
Design Considerations to Increase Block-based Language 
Accessibility for Blind Programmers Via Blockly 

Stephanie Ludi 
Department of Computer Science & Engineering 

University of North Texas 
Denton, TX, USA 

Stephanie.ludi@unt.edu 
 

Mary Spencer 
Department of Information Science and Technology 

Rochester Institute of Technology 
Rochester, NY, USA 

mc3630@rit.edu

 
Abstract Block-based programming languages are a popular means 
to introduce novices, specifically children, to programming and 
computational thinking concepts.  They are tools to broaden par-
ticipation in computing.  At the same time, block-based languages 
and environments are an obstacle in broadening participation for 
many users with disabilities.  In particular, block-based program-
ming environments are not accessible to users who are visually 
impaired.  This lack of access impacts students who are participating 
in computing outreach, in the classroom, or in informal settings that 
foster interest in computing.  This paper will discuss accessibility 
design issues in block-based programming environments, with a 
focus on the programming workflow.  Using Google’s Blockly as a 
model, an accessible programming workflow is presented that works 
alongside the conventional mouse-driven workflow typical of block-
based programming.  The project presented is still in progress. 

Keywords accessibility; block-based languages; visually impaired 

1 . Introduction 
Block-based systems have gained prominence in recent years 

as a means of introducing novices to programming. The 
Blockly framework was developed by Neil Fraser's team at 
Google [1].  Blockly (sometimes with modifications) is often 
used as a framework for other block-based languages and 
activities (such as App Inventor, Gameblox, Code.org Hour of 
Code activities, as well as a newly announced version of 
Scratch [2]).   

In some cases, such as MIT’s Scratch, online communities 
exist and the tools are integrated into pre-college computer 
science curricula (e.g. Exploring Computer Science, 
CSPrinciples) [3].  As these systems have become components 
of curricula, after-school camps, and outreach, the lack of 
accessibility for many students with disabilities creates an 
obstacle for participation in these activities that are devised to 
increase participation in computing.  In particular, users with 
visual impairments are generally not able to use block-based 
tools unless they have enough vision to view the screen 
comfortably.  So one motivation for our work is to make 
popular block programming environments and activities more 
accessible to the visually impaired.  

The other motivation is that, as with novice programmers 
who are sighted, the learning curve of dealing with the syntax 
of text-based code persists with novice programmers who are 
visually impaired.  For example, many pre-college students are 

not familiar with curly braces and their location on the 
keyboard.  The benefit of focusing on programming concepts 
over syntax is relevant to for the visually impaired as well as 
for sighted novice programmers. By extension, the ability to 
create and modify programs may be easier with the structural 
features of blocks compared to text, if the tools are designed 
appropriately. 

Visually impaired individuals may have some sight or have 
little to no vision.  Assistive technology needs vary according 
to the degree of sight a person possesses.  People who can read 
magnified text may use screen magnification software to view 
the contents of the screen by a specified magnification factor, 
adjust foreground and background colors, or increase the size 
of the cursor.  These users typically use the mouse alongside 
the keyboard.  Individuals who are blind do not use the mouse.  
Instead, navigation relies on the keyboard (often through 
keyboard shortcuts).  Screen readers (and for some, refreshable 
Braille displays) are the means to access information that is 
displayed on the screen.  When a website or program is 
designed correctly, the screen reader will read the content, 
including menus and other navigational elements.  In the case 
of typical block-based programming environments, the screen 
reader reads no content or navigation elements. 

Google has recently undertaken work on an accessible 
version of Blockly [4].  Their approach focuses on screen 
reader compatibility, which is the foundation for access for 
blind users.  Google’s Accessible Blockly demo re-imagines 
the UI, so that text is used over blocks, as shown in Figure 1.   

Our approach to redesigning Blockly’s user interface focuses 
on preserving the current drag-and-drop user interface for 
creating block-based programs, while adding additional 
features to increase access to visually impaired users (or others 
who cannot use a mouse).  Our approach includes the addition 
of a keyboard interface, screen reader compatibility, 
appearance customization, and related features to increase 
access to Blockly-based systems.  Once complete, the authors 
envision that our additions could be applied to any tool that 
uses the block-based Blockly framework. 

This paper also presents accessibility issues with the design 
of block-based languages. Users with visual impairments, 
including blindness, are the focus of this paper. Our redesign of 
the  Blockly  framework,  specifically features  to  facilitate  the 

DOI reference number: 10.18293/VLSS2017-013 

119



 
Figure 1.  Screenshot of Accessible Blockly demo depicting the 
repeat block as text. 

programming workflow and access to the block-based 
programs created in Blockly, are discussed.  Our work is 
ongoing and has not had formal evaluation with users.  
However, the work seeks to make block-based programming 
accessible to the blind and other users with visual impairments, 
and can help other developers.  Furthermore, the goal is to add 
the functionality on top of the Blockly framework via files that 
can be added to any Blockly-based project, thus making 
accessibility a seamless option for developers. 

2 . Research Questions 
Using the Blockly platform, we are re-engineering the 

system to enable use by users who are visually impaired.  As 
such, our preliminary research questions are: 

• How can Blockly be made accessible to the visually 
impaired, while at the same time remain usable to 
sighted users? 

• What features will both visually impaired and sighted 
users appreciate? 

3 .  Block-Based Programming Environment 
Features that affect Accessibility 

Each block-based project team makes design decisions for 
their project that in some cases have unforseen consequences.  
Like any software project, our team prioritizes features based 
on a variety of needs that are considered.  Examples of these 
design decisions are described in the following subsections. 

3.1. Technology and Platform Choices 
The technologies used to develop block-based systems can 

have a large impact on accessibility of said systems to the 
disabled.  The impact can be significantly positive or negative.  

Scratch 2.0 uses Actionscript/Flash.  A positive implication 
is that Scratch runs in the browser, making installation 
seamless and thus easy to access for many people using various 
operating systems.  At the same time, the technology selection 
makes accessiblity impossible.  In 2010, Adobe announced 
accessibility suport for Flash/Flex in terms of the Accessible 

Rich Internet Applications (ARIA) specification [5].  While 
ARIA is supported in terms of roles and states for HTML, 
Flash objects and Actionscript do not support ARIA roles and 
states, so presenting and interacting with a system is not 
possible (additional details are provided in Section 4.1).  
Another issue for screen reader users, who rely on keyboard 
shortcuts, is that Flash can override those keyboard shortcuts. 

The Lego Mindstorm block-based robotics-programming 
environment is traditionally a desktop application that uses 
LabView as the underlying technology.  While the software 
runs on the Windows and Mac operating systems, the software 
is not compatible with screen readers.  As a result, users who 
are blind will not hear anything. 

On the positive side, Blockly is developed in CSS, SVG,  
and JavaScript.  As such, Blockly also runs on the web 
browser.  However, Blockly does not have the same 
accesibility issues, because it can leverage ARIA specification 
from the W3C's Web Accessibility Initiative.  Developers need 
to adhere to the ARIA specification since compatibility does 
not happen automatically for any web application.  By 
following ARIA, a screen reader can read the structure of the 
web page, the labels on buttons and menus, as well as the 
graphical objects (e.g. blocks).  Widgets, such as sliders and 
tree items, can be described. Support also includes keyboard 
navigation, as well as clearly articulated properties for drag-
and-drop, widget states, or areas of a page that can be updated 
over time or based on an event. [6] 

3.2. Mouse-centric Input 
Many block-based systems rely on mouse input as the 

primary means of accessing features, including selecting blocks 
and adding them to programs, selecting attributes, and running 
the created program.  One cannot use the keyboard to locate, 
select, and place a block onto the workspace in Scratch or 
Blockly as they were originally designed to rely on the mouse 
for such interaction.   

Many users with visual impairments rely on the keyboard as 
the primary input device.  As such, keyboard-focused 
commands and shortcuts are key to making interaction 
possible.  Systems must be designed in order to utilize the 
keyboard as input in terms of menu navigation, programming, 
and accessing various panes in the programmng environment 
(e.g. changing focus to access specific information).  In 
addition, the keys used to access features and information 
needs to be consistent with said standards and not conflict with 
keyboard shortcuts used by screen readers. In order to provide 
appropriate access to both sighted and visually impaired 
students, designing the system to allow for interaction via the 
mouse or keyboard is needed.  This aspect is the foundation for 
much of the work in our project. 

Wagner and Gray [7] discuss the use of a Vocal User 
Interface for Scratch.  While a voice-based user interface can 
be used by users who are blind, their work focused on users 
with physical disabilities where using the mouse is not feasible 
or comfortable for long periods of time.  The use of voice is 
another option for some users, though the audio presentation of 

DOI reference number: 10.18293/VLSS2017-006 

120



the system and blocks are the focus for this paper.  
Nonetheless, their work shows that there is not a simple one 
size fits all for accessibility. 

3.3. Feedback 
User feedback in block-based programming environments 

are often visual in nature (e.g. a visual change on the 
workspace, pop-up messages, dialog boxes) without an audio 
feedback mechanism.  Examples include a successful 
compilation or incompatible blocks that the user tries to 
connect together.  Providing associated audio-based feedback 
can take various approaches depending on the nature of the 
feedback.   

Students who use screen readers need to have all content, 
including errors and any status messages, provided audibly. 
The audio capabilities of many block-based systems are 
limited, whether it be the ability for a robot to play a tone or 
recorded sound or for a Microsoft Kodu game to play a sound 
effect when an event occurs.  The audio capabilities, including 
the ability for a form of audio description when an animation is 
played or dialog are displayed, is needed.  Tapping into the 
location attributes or dialog text to enable compatibility with a 
screen reader is possible in many technologies (e.g., JavaScript, 
Java, C++, C#). 

Audio-based feedback can be in the form of speech or sound.  
As a pane or dialog box gets focus, the error or status text can 
be read (assuming it is programmed to enable a screen reader to 
access the text).  Other feedback may be in the form of sounds 
(e.g. an audio icon or earcon) that correspond to a specified 
meaning.  An example of an audio icon is the sound of 
crumpling paper when a file is moved to the trashcan [8].  An 
example of an earcon is a tone or chord that is abstract in terms 
of the sound itself, but it is given meaning according to the 
association, such as a deep sound may correspond to an 
unsuccessful download of the program to a robot [8].  We are 
leveraging related work that has been conducted earlier to 
assess the use of audio cues in programming for programmers, 
though the study was conducted in a traditional, text-based 
programming environment [9].  Our work uses a working 
prototype of Blockly as the environment, enabling the 
developers to get early user feedback that helped direct the 
work described here. 

 

3.4. Block-based Programs Created by the User 
Each block-based program is designed for a particular 

programming environment.  Scratch programs can be in the 
form of animations or games.   Lego Mindstorms NXT-G 
programs allow a robot to move and interact with its 
environment.  Programming environments based on the 
Blockly framework enable users to create programs in a variety 
of languages.  Some Blockly-based tools produce JavaScript or 
Dart, where other tools are used to program robots.   

4 . Redesigning Blockly for Accessibility 
Our work in modifying Blockly to provide access to users 

who are visually impaired is ongoing.  The following sections 
provide an overview of system modifications.  Our team uses 
only the technologies that Blockly uses, with one exception: the 
addition of a single JavaScript library to provide specific audio 
feedback. 

The overarching work focuses on program creation and 
program navigation.  The key goals of program preparation are: 

• Allowing the user to change the highlight color for the 
current block or the connection point of a block in the 
workspace to improve discernability. This is in contrast 
to the findings in Fraser [10], where a borderless look 
prevails. 

• Allowing the user to change the color of the workspace 
in order to minimize visual discomfort and improve 
readability. 

• Enabling the blocks to be read on the workspace and in 
the toolbox (the menu where blocks are chosen). 

• Visually linking blocks with any associated comments, 
where the user can jump from the block to the 
comment and back as desired. 

• Providing a unique identifier with each block to enable 
visual and audio-based understanding of blocks.   

While program creation is critical, one tends to program 
incrementally in terms of adding features or fixing defects.  As 
such, the need to enable visually impaired users to be able to 
navigate their code is critical.  Our team designed the following 
features to facilitate the navigation of code: 

• Each block as well as each block part (e.g. mutator or 
inner block) can be read as a single block or in the 
program as a whole, depending on user need, as 
described in Section 4.1.   

• The keyboard can be used to navigate between blocks 
and within a block (e.g. mutators), as described in 
Section 4.2.  

• Each block (including vertical blocks) is given a 
unique identifier to provide a visual and auditory 
structure for the program.  The identifier is presented in 
the tree view, as described Section 4.2.  

• Audio cues are used in order to reinforce the level of 
nesting.  A comparative study is underway. 

The following subsections outline our efforts to increase 
access to Blockly in these areas. 

4.1. Block Content Presentation by the Screen Reader 
Blockly had no screen reader support initially.  Our team 

added screen reader support.  The text read by the screen reader 
is generated by our modified Blockly function that converts a 

121



given block into a string. The original Blockly function returns 
a string containing both the given block and all child blocks 
combined. This meant entire blocks of code were read in one 
shot, providing too much information to the user. The function 
was altered to return only the selected block and any child 
blocks that would translate into a single line of code, for 
instance, the multiple blocks needed to create an if statement.  
Figure 2 shows a sample program that contains an if 
statement.   

 
Figure 2. A sample program created in Blockly. 

In the sample program in Figure 2, there is an if block inside 
of a repeat block.  The screen reader reads the if statement as 
if item greater than or equal to 4.  

The original Blockly function also replaced empty 
connections with question marks (e.g., create a list with items 
?, ?, ?). As symbols, question marks do not translate well 
verbally nor do they indicate the location of the connection in 
relation to other connections. To resolve this, we replaced the 
question marks with the letters ‘A’ through ‘Z’ in order. This 
allows for 26 empty connections per block and the default 
blocks require 4 at most.  

Referring back to the if block from Figure 2, the removal of 
item and 4 would result in the screen reader portraying the if 
block as if block A is greater than or equal to B.  This is an 
improvement to the screen reader saying if ? is greater than or 
equal to ?, as stating question mark multiple times in quick 
succession may be jarring to the listener.  Further testing will 
assess how best to provide information without overloading 
short-term memory. 

Our team added screen reader support by dynamically 
adding Web Accessibility Initiative – Accessible Rich Internet 
Application (WAI-ARIA) attributes to the page. WAI-ARIA is 
the World Wide Web Consortium (W3C) standard for 
increased accessibility [6].  

Three particular WAI-ARIA attributes are used to make 
Blockly accessible: aria-live, aria-label and role.  These 
attributes are applied to a hidden div on the page that is updated 
with the necessary string to be read aloud.  In order to have 
cross-browser support, the attributes are added both statically 
when the program loads (Chrome, Firefox, Edge/Internet 
Explorer) and dynamically each time the div is updated 
(Safari).  The dynamic update each time the div is updated in 

Safari is a workaround at the time, but as web browsers evolve 
the approaches may become more streamlined. 

The aria-live region attribute is placed on an element to 
inform the screen reader when the content of that element is 
updated. This region has 2 potential values: polite and 
assertive. A live region with a value of polite will only read the 
updated content after the current screen reader buffer is 
emptied. This ensures that the user does not lose their place 
mid-page. A live region with a value of assertive will interrupt 
the current screen reader buffer to immediately read the 
updated information. For Blockly, the assertive value is used so 
that the screen reader can immediately respond to user input 
when a block is selected or placed on the workspace. 

While the aria-live region technique reads the content of the 
div on most browsers, Safari requires the div to also have an 
aria-label attribute. An aria-label defines what is read when an 
element is selected.  Examples include reading the content of a 
block that is selected when browsing in the block menu or 
reading the name of each block category in the block menu 
(e.g. Logic, Math). Usually a div element would not need an 
aria-label. However, Safari only responds when the aria-label 
changes in the live region, not when the inner text of the div 
changes.  

4.2. Keyboard Support for Block Menu and Block 
Navigation 

Blockly is designed to use a mouse as the primary form of 
input. The only parts of the interface that are keyboard 
accessible are the non-Blockly-specific ones that were created 
using Google Closure (i.e., the outer toolbox menu). Users who 
are blind use only the keyboard to navigate the web, meaning 
all mouse events in Blockly need to be replaced by our team. 
This includes selecting, adding, connecting, and editing blocks 
as well as interacting with the mutator and context menus.  

Screen readers usually have their own hotkeys for web 
navigation. The hotkeys are also not necessarily consistent 
across screen readers. This is a problem for applications that 
require the use of keyboard shortcuts. To mitigate conflicts, we 
selected a set of keys to facilitate navigation.  Selecting and 
navigating between blocks in Blockly, for instance, are mapped 
to the W (up), A (left/back), S (right/next) and D (down) keys 
because the arrow keys are already used navigate through the 
HTML content of the page. These keys were chosen because 
they are commonly used for directional navigation in games. 
The WASD keyboard convention also allows the user to use 
their left hand for navigation and their right hand for selecting 
items with the enter key.  

In addition to navigating among blocks and menus, it is also 
necessary to add comments to blocks and go back and forth 
between comments and blocks.  As part of our redesign of the 
user interface, the user has a box on the side of their screen to 
view comments in a tree view (Microsoft Excel does this as 
well).  The screen reader reads the comments as desired. The 
tree view is updated automatically, and the structure will match 
that of the program using the hierarchy of identifiers associated 

122



with each block. In addition, a line will connect the current 
block with the comment line in the tree view. 

The hierarchy was created using an n-ary search tree that 
cycles through a block and all of its children. Each block is 
given an alphanumeric label to help give the user a sense of 
location while navigating. The outermost blocks are lettered 
(A), while each inner block is given a number (A1), and each 
additional nested level is given a decimal (A1.1).  In Figure 2, 
the outer set block is A, the repeat block is B, and the two 
blocks nested with the repeat block are the inner set block 
(B1) and the if block (B2).  By extension, the add block that is 
connected of the repeat block is noted as B1.1. 

4.3.  Connecting and Editing Blocks on the 
Workspace 

In order to use the keyboard to add blocks to the workspace, 
an edit mode was provided. This mode is needed to avoid 
conflicts with other Blockly features.  If a user presses the E 
key when a block is selected, the WASD navigation keys 
transition from selecting different blocks to selecting any of the 
connections or fields on an individual block. Each time the user 
switches connections, the screen reader announces the new 
connection. Pressing the Enter key on one of these connections 
or fields allows the user to attach another block (setting an 
insertion point) or edit the field. If a block is added to the 
workspace unconnected, it will automatically be attached to the 
last outermost block. If a block cannot be attached to another 
block, then it will be unconnected and need to be moved or 
otherwise managed (e.g. deleted if undesired).  As noted 
previously, users insert and move blocks by setting an insertion 
point if the desired location is different from the current 
location.  The authors are currently assessing how to best 
accomplish this critical feature, including how to clearly 
articulate the location of the insertion point. 

In Blockly, some blocks have mutator menus that allow the 
user to drag additional inputs or statements onto a block. For 
example, an if block can turn into an else	if block. The 
mutator menu is a pop-up dialogue where users can drag and 
drop blocks onto the existing block to alter it.  This mouse-
based menu was revised in two ways by our team. Some 
mutators were turned into individual blocks such as the else	
if and else blocks. Other mutators, namely the ones that 
changed the number of outputs on a block, were given a drop-
down menu that would dynamically add and remove outputs as 
necessary. 

4.4. Additional Features to Enhance Access 
Additional changes were made to enhance the overall 

experience for visually impaired users, which may also appeal 
to sighted users. These changes include adding the ability to  
change the text size and color of the workspace, an accessible 
custom help guide, and a comment display window.  

Themes 
Three themes were added to the workspace: high contrast, 

off-white, and matte blue. These colors were added after a 

participant in an early study commented on the eyestrain 
caused by the original bright white workspace. All of the colors 
were tested with a color blindness simulator and a member of 
the team who is color blind to ensure that the blocks were 
distinguishable from each other and the background.  
Accessible Help 

An accessible custom help site was created with references 
for each block. When a block is selected, a hotkey can be used 
to open that particular block’s help information on the site. The 
default help pages for the Blockly library led to a page that is 
not fully accessible and provided limited information. The new 
site was specifically designed by our team to navigate with a 
screen reader and has detailed information on each block.  

5 . Next Steps 
The initial version of accessible Blockly should be 

completed during Winter 2017.  The results of a prior audio 
feedback study provided early feedback on the user interface, 
as well as assessed the impact of various types of audio 
feedback modalities for code navigation and the understanding 
of nesting. The feedback will be used in implementing code-
based audio feedback during code navigation, in conjunction 
with the option for screen reader use, if needed.  The 
accessibility features will also be studied in order to compare 
the usability impact for users with and without sight in order to 
ascertain what value may be found for sighted users as well as 
those who are visually impaired.  Concerns include the 
verbosity of the information being presented, as well as the 
issues that young users may have as they are often users of 
Block-based systems.  The formal studies will allow the team 
to refine the system and provide greater access for users, while 
providing a model for developers of other Blockly-based 
systems or block-based systems in general. 

In addition to block-based languages, hybrid text and block-
based languages such as Pencil Code [11] also have the 
potential for increased accessibility.  Our team is also looking 
at applying our strategies to Pencil Code, but the teams behind 
Pencil Code, Code.org’s App Lab, and other block languages 
can integrate accessibility into their system’s designs by 
following the ideas we have discussed here. Some changes are 
at the user interface level while other accommodations are 
deeper in terms of new or redesigned features.  An example of 
this is the Stride frame-based editor used in tools such as 
Greenfoot [12].  This editor enables users to work with 
operations and constructs at an abstract level. This innovation, 
and others like it, may help increase access to computer science 
for students with disabilities, as well as students overall. 

Acknowledgments 
Thanks to all the hard work on the RIT Blockly team, as well 

as the participants who gave initial feedback.  This project is 
supported by the National Science Foundation (CNS-1240856, 
CNS-1240809).

123



References 
[1] Blockly Development Website. [Online]. https://developers.google. 

com/blockly 
[2] J. Goode. “Exploring computer science: An equity-based reform 

program for 21st century computing education,” Journal for Computing 
Teachers. Summer, 2011. 

[3] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, 
(2010). “The Scratch programming language and environment.” ACM 
Transactions on Computing Education, vol. 10, no. 4, pp. 16:1–16:15, 
Nov. 2010. 

[4] Demo of Accessible Blockly from Google. [Online]. https://blockly-
demo.appspot.com/static/demos/accessible/index.html 

[5] A. Kirkpatrick. (2010) Adobe Accessibility / Flash Player and Flex 
Support for IAccessible2 and WAI-ARIA. [Online]. http://blogs.adobe 
.com/accessibility/2010/03/flash_player_and_flex_support.html 

[6] W3C-WAI (2014). WAI-ARIA Overview. [Online]. http://www.w3 
.org/WAI/intro/aria 

[7] A. Wagner and J. Gray. “An empirical evaluation of a vocal user 
interface for programming by voice,” International Journal of  
Information Technologies and System. Approach, vol. 8, no. 2, pp. 47-
63, Jul. 2015. 

[8] T. Dingler, J. Lindsay, and B. N. Walker, “Learnability of sound cues 
for environmental features: Auditory icons, earcons, spearcons, and 
speech,” Proceedings of the International Conference on Auditory 
Display (ICAD 2008), Paris, France, 24-27, Jun. 2008. 

[9] A. Stefik, C. Hundhausen, and R. Patterson. “An empirical investigation 
into the design of auditory cues to enhance computer program 
comprehension,” The International Journal of Human-Computer 
Studies, vol. 69, no. 12, pp. 820-838, 2011. 

[10] N. Fraser, “Ten things we've learned from Blockly", IEEE Blocks and 
Beyond Workshop, 2015, pp. 49-50. 

[11] D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens, “Pencil code: Block 
code for a text world,” in Proceedings of the 14th International 
Conference on Interaction Design and Children (IDC ’15), ACM, 2015, 
pp. 445–448.   

[12] T. W. Price, N, C.C. Brown, D. Lipovac, T. Barnes, and M. Kölling, 
“Evaluation of a frame-based programming editor.” In Proceedings of 
the 2016 ACM Conference on International Computing Education 
Research (ICER '16), ACM, 2016, pp. 33-42. 

              .

 

124




