementations agree in their predictions, given that they are
aligned with empirical evidence about the background knowledge of users.
Thus, the two implementations can be seen to be equivalent to each other.

The imitation of tag recommendations alters the general shape of the
two properties in certain directions. For example, in case of recommending
a set of popular tags, the imitation leads (1) to a reduced vocabulary growth
speed, (2) to an increased probability of the most frequent tags, and (3) to a
decreased probability of the infrequent tags. The Epistemic Dynamic Model
can not only be used for predicting the direction of how the general shape
is altered but also for quantifying the size of the effect, like we have done it
for the vocabulary growth in Subsection 5.5.3.

7.2 Tag Recommendations and Indexing Quality

All in all, the findings from the evaluation of the Epistemic Dynamic Model
suggest that the dynamic processes in tagging systems are primarily driven
by the shared background knowledge of the users. The recommendation of
tags can then be used for influencing these processes into a specific direction.
In Chapter 6, we have predicted with the help of the Epistemic Dynamic
Model for two exemplary tag recommenders in which direction they alter
the indexing quality in tagging systems. We have expected that the recom-
mendation of a set of popular tags decreases the indexing quality in tagging
systems, and that the recommendation of a user’s previously used tags in-
creases the indexing quality. We have been able to confirm these predictions
with the help of a user experiment.

Our findings with regard to the influence of recommending a set of pop-
ular tags contradict a commonly found assumption in the literature about
tagging systems that such recommendations are beneficial for the quality
of the tag assignments [33, 38, 64, 77, 100]. The reason for this common
assumption is that several authors have shown that recommending popular
tags adds a feedback mechanism between the different users. This feedback
mechanism then increases the inter-indexer consistency of the tag assign-
ments. But we have shown in Chapter 6 that one can not automatically
conclude from an increased inter-indexer consistency on an increased index-
ing quality if the users are influenced by tag recommendations.

Instead, we have proposed to use a more direct measure of the indexing
quality, namely the inter-resource consistency of the tag assignments. The
inter-resource consistency measures in how far the users are successful in
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linking resources that they perceive as similar to each other by indexing
their common aspects with common terms. Given a match between indexing
terms and query terms, which can be assumed in tagging systems [108],
the inter-resource consistency influences the precision and recall of queries
[127]. For our experiments in Chapter 6, we have defined a measure of
the inter-resource consistency in information systems that apply the vector
space model during retrieval, like it is the case for tagging systems that
produce broad folksonomies. Our measure of the inter-resource consistency
complements existing measures for the evaluation and comparison of tag
recommendation algorithms. It moves the focus from evaluating whether tag
recommendations reduce the tagging effort of users to evaluating whether
tag recommendations increase the quality of the tag assignments.

7.3 Outlook

There are two interesting directions of future research that arise from this
thesis: First, it would be interesting to further study under which condi-
tions one can observe the learning effects that we discovered in our user
experiment (see Subsection 6.5.2). Knowing the conditions would help us in
even better understanding and modeling the dynamic processes in tagging
systems, and in possibly uncovering further ways of how to selectively in-
fluence the behavior of the users. Second, it would be interesting to test in
how far the Epistemic Dynamic Model can be used for improving spam de-
tection algorithms in tagging systems. With the Epistemic Dynamic Model,
we have a model of regular users. By spotting users who deviate from this
modeled behavior, we might be able to identify a considerable amount of
the spammers in a tagging system.
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Appendix A

Software

This thesis is accompanied by a DVD that contains the software that is
required for reproducing the results reported in Chapter 4 and 5. The
software is available in the jar-file dissertation-dellschaft.jar in the
main directory of the accompanying DVD. The software can be started using
Java SE 7. Java can be downloaded at http://java.oracle.com/. In the
following, a short description is given of the different Java applications that
are contained in the jar-file.

A.1 Simulation — GUI

There exists a Java application with a graphical user interface for simulating
the different tagging models described in this thesis. A screenshot of the user
interface is shown in Fig. A.1. The Java application can be started from the
command line with the following call:

java -Xmx512m -jar dissertation-dellschaft.jar

The application can be used for simulating the different configurations
of the Epistemic Model described in Chapter 4. The Natural Language
Model from Subsection 4.2.3 is simulated by using the Epistemic Model
with Word Frequencies and setting the imitation probability to I = 0.0.
Furthermore, the Yule-Simon Model with Memory and the Semantic Walker
Model can be simulated (see Subsection 4.3.2). The Semantic Walker Model
can be used in conjunction with the Watts-Strogatz Model [119], the Erdos-
Rényi Model [32], the Uncorrelated Scale-Free Network Model [29] and the
Growing Network Model [106]. For reproducing the results reported in this
thesis, the following steps are required:

1. Selection of the model and the stream for which to reproduce the
results (Stream to be simulated).
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Simulation of Dynamic Models for Tagging Systems

Epistemic Model | Yule-Simon Model with Memory | Semantic Walker Model

1/ Word Frequencies | Growing Network Model |
Stream to be simulated Simulation of postings Repetitions of the simluation

= |Who|e Postings |v| L |

Output directory for generated tag streams

| H Browse... |

Imitation probabilitiy (1) Visible top ranked tags (n) Previous tag assigments (h)

[o.5 | [s0 | [1o00 |

Figure A.1: Screenshot of the simulation GUI.

2. Selection of the simulation of whole postings (Simulation of postings).

3. Entering how often the simulations should be repeated (Repetitions of
the simulation).

4. Setting the parameters of the model to be simulated.

5. Choosing an output directory where the simulated streams should be
saved. More details about the file format used for saving the simulated
streams is available in the file README. txt in the main directory of the
accompanying DVD. Depending on the used simulation model, the
conventions for the automatically generated file names are:

e cpistemicWF_IValue_hValue_nValue_runNr.stream
(Epistemic Model + Word Frequencies)

o epistemicGNM_IValue_hValue_nValue_nsValue_dValue_mValue
_runNr.stream (Epistemic Model + Growing Network Model)

e ysm_pValue_tauValue_nOValue_runNr.stream
(Yule-Simon Model with Memory)

e semWalkWS_nValue_dValue_mValue_pValue_runNr.stream
(Semantic Walker Model + Watts-Strogatz Model)

e semWalkGNM_nValue_dValue_mValue_runNr.stream
(Semantic Walker Model + Growing Network Model)

e semWalkER_nValue_dValue_pValue_runNr.stream
(Semantic Walker Model + Erdds-Rényi Model)

e semWalkUCM_nValue_dValue_~Value_runNr.stream
(Semantic Walker Model + Uncorrelated Scale-Free Networks)
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A.2 Simulation — Command Line

The simulations can also be started on the command line. This option gives
more flexibility with regard to the simulation, e.g. other distributions of
posting sizes may be used than in the GUI, and streams with arbitrary length
may be generated. The command line can be started with the following call:

java -Xmx512m -cp dissertation-dellschaft. jar
de.unikold.isweb.TagStreamSimulator

More details about the available options are given on the command line
if no further parameter is given to the above call.

A.3 Generating Plots

The two applications from above for doing the actual simulations only save
the raw simulated stream. If one wants to extract the tag frequency distri-
bution or the vocabulary growth for one or more of the streams, one has to
use another application. It is started with the following call:

java -Xmx512m -cp dissertation-dellschaft.jar
de.unikold.isweb.TagStreamSaver

It opens a file chooser where one or more streams can be selected (see
Fig. A.2). The extracted plots of the tag frequency distribution as well as
the vocabulary growth will be saved in the same directory as the file that
contains the stream. The saved files will be named *.edf.freq, *.fr.freq and
* growth. More details about the file format used for saving the files is
available in the file README. txt in the main directory of the accompanying
DVD.

A.4 Applying the Smirnov Test

For comparing the tag frequency distributions of two co-occurrence streams
with the help of the Smirnov Test (see Subsection 5.2.1), the following ap-
plication can be used:

java -Xmx512m -cp dissertation-dellschaft. jar
de.unikold.isweb.StreamComparison

If the application is called without any further parameters, a file chooser
dialog appears where one can first select the file which contains the original
stream, i.e. a *.stream-file. Details about the used file format are available
in the file README.txt in the main directory of the accompanying DVD.
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Suchen in: ||j tmp |V| E

[} epistemic_0.6_1000_50.0_1.stream [ ] epistemic_0.6_1000_50.0_6.strea
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[} epistemic_0.6_1000_50.0_2.stream [ ] epistemic_0.6_1000_50.0_8.strea
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Figure A.2: Screenshot of the file dialog for extracting the frequency distri-
bution and vocabulary growth from stream files.

Then, a second file chooser appears where one or more simulated streams
can be selected, which should be compared with the original stream. There
is also the option to use the application as a pure command line tool. In
that case, the first parameter passed to the application is interpreted as the
file name of the original stream. All further parameters are then interpreted
as the file names of the simulated streams.

After selecting the *.stream-files that should be compared, the applica-
tion compares the stream selected with the first file chooser to each of the
streams selected with the second file chooser. The result of the comparison
is printed to the standard output of the command line. For each of the com-
pared files, the maximum distance D (see Equation 5.2) between the original
and the simulated tag frequency distributions is printed. Additionally, the
level of significance p (see Equation 5.3) is printed.

A.5 Source Code

The source code of all classes needed for the applications from above is con-
tained in the jar file itself. It can be extracted with any zip utility and is
contained in the directory de/* For compiling the source code, the libraries
jopt-simple-2.8.2.5ar", commons-math-1.2.5ar* and peersim-1.0.5.jar are
required.

http://jopt-simple.sourceforge.net/
2http://commons . apache.org/math/
3http://peersim.sourceforge.net/
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Appendix B

Data Sets — Co-occurrence
Streams

The accompanying DVD contains the 15 co-occurrence streams and the word
occurrence probabilities from the 15 crawled web corpora that are required
for reproducing our evaluation reported in Chapter 5. The data is organized
in the following directories on the accompanying DVD:

e streams/* This directory contains all 15 filtered and unfiltered co-
occurrence streams, which have been extracted from Delicious and
Bibsonomy. A more detailed description of the co-occurrence streams
is available in Section 3.1.

e webcorpora/* This directory contains the files with the occurrence
probabilities in the 15 web corpora, which have been crawled for simu-
lating the background knowledge in the Epistemic Model (see Fig. 4.2).

e streams/average.posting This file contains the probabilities of ob-
serving postings with a certain size in the overall Delicious data set
(see Fig. 4.1). This file is used for simulating the posting distributions
in the different models described in Chapter 4.

A description of the used file formats is available in the file README. txt
in the main directory of the accompanying DVD. In the following, we give a
short description of how we acquired the Delicious data set (see Section B.1)
and the Bibsonomy data set (see Section B.2) from which we extracted
the co-occurrence streams. Furthermore, detailed plots of the vocabulary
growth and the tag frequency distributions in the co-occurrence streams are
available in Section B.3.
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B.1 Delicious

Our Delicious data set has been crawled by the TAGora consortium in 2006
from November 10 till 24. The data set is available from the homepage of
the TAGora project.! The crawler was designed in such a way that the data
set contains the complete history of the crawled users. However, it is not
guaranteed that the history of all users in Delicious has been acquired. The
crawling strategy was as follows [4]:

Prior to the actual crawling of the users’ history, a central coordinating
server monitored the 'recent posts page’ of Delicious over a longer period.
This monitoring activity resulted in a constantly updated list of user names.
Then, in November 2006 small chunks of this list were distributed over
several PCs for downloading the complete history of each user on the list
from his/her user page in Delicious. If the respective user had tagged more
than 5.000 web pages, then also the follow up pages have been crawled.

Due to the used crawling strategy, the Delicious data set is likely incom-
plete. For example, it doesn’t contain data from users who were inactive
during the monitoring period of the ’'recent posts page’. But even active
users may be missed if their postings already disappeared from the recent
post lists prior to downloading the next snapshot of it. Nevertheless, for all
users that are contained in our Delicious data set, it is guaranteed that the
data set contains their complete tagging history as it was publicly available
in November 2006.

The crawled data set also contains activity of spammers. The number of
spammers can be estimated on a random sample from the overall data set.
For this purpose, a single human evaluator manually classified a random
sample of 500 users from the Delicious data set. A user has been classified
as a spammer if the main purpose of his/her tag assignments seems to be
the promotion of a single domain or of a collection of domains (cf. [121]). In
most cases, the URLs of the corresponding domain(s) suggest a commercial
background (e.g. http://www.newyorkrealestate.realestateacme.com/). In
most cases, also a very high number of tag assignments per resource has
been observed (cf. [121]).

From the random sample of 500 users, only 7 have been identified to
be spammers. Thus, based on the random sample we estimate that 1.4%
or 7,461 of the users are spammers. The 95% confidence interval for the
number of spammers in the Delicious data set is between 1,972 and 12,949
users. This low number of spammers suggests that already a spam filtering
has been applied by Delicious. The remaining spammers either passed this
spam filter or the user was discovered by the Delicious crawler before being
classified as spammer by the Delicious spam filter. Thus, also high-profile
spammers may still be contained in the data set.

"http://www.tagora-project.eu/data/#delicious
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For removing the remaining spammers from the data set, it is thus not
our objective to do a full fledged spam filtering of the Delicious data set, e. g.
with techniques described in Section 2.3. Instead, the main objective of our
spam filtering is to remove the remaining high-profile spammers, which lead
to a serious disturbance of the macro-level properties of tagging systems. As
shown in Section 3.2 and 3.3, especially the very large postings of high-profile
spammers, not seldom containing up to 5,700 tag assignments, have a serious
influence on the vocabulary growth and the tag frequency distribution of co-
occurrence streams.

Based on the experience from manually classifying the random sample of
500 users, and based on the findings in [121], we applied the following three
heuristics for spotting the remaining high-profile spammers in the Delicious
data set:

1. We labeled all users as spammers who have (1) at least two postings
with more than 20 tags, and (2) at least 1% of their tag assignments
use tags from a blacklist of 12,327 spam tags. The blacklist contains
tags like sex, porn, girls plus tags that contain these tags as substrings,
e.g. pornstar. This heuristic marked 2,488 users as spammers. Based
on a random sample from the marked users, we estimate that this
heuristic achieves a precision of approximately 85%.

2. Regular users seldom assign more than 100 tags in a single posting. For
example, the Bibsonomy system restricts the maximal size of a posting
to 100 tag assignments. Thus, we marked all users as spammers who
have at least one posting with more than 100 tag assignments. This
heuristic marked 458 users as spammers and achieves a precision of
approximately 85%.

3. Often, spammers create several user accounts for posting the same
resource several times in order to increase its popularity [121]. Never-
theless, the tagged resources are still unpopular in the overall system.
We thus marked all users as spammers who have more than 20 re-
sources in common with another user and each of the resources has
been tagged by at most 5 users. This heuristic marked 736 users as
spammers and achieves a precision of approximately 80%.

Altogether, the three heuristics marked 3,340 users, i. e. some users have
been spotted by more than one heuristic. Based on a random sample of 80
users from the set of 3,340 marked users, we estimate that between 2,048 and
2,711 of the marked users are really spammers. Thus, the precision of the
combined heuristics is between 61% and 81%. By applying the heuristics we
have been able to remove a considerable amount of the high-profile spammers
in the data set while not removing too many regular users.
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B.2 Bibsonomy

The Bibsonomy data set used in this thesis is a dump of the complete history
of the Bibsonomy system until June 30, 2008. The data set is publicly
available. It has been provided by the owners of the Bibsonomy system for
the ECML PKDD Discovery challenge.? Unlike for the Delicious data set,
it is guaranteed that the data set contains all publicly available data from
the Bibsonomy system.

Also the Bibsonomy data set contains a considerable amount of spam-
ming activity. In the data set, for all users the information is available
whether the user has been manually classified by the administrators of the
Bibsonomy system as a spammer or a regular user. During the ECML
PKDD Discovery Challenge, this information has been used for training
and testing spam detection algorithms. According to the manual classifica-
tion of the Bibsonomy administrators, 92% or 36,282 of the 38,920 users are
spammers.

Originally, the Bibsonomy data set not only contains bookmarks for web
pages but also bookmarks for BibTeX references. But throughout this thesis,
we only use the tagging data from the bookmarks for web pages. This way,
we ensure that the results achieved for Bibsonomy are better comparable to
our results achieved for Delicious.

In the Bibsonomy data set, all spammers have been manually identified
by the administrators of the system (see Section B.2). Thus, for the Bibson-
omy data set no further spam filtering has to be applied. According to the
numbers of the Bibsonomy administrators, 92% of the users in Bibsonomy
are spammers and 94% of the tag assignments have been created by them.

B.3 Detailed Plots

In the following, the detailed plots of the vocabulary growth and the tag
frequency distributions are available for the 10 co-occurrence streams from
Delicious and the 5 co-occurrence streams from Bibsonomy that have been
used in this thesis (see Tab. 3.2 and 3.3).

’http://www.kde.cs.uni-kassel.de/ws/rsdc08/
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Figure B.1: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the ringtones stream pair from Tab. 3.2
and 3.3.
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Figure B.2: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the setup stream pair from Tab. 3.2

and 3.3.
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Figure B.3: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the boat stream pair from Tab. 3.2 and
3.3.
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Figure B.4: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the historical stream pair from Tab. 3.2
and 3.3.
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Figure B.5: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the messages stream pair from Tab. 3.2
and 3.3.
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Figure B.6: Plot of the vocabulary growth (left) and Zipf plot of the oc-
currence probabilities of tags (right) for the decorative stream pair from
Tab. 3.2 and 3.3.
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Figure B.7: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the costs stream pair from Tab. 3.2
and 3.3.
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Figure B.8: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the ff stream pair from Tab. 3.2 and
3.3.
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Figure B.9: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the checkboz stream pair from Tab. 3.2
and 3.3.
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Figure B.10: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the datawarehouse stream pair from

Tab. 3.2 and 3.3.
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Figure B.11: Plot of the vocabulary growth (left) and Zipf plot of the oc-
currence probabilities of tags (right) for the tools stream pair from Tab. 3.2
and 3.3.
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Figure B.12: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the social stream pair from Tab. 3.2
and 3.3.
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Figure B.13: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the design stream pair from Tab. 3.2
and 3.3.
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Figure B.14: Plot of the vocabulary growth (left) and Zipf plot of the occur-
rence probabilities of tags (right) for the analysis stream pair from Tab. 3.2
and 3.3.
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Figure B.15: Plot of the vocabulary growth (left) and Zipf plot of the oc-
currence probabilities of tags (right) for the blogs stream pair from Tab. 3.2
and 3.3.
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Appendix C

Data Sets — User Experiment

The accompanying DVD contains the complete data set that has been col-
lected during the user experiment described in Chapter 6. Furthermore, the
DVD also contains the screenshots of the web pages from Tab. 6.1, which
have been shown to the participants of the experiment. The data and the
screenshots are organized in the following directories on the DVD:

e userexperiment/data/* This directory contains dumps of the tables
in the database that has been used for collecting the data of the user
experiment. Each table of the data base is dumped into a separate
file. See the README.txt for a documentation of the files and the
format of the files.

e userexperiment/data/README.txt A documentation of the different
files in the data directory. It especially contains information about
the mapping between the three phases of the user experiment (see
Section 6.3) and the different database tables.

e userexperiment/data/schema.sql This file contains the SQL schema
of the tables in the database. It especially contains information about
the order of the columns in the table and which information is saved
in the columns.

e userexperiment/screenshots/* This directory contains the screen-
shots of the web pages from Tab. 6.1. The file name of each screenshot
starts with the ID of the web page in Tab. 6.1 followed by the domain
name of the web page.

C.1 Questionnaire

In the following, the participants’ answers to the questions in the question-
naire are documented. The raw data for each of the participants is available
on the accompanying DVD (see above).
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Age of the participants

60,00%

B German

50,00% O English
40,00%
30,00% -
20,00% -
10,00%
0,00% -t

10-19 20-29 30-39 40 — 49 50 — 59 >= 60 N/A

Figure C.1: English question: “Please give your age”. German question:
“Bitte geben Sie Ihr Alter an”

Gender of the participants
70,00%

B German

60,00% O English

50,00%
40,00% —
30,00%
20,00%

10,00% —

 mm |

male female N/A

0,00% -

Figure C.2: English question: “Please give your gender”. German question:
“Bitte geben Sie Ihr Geschlecht an”
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Comprehensiveness of the web pages
40,00%

m German

0o/ _|
SR O English

30,00%
25,00% —
20,00% —
15,00% —
10,00%

5,00%

0,00% -
6 (good) 5 4 3 2 1 (poor) N/A

Figure C.3: English question: “How comprehensible have been the web
pages?”’. German question: “Wie gut war der Inhalt der Webseiten zu
verstehen?”

50.00% . How often did you already use tagging systems for searching?

45,00% m German
40,00% - O English
35,00% -
30,00% -
25,00% —
20,00% —
15,00% —
10,00% —

5,00% |

0,00% -t T T
regularly soemtimes tried it once never tried N/A

Figure C.4: English question: “How often did you already use tagging sys-
tems for searching?”. German question: “Wie oft haben Sie schon Tagging-
Systeme zum Suchen benutzt?”
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40,00% —
35,00%
30,00%
25,00% —
20,00%
15,00% —
10,00%

5,00%

0,00%

Figure C.5: English question: “How often did you already add content to
tagging systems?”. German question: “Wie oft haben Sie schon Inhalte zu
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How often did you already add content to tagging systems?

B German
O English

regularly

T
sometimes

Tagging-Systemen hinzugefiigt?”

50,00%
45,00% —
40,00% —
35,00%
30,00%
25,00% —
20,00% —
15,00% —
10,00%

5,00% -

0,00%

Figure C.6: English question: “If you already used tagging systems, which
did you use?”. German question: “Wenn Sie schon Tagging-Systeme benutzt
haben, welche waren das?”. Multiple choices possible.

never tried

N/A

If you already used tagging systems, which did you use?

B German
O English

Flickr

Delicious

Other

N/A
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