REF. SMCB-E-08222005-0584.R1 1

Self-Organized Coordinated Motion in
Groups of Physically Connected Robots

Gianluca Baldassarre, Vito Trianni, Michael Bonani, FraasceMondada, Marco Dorigo, and
Stefano Nolfi

Abstract— An important goal of collective robotics and tested on real robots is comparable to the results

is the design of control systems that allow groups of obtained in simulation.
robots to accomplish common tasks by coordinating
without centralized control. In this paper, we study
how a group of physically assembled robots can
display coherent behavior on the basis of a simple
neural controller that has access only to local sensory
information. This controller is synthesized through
artificial evolution in a simulated environment, in I. INTRODUCTION
order to let the robots display coordinated motion . .
behaviors. The evolved controller proves to be robust WARM_ ROBOTICS IS an emerge_nt field of
enough to allow a smooth transfer from simulation collective robotics [1], [2] that studies systems
to reality. Additionally, it generalizes to new exper- composed of swarms of robots tightly interacting
imental conditions, such as different sizes/shapes of and cooperating to achieve common goals [3]. In a
the group and/or different connection mechanisms. qwarm robotic system, although each single robot is
The performance of the neural controller downloaded f

ully autonomous, the swarm as a whole can solve

problems that the single robot cannot cope with
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reconfiguration as they might dynamically changexception is given in [11]). The main contribu-
their structure to match environmental variability. tion of this paper consists in the demonstration

There are different approaches that can be ustpt controllers evolved in simulation to coordinate
to control such an artifact. In our research, w@hysically assembled robots continue to exhibit a
aim at obtaining a completely decentralised systeriigh performance when downloaded and tested on
Therefore, the behavior of the swarm-bot shoultgal robots. The reason of such a successful transfer
not be defined by a central controller that estap® Mainly due to the properties of the evolved con-
lishes the actions to be performed by every singfollers, which were shaped by evolution in order
s-bot, nor should the s-bots act following a globdP exploit the dynamical features of the system.
template. The global behavior of the swarm-botnis resulted in a simple and clever behavioral
should rather be the result of a self-organizinétratGQY at the individual level, gnd in a robust self-
process, that is to emerge from the numero¥ganizing system achg coIIectilve level. To the bgst
interactions that take place among the s-bots af our knowledge, this is the first work to date in
between the s-bots and environment. Systems t¥4ich up to eightreal physically assembled robots
feature self-organization are also characterized (§§Splay coordinated behaviors clearly based on self-
other interesting properties, such as robustne§¥ganizing principles (see Section V).
flexibility and scalability [14]. Therefore, designing The paper is organized as follows. Section |l

robotic systems that exploit self-organizing princiPresents the experimental setup, while Section Ill
ples is highly desirable. analyzes the functioning of the evolved controller.

. . Section IV describes how the evolved neural con-
In this paper, we focus on a particular problem ; : i .
i : . troller generalizes its ability to produce coordinated
for the swarm-bot: coordinated motion. The s-

: . otion in conditions that were never experienced
bots are physically connected in a swarm-bot and . . X :
) G ! . uring the evolutionary phase. In particular, this
have to coordinate their individual actions in order _ .. S
. L ection shows that the controller evolved in sim-
to move coherently. Coordinated motion is wel

S L . . lation produces a robust behavior when used to
studied in biology as it is present in many differen . . .
. : . : control real robots. Finally, Section V reviews some
animal species. Examples of this behavior can

. ) L : lterature related to the presented work, and Section
seen in flocks of birds flying in a coordinate

. . . R | draws some conclusions.
fashion, or in schools of fish swimming in perfect
unison. These examples are not only fascinating for
the charming patterns they create, but they also Il. EXPERIMENTAL SETUP
represent interesting instances of self-organizing This section describes the simulated and real
behaviors. In Section V we review some importarg-bots’ properties, the task, and the evolutionary
research work related to these issues. method used to evolve the neural controller.

This paper shows how coordinated motion of
real physically linked robots can be achieved o\ The robots and the simulator
the basis of simple and robust controllers that have

access only .to Iocql sensory information (Slm”aﬁave been developed within the “SWARM-BOTS”
results, obtained withsimulated robots, are pre-

. . roject [15], [16]' Each s-bot is composed of a
sented in [17], [18]). Note that this paper focuse?urrjet aLd ]a[ch]assis The turret is 2 cylindrical
on coordinated motion of swarm-bots in which sz '

. oo ody, with a diameter of 11.6 cm, equipped with a
bots are assembled since the beginning of the tes?%id gripper that allows the s-bot to connect to the

while the complementary study on self-assembling® : o :
rimeter of other s-bots. The chassis is a mobile
has been reported elsewhere (see, for example, [1 . . .

se provided with two motors each controlling

[20]). The swarm-bots’ neural-network controllers, - 4" 214 ", teethed wheel. The turret and the
used to perform coordinated motion are synthesise

through artificial evolution [21]. This methodologyCﬂaSS'S can actively rotate with respect to each other

proved to be very effective for the developmentthrOUQh an independent motor. Relative rotation is

of collective behaviors, but rarely the Obt_amed 1For more information, see also the project website at
controllers were tested on real robots (a noticeab@p:/mww.swarm-bots.org.

The s-bots used in this paper, shown in Fig. 1,
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limited to £180° due to power and control cablesof the robots. Also, many other factors, such as
connecting the two parts. power issues and re-initialization difficulties, made

S-bots are provided with several sensors, su@volution with real robots unpractical in our partic-
as IR proximity sensors, microphones, an omniilar case.

directional camera and many others (for more de- 11,4 simulator of the s-bots was based on a very
tails, see [16]). However, in this paper we used Onl¥implified model in order to increase the speed

the traction sensor, a sensor that detects the dir%q"the simulations. This model preserves only the
tion and the intensity of the pulling force that thefeatures of the real s-bots that were considered
turret exerts on the chassis. The sensor is composgthortant for the experiments to be performed
of two portions, one connected to the turret and th?he simulated s-bot consists in a cylindrical tur-

other one to the chassis (see Fig. 2). The two pag$; .onnected to a chassis by a motorized hinge
can translate with respect to each other along Iv%g_l

h | hori | I int. In the basic simulation model used for the
orthogona 0_r|z_0nta axes, and consequently Clolution of the coordinated motion behavior, the
deform four thin iron plates that connect them. Thi

. . . . ' 0 bodies can rotate without limits. However, a
deformation, that is proportional to the intensity 0kg o4 version of the model simulates the limit for

the traction force, is measured along the two axXgg,icp, the turret can only rotate180° with respect
bylelght stra|bn 96‘933 placid on thed plates. The W8 the chassis, as in the real s-bot. This simulation
values so obtained are the x and y componenfiz, ja| \yas used for comparing the results obtained
of the traction fqrce, mea_sured with rgspect ©0 & simulation with those obtained with the real
reference frame integral with the chassis. The WO 1) ts (see Section IV). The chassis is modelled
_orthogpnal godmpor_lentsf arr]e useq tofc%mpute tl&% a parallelepiped to which four spherical wheels
Intensity and direction of the traction force. are connected. The lateral wheels are connected to

two or more a;sembled s-bots, the body ‘?f €ach &ad on the basis of the Coulomb friction model
bot physically integrates the forces resulting ffoMye friction-coefficient was set to 0.6). This setup
the traction and thrust that other s-bots exert plies that the s-bot's wheels slip if motion is

it. The traction sensor, by detecting the resultagjj, e q by obstacles or by other connected s-bots.

ceived traction thus constitutes an implicit form ot simulated by creating a rigid joint between the
communication (cf. [14]) that, as we will see iny, o hodies

Section 1ll, can be exploited by s-bots to produce . o ]
coordinated movements. The traction sensor is simulated measuring the
A simulator based on a 3D rigid body dynamicgw_orizor_wtgl components of the force acting on the
simulation engine was developed to synthesize thinge joint that connects the turret to the chassis.
robot controller through an evolutionary techniqud his force is computed at each cycle by the dy-
(see Section II-C). In fact, embedding the evolut@mics simulation engine, and is therefore always
tionary process in the real robots would have beedyailable. The maximum force that the sensor can
extremely time-demanding: one evolutionary ruR€rceive was measured on the real s-bots and
the evolution directly on the real robots (e.g., téorce by adding a value randomly selected with a
“refine” the controller in real robots, cf. [22]) wasUniform distribution within the range [-5%, +5%)].

influence the perception of traction (i.e., number

2|n this paper, the direction of traction has been encoded froOf robots involved, friction parameters, hysteresis,

0° to 360°, where0® and180° corresponds respectively to the gnd inter-robot variability), a precise characterisa-
backward and forward direction of motion of the chassis, anhil . . .

90° and270° correspond respectively to a traction coming fromtlon of the traction sensor was not feasible. For

the left and right hand side of the chassis. example it would have been extremely difficult to
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use samples taken from the real s-bots in order @. The neural controllers and the evolutionary
resort to a sampling technique [23]. This left as thalgorithm

only option for simulating the traction sensor the |, the experiments reported here, artificial evo-
aforementioned procedure. For more details on th&ion is used to synthesize the connection weights
simulator, and for a description of more detaileqyt gimple neural controllers with fixed architecture
simulation models not used in the experiment&ee Fig. 4). The controller of each s-bot consists
reported in this paper, see [16]. of a neural network with four sensory neurons
(plus a bias unit) directly connected to two motor
neurons. The sensory neurons are simple relay units
while the output neurons are sigmoid units whose
activation is computed as follows:

A swarm-bot can efficiently move only if the
chassis of the assembled s-bots have the same (

B. The task

orientation. As a consequence, the s-bots should/; = &
be capable of negotiating a common direction of
movement and then compensating possible migmere z; is the activation of thei” input unit,
alignments that originate during motion. including the biasy; is the activation of thej”
The experiments presented in this paper studycatput unit, w;; is the weight of the connection
group of s-bots that remain always connected in lgetween the input neurohand the output neuron
swarm-bot formation (see Fig. 3). At the beginning, ando(z) is the sigmoid function.
of a trial, the s-bots have their chassis oriented The sensory neurons encode the intensity of
in random directions. Their goal is to choose &action along four directions, corresponding to the
common direction of motion on the basis of onlyirection of the semi-axes of the chassis’ reference
the information provided by the traction sensor, anftame (i.e., frontf, backb, left {, and rightr, see
then to move as far as possible from the startinglso Fig. 4). In particular, the sensory neurons are
position along such direction. Notice that this taskctivated as follows:
is more difficult than it might appear at first sight.
First, the group is not driven by a centralized con-

Zw]211> ) J(Z) = 1 —|—1€_Z’ (1)

7

troller (i.e., the control is distributed), nor the s-bots . — OF z ﬁ -0 - :g ? i 8
can directly communicate or coordinate on the basis ’ £ v @
of synchronizing signals. Moreover, s-bots cannot f= F b= 0 i >0
use any type of landmark in the environment, such = O;’/’ b= —F, iff Fz <0

as light sources, or exploit predefined hierarchies
between them to coordinate (i.e., there are no whereF, andF, are thex andy components of
“leader robots” that decide and communicate to thie traction force. The bias neuron is clamped to
other robots the direction of motion of the wholel. The activation state of the two motor neurons is
group). Finally, the s-bots do not have a predefinestaled onto the range-wys, +was], wherew,, is
trajectory to follow, nor they have informationthe maximum angular speed of the wheelg(~
about their relative positions or about the structur@375 rad/s in simulated s-bots and, ~ 3.5 rad/s

of the swarm-bot in which they are assembled. Aim the real s-bots: these settings allowed obtaining
a consequence, the common direction of motiothe same speed for simulated and real robots).
of the group should emerge as the result of @&he desired speed of the turret-chassis motor is
self-organizing process based on local interactionset equal to the difference between the desired
perceived by the robots through the traction serspeed of the left and right wheels times a constant
sors. The problem of designing a controller capable = r,, /2d,,, wherer,, is the radius of the wheels

of producing such a self-organized coordinatioand d,, is the distance between the two wheels.
was tackled using neural networks synthesized Bihis setting produces a movement of the turret
artificial evolution, as illustrated in detail in thewith respect to the chassis that counter-balances the
following section. rotation produced by the wheels’ motion. In this
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way the turret-chassis motor actively contributebehavior performed in Section IlI.

to the rotation of the chassis by anchoring on Once the fithess of every genotype of the popu-

connected robots, especially in those situations lation has been computed, the 20 best individuals

which one or both the wheels partially or totallyare selected for reproduction. Each genotype is

lose contact with the ground. reproduced five times, applying a mutation with 3%
The s-bots are connected in a linear formatioprobability of replacing a bit with a new randomly

as shown in Fig. 3b. The evolutionary algorithngenerated value (crossover was not used due to

is based on a population of 100 genotypes, whidhe simplicity of the controller). The evolutionary

are randomly generated. This population of gengrocess, run in simulation, lasts 100 generations

types encodes the connection weights of 100 neutahd is replicated 30 times starting with different

controllers. Each connection weight is representaditial randomly generated genotypes.

with a ten-bit binary code mapped onto a real

number ranging in [-10, +10]. For each geno- m

type, four identical copies of the resulting neural

network controllers are used, one for each s-bot All the 30 evolutionary runs successfully synthe-

(this implies that the s-bots forming the swarm-bogized controllers that produced coordinated motion

have homogenous controllers). The “fitness” of thi# the linear swarm-bot. The obtained results are

genotype is computed as the average performar@@SCl’ibEd in detail in Section IlI-A. Section III-B

of the swarm-bot over five different trials. Eachdescribes how the problem related to the rotational

trial lastsT = 150 Cyc|es] each Corresponding tollmlt of the turret/chassis degree of freedom was

100 ms of real time, for a total of 15 simulatedsolved. The solution of this problem was impor-

seconds. At the beginning of each trial, a randor@nt for testing the evolved controllers on the real

orientation of the chassis is assigned to each s-b&#bots, as described in Section IV.

The ability of a swarm-bot to display coordinated

motio.n is evaluat.ed by computing the average OVel' Results in simulation

five trials of the distance D covered by the group. In

particular, in each triatr the distance covered by The controllers evolved in simulation allow the

the group is obtained by measuring the EuclideattPots to coordinate by negotiating a common di-

distance between the position of the center of ma&&ction of movement and to keep moving along

of the swarm-bot at the beginning and at the enghch direction by compensating small misalign-

. RESULTS

of the test: ments arising during movement (see Fig. 5). Direct
observation of the evolved behavioral strategies
18 e (T) — 4 (0)]] shows that at the beginning of each trial the s-
D = 5 Z Dt (T) ) (3  bots try to pull or push the rest of the group in the
tr=1 direction of motion that they initially have. This

where c;,.(t) is the vector of coordinates of thedisordered motion results in traction forces that are
group’s center of mass at timteand D, (¢) is the exploited for coordination: the s-bots orient their
maximum distance that can be covered by an shassis in the direction of the perceived traction,
bot in ¢ simulation cycles. Notice that this way ofwhich roughly corresponds to the “average” direc-
computing the “fitness” of the group is sufficienttion of motion of the group. This allows the s-bots
to obtain a coordinated motion behavior. In factio rapidly converge toward a common direction and
it rewards swarm-bots that maximize the distand® maintain it.

covered and, therefore, their motion speed. As a All the 30 controllers evolved in the different
consequence, the s-bots should minimize the timmeplications of the evolutionary process present
required to align their chassis, move at maximursimilar dynamics: in all trials, the s-bots converge
speed once coordinated, and reduce instabilities atoda common direction of motion in a very fast and
noise disturbances that might impair the motioeffective way. As shown in Fig. 5, this common
of the group while moving. This fitness measuréirection of motion varies across trials. In fact,
promotes controllers that result in efficient coordithe direction of motion of the group is nat
nation, as confirmed by the analysis of the evolvegriori defined but rather emerges as a result of
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the coordination phase and depends on the initial  s-bot rotates its chassis following the rules
random orientations of the s-bots’ chassis. specified in point 2. This type of condition is

By testing the best neural controller of the last ~ normally caused by the movement of the s-
generation of each evolutionary run for 100 trials, it ~ bot itself, whenever the resultant of the forces
was observed that performance varies in the range  produced by the other s-bots in the group
[0.81, 0.91], not far from the theoretical maximum tends to be null.

(corresponding to 1.0) that can be achieved only In other words, at the individual level, each s-bot

b_y a _smgle S'.bOt moving at fu_II speed in a flxedexhibits two tendencies: one consists in following
direction. Notice that the maximum performanc?he rest of the group (e.g., when the perceived
cannot be reached in practice by a swarm-bot, sin ction comes from the left c;r right hand side) and

assembled s-bots can move at maximum SPeRe, iher consists in persevering in moving straight
only once they have achieved coordlna'qon. In th €.9., when the perceived traction comes from the
rest of the paper, the controller synthesized by ﬂ} ar or from the front, or has a low intensity). The

30th evolutionary run is used because it resulted E‘}fects of the individual behavior at the group level

havg the best performance. Fig. 4 ShOWS.bOth t %n be described as follows. At the beginning of
architecture of this controller and the weights o

. . ach test, all s-bots perceive traction forces with
each connection between input and output neurons, intensity, and so they move forward at max-

as generated by the evolutionary pr(?ce.ss. imum speed (according to point 1). The different
In order to understand the functioning of thgaction forces generated by these movements are
controller at the; individual level, the aC“Vat'Or?physicaIIy summed up by the turret of each robot.
of the motor units of an _s-bot were measured ifnis causes a unique force to emerge at the group
correspondence to a traction force whose angle apde| which has a direction that characterizes the
intensity were systematically varied. The resultgyoyement of the whole group. The s-bots that have
reported in Fig. 6, indicate that: small misalignments with respect to this average
1) Whenever the traction intensity is low, anddroup’s motion direction perceive traction forces
when the traction comes from the front (i,efrom the rear and so they tend to persevere in their
around 180°), the s-bot moves forward atmMotion (according to point 3). In so doing—and
maximum speed (see the portions of Fig. this has a very important role for coordination—
indicated by number 1). These conditiondhey continue to generate a traction signal in the
take place respectively when the s-bot's cha§ame direction, which is perceived by the rest of
sis is oriented toward the same direction ifhe group. In contrast, the s-bots that have large
which the other s-bots are pulling/pushing itmisalignments with respect to the average group’s
or when all s-bots’ chassis are aligned. direction of motion perceive traction from the left

2) When traction comes from the left or theor right hand side, and so they tend to turn so
right hand side (i.e. aroun@0° or 270°, as to follow the rest of the group (according to
respectively), the s-bot turns toward the dipoint 2). Overall, these behaviors quickly lead the
rection of traction (see the portions of Fig. evhole group of s-bots to converge toward the
indicated by number 2). This condition take$ame direction of motion (see [24] for a more
place when there is a significant mismatclgetailed quantitative analysis of the self-organizing
between the motion’s direction of the s-bofrinciples at work in these processes).
and the average direction of motion of the As it will be shown in the rest of the paper,
group. this simple behavioral strategy is very effective

3) When traction comes from the rear (i.eand robust. In some cases, however, the same
around0°), the s-bot moves forward at max-strategy does not lead the s-bots to converge toward
imum speed independently of the tractiora common direction of motion, but rather to a
intensity (see the portions of Fig. 6 indicatedotational dynamic equilibrium in which all s-bots
by number 3). Notice that this is an unstablenove around the center of mass of the swarm-bot.
condition: as soon as the angle of tractiofThis rotational equilibrium is stable since, while
differs from0°, for example due to noise, theturning in circle, the s-bots perceive a traction
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force toward the group’s center that keeps themeeds the rotational limit, either turning clockwise
moving by slightly turning toward it. This rotational or anticlockwise. The effect of a front inversion
equilibrium is never observed in the experimentat the level of the single robot is illustrated in
conditions used to evolve the controller, involving=ig. 7. In the example shown in the figure, the robot
four simulated s-bots forming a linear structureis initially moving by using the first front. Since
but only in generalisation tests performed with reat perceives the traction from its left hand side,
robots in different situations (see Section IV).  the robot starts turning its chassis anticlockwise
(along the direction indicated by the arrow ‘1’ in
B. Coping with the limits of the turret-chassisthe f_igure)._ While turning, th_e Cha.SSiSf reaches the
degree of freedom rotatl_onal !|m|t and the front inversion is trlggere_:d.
At this point, the controller perceives the traction
As previously mentioned, the chassis of the §rom the right hand side and therefore the chassis
bots can rotate only80° clockwise or anticlock- starts turning clockwise (along the direction indi-
wise with respect to the turret, due to the cablegzieq by the arrow ‘2’ in the figure). Consequently,
connecting the two parts. This implies that, in ordejhe robot can successfully align its current front
to coordinate with the other s-bots, an individuajthe second front, in this case) to the direction of

s-bot cannot simply turn its chassis toward thgaction without exceeding the rotational limit.
direction of traction. In fact, if the rotational limit

is located between the current orientation of the s- 1€ €ffect of a front inversion at the level of

bot's chassis and the direction of traction, the s-bdg€ SWwarm-bot is shown in Fig. 8, which indicates
should turn in the opposite direction (up 360°) the absolute orleqtat|on (with respect_to thg first
in order to reach the desired orientation. front) of the chassis of four s-bots forming a linear

Rather than introducing the limit in the sim-Structure and provided with the rotational limit and

ulation model and asking evolution to solve théhe front inversion mechanism. Initially, the s-bots,

problem, we designed a solution that consists irfn]ll having random orientations, use the first front.

inverting the front of motion when the limit on B€tWeen cycles 50 and 100, two s-bots reach the
the turret-chassis degree of freedom is reach& tational limit and invert their front. Finally, from

(this solution was proposed for the first time, an@2oUt cycle 100 onward, the four s-bots converge

tested in simulation, in [17]). This solution exploitsto a same direction of movement. Notice how, after

the fact that s-bots have two equivalent frontgonverging, tW_O robpts use the first_ front and have
of motion. In fact, the chassis is symmetric wittf" absolute orientation of the chassis of adalr,

respect to the wheel's axis, the motorized wheel¥Mil€ two robots use thf second front and have an
can tumn in both directions, and the sensors af¥ientation of about-60°. The result is that all s-
homogeneously distributed. As a consequence, t gts move in th_e same absolute direction in the last
same behavior described in the previous secticm“"lse of the trial.
continues to work properly when the two fronts of The front inversion mechanism actually solves
motion are “swapped”. Specifically, the directiorthe problem introduced by the rotational limit, but
of motion of the s-bot can be easily invertedt could also affect the performance of the swarm-
(forward with backward and vice versa), providedbot in the coordinated motion task. We measured
that the encoding of the sensor and motor neurotise effects of this solution measuring the average
is properly modified. More in particular, a frontdistance covered by a swarm-bot over 20 ftrials
inversion can be implemented as follows: (a) thasting 25 s each. We noticed only a slight decrease
motor commands are swapped (left with right, rightvith respect to the baseline performance (8% of the
with left) and their sign inverted; (b) the encodingcovered distance, see the first and second column
of the sensory neurons, that determines which aoé the histogram in Fig. 10). This indicates that the
the front and rear input units and which are th&ont inversion mechanism is a viable solution to
left and right input units, is rotatetB0° along the cope with the rotational limit. This is an important
perimeter of the robot. result in view of testing the evolved controllers with
The solution to the rotational limit consists inreal robots because in this condition the constraint
triggering a front inversion each time the turret eximposed by the rotational limit cannot be neglected.
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IV. TESTING WITH REAL ROBOTS simulations nor in those with real robots. The lower

The introduction of the front inversion mechaPerformance of the real swarm-bot with respect

nism provides the controller evolved in simulatiorf©® the simulated swarm-bot is due to the longer

with all the required characteristics to be directifime required by real s-bots to coordinate. This
transferred to the real s-bots. We therefore testd?l caused by many factors, among which the fact
the functionality of the evolved behavior in realthat tracks and teethed wheels of the real s-bots

ity comparing the obtained performance with th&ometimes get stuck during the initial coordination
results of simulations. phase, due to a slight bending of the structure that
In all the tests performed in this section, s-botgaused an excessive thrust on the tracks. This leads

are provided with the rotational limit of the turret-t0 @& sub-optimal motion of the s-bots, for example
chassis motor and with the front inversion mechthile turning on the spot. However, coordination is
anism. The s-bots always start connected to ea@hvays achieved and the s-bots always move away
other with randomly assigned chassis’ orientationffom the initial position. This result proves that the

Each experimental condition is tested for 20 trialSontroller evolved in simulation can effectively pro-
each lasting 25 seconds (250 cycles). duce coordinated motion when tested in real s-bots,

We initially tested the functionality of the notwithstanding th(_a fact_ that the whol_e process
evolved neural controller in experimental condil@kes some more time with respect to simulation.
tions identical to those used during evolution (see
Section IV-A). Afterward, we studied the ability B, Testing the controller over rough terrain
of the controller to generalize to different situa- .

The evolved controller is also able to produce

tions that were never met during the evolutionarg . : .
i . . . gordinated movements on rough terrain. Fig. 10
process: rough terrain and varying size and shapés

of the swarm-bots. Then we tested the coordmatlor‘%"nd Table | show the performance optamed by real
o . .S-bots placed on two types of terrain. The brown
capabilities of the controller when using semi: S
-t : . rough terrain is a very regular surface made of
rigid connections between s-bots (implemented o : . : : :

. . L ; rown plastic isolation foils. This terrain remains
a slightly loose gripping) or indirect connections

. .mostly flat, but it is impossible to access for most
between them (that is, robots attached to an Objeg::[ ndard wheeled robots. Only robots with tracks

to be transported). The good performance record? o the s-bot can move on It. The plastic is com-

) " i
in all these new conditions suggests that the evolve .
controller is very robust and ?ngible. posed of a grid of cones, spaced 2.1 cm apart. Each

cone is 1.2 cm large and 0.7 cm high (see Fig. 11a).
The white rough terrain is an irregular surface made
A. Testing the controller evolved in simulation oryf stone-like plaster bricks. The bricks measure
real s-bots 13x28 cm and their height ranges from 0.9 to 2.1
We tested the best controller evolved in simulaem (see Fig. 11b).
tion using four real s-bots forming a linear struc- With the exception of the few cases in which
ture. The results show that the controller allowsoordination is only partially achieved, the perfor-
the real s-bots to coordinate without the need aghance of the swarm-bot on the rough terrains is
any adjustment and despite significant differenceomparable with what achieved on the flat terrain.
from the simplified simulation model previouslyHowever, in these experimental conditions we ob-
described. Indeed, as shown in Fig. 9, simulategkrved a decrease of performance that is mainly due
and real s-bots display a qualitatively similar beto a more difficult gripping of the tracks and teethed
havior. wheels on the irregular surface. In fact, the rough-
Quantitatively, on the average the performance ofess leads to very noisy signals perceived by the
the best controller evolved in simulation decreasdsaction sensors. As a consequence, the swarm-bots
of 23% when tested with the real s-bots (see thia some cases do not reach a complete coordination
second and third histogram bars of Fig. 10 ansince the s-bots have similar but different orien-
the first two columns of Table 1). Data shown intations. In these situations, the swarm-bots move
Table | also indicate that the swarm-bot never felh large circles, sometimes returning to the initial
into the rotational equilibrium, neither in tests withposition, therefore scoring a low performance.
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TABLE |
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN SIMULADN AND REALITY. TESTS INVOLVE FOUR SBOTS
FORMING A LINEAR STRUCTURE THE FIRST TWO COLUMNS INDICATE THE PERFORMANCE ON FLAT TERRA RESPECTIVELY
IN THE CASE OF SIMULATED AND REAL SBOTS. THE LAST TWO COLUMNS INDICATE THE PERFORMANCE OF REAL €BOTS ON
BROWN AND WHITE ROUGH TERRAIN(SEE TEXT). THE SIX ROWS INDICATE IN ORDER THE AVERAGE PERFORMANCE OVER20
TRIALS, THE STANDARD DEVIATION, THE STANDARD ERROR THE RATIO OF PERFORMANCE WITH RESPECT TO THE
THEORETICAL MAXIMUM , THE RATIO OF PERFORMANCE WITH RESPECT TO THE CORRESPONDINGVSILATED TEST, AND THE
NUMBER OF TRIALS (OUT OF 20) IN WHICH THE SWARM-BOTS DID NOT MANAGE TO PERFECTLY COORDINATE

Line 4, rigid links, flat Line 4, rigid links,
terrain rough terrain
Simulation | Real Brown | White
Avg. perf. 156.96 120.85 87.75 81.25
Std. dev. 28.39 29.53 43.95 39.45
Std. err. 6.35 6.60 9.82 8.82
ratio with th. max.| 0.85 0.65 0.47 0.44
ratio with sim. 1.00 0.77 0.56 0.52
Partial coord. 0 0 4 6

C. Testing with swarm-bots consisting of a largeshape, although the tests that use real s-bots show
number of assembled s-bots a higher drop in performance. As shown in Fig. 14,

The best evolved controller was tested with linedP Simulation the performance of square and “star”
swarm-bots composed of six s-bots. The resuffvarm-bots is not very different from the perfor-
showed that larger swarm-bots preserve their abiliff@nce of a linear swarm-bot composed of four s-
to produce coordinated movements both in sinf0tS. Comparing the data reported in Table I and
ulation and in reality. As shown in Fig. 12 andin Table Ill, the performance of simulated swarm-
Table 11, the performance in the new experimenté?ms in square and “star” formatio_ns is respectively
condition is only 10% and 8% lower than the ond3% and 17% lower than for a linear swarm-bot.
measured with swarm-bots formed by four s-bots,"€ corresponding experiments performed with
respectively in tests with simulated and real s-boté?aol swarm-b(:)ts present a performance drop of
The performance of the experiments performe#8% and 35% with respect to real swarm-bots
with the six real s-bots is 21% lower than thd'@ving a linear structure. These higher decrements
corresponding simulated experiments, in line witQ Performance of real robots is due to a higher
the results presented in Section IV-A. Moreover, ifhance of falling in the rotational equilibrium (up
all cases swarm-bots never fall into the rotationd S€ven times in the case of the “star” formation)
equilibrium. This test suggests that the evolve@nd. t0 & minor extent, to an increased difficulty
controller produces a behavior that scales very wéff converge toward a common direction of motion

with the number of individuals forming the groupa”d to maintain it (see also Sec. IV-G). With respect
both in simulated and real robots. to the rotational equilibrium, we observed that the

chance of falling in it is higher in swarm-bots
) ) ) ) having shapes that tend to be central symmetrical.
D. Testing with swarm-bots having different shapegggitionally, increasing the size of the swarm-bots
The best controller evolved in simulation wadeads to a slower coordination. This not only lowers
tested varying the shape and the size of the swarthe performance, but also likely increments the
bot. In particular, we tested swarm-bots composegatobability that the group falls in the rotational
of four s-bots forming a square structure anequilibrium. As a consequence, the performance of
swarm-bots composed of eight s-bots forming square and “star” formations in reality is 27% and
“star” shape (see Fig. 13). The results show th&@0% lower than the corresponding simulated ones
the controller displays an ability to produce coordi{see Table III).
nated movements independently of the swarm-bot’s
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10

PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN SIMULADN AND REALITY. COMPARISON BETWEEN LINEAR
STRUCTURES INVOLVING RESPECTIVELY FOUR AND SIX SBOTS. SEE CAPTION OFTABLE | FOR MORE DETAILS

Line 4, rigid links, flat Line 6, rigid links, flat
terrain terrain

Simulation | Real Simulation | Real
Avg. perf. 156.96 120.85 141.03 111.65
Std. dev. 28.39 29.53 39.36 26.05
Std. err. 6.35 6.60 8.80 5.82
ratio with th. max.| 0.85 0.65 0.76 0.60
ratio with sim. 1.00 0.77 1.00 0.79
Rot. equil. 0 0 0 0

TABLE ||

PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN SIMULADN AND REALITY. COMPARISON BETWEEN A
SQUARE SWARM-BOT INVOLVING FOUR S-BOTS AND A “STAR” SWARM-BOT INVOLVING EIGHT S-BOTS. SEE CAPTION OF
TABLE | FOR MORE DETAILS

Square 4, rigid links Star 8, rigid links

Simulation | Real Simulation | Real
Avg. perf. 136.02 99.00 131.05 78.10
Std. dev. 65.44 57.22 64.96 55.15
Std. err. 14.63 12.79 14.53 12.33
ratio with th. max.| 0.74 0.53 0.71 0.42
ratio with sim. 1.00 0.73 1.00 0.60
Rot. equil. 4 5 4 7

Part connected to
the turret

Part connected to
the chassis

Metallic plates on which the
strain gages are placed

The s-bot. The bottom part (the chassis) include';'g' 2. The structure of the traction sensor. See text faildet

Fig. 1.
the tracks and the teethed wheels, and four proximity sensors

oriented toward the ground. The top part (the turret) inefuthe

rigid gripper, one omni-directional camera, four microphgnesge Testing with swarm-bots assembled through
two speakers, 16 infrared proximity sensors, and a 3-axis ac-___. . . .

celerometer. The traction sensor is placed between the ande Sem"”g'd links

the chassis. The turret and the chassis can actively rotitte w The experiments presented in this section are
respect to each other. A flexible arm endowed with a gripper is

also part of the s-bot, but it was neither used nor mounted drPnceived to_ test the generali_zation capability with
the s-bots used for the experiments presented in this pager (sespect to different types of links between s-bots.

[16] for more details). The neural controllers have been evolved with a lin-
ear swarm-bot composed of four s-bots connected
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~ g ° ’
Fig. 4. Weights of the controller synthesized in the 30th run
of the simulation. The sensory neurons associated with fhe le
front, right, and back traction sensor readings are labatet,

‘f’, ‘r and ‘b’ respectively. ‘B’ indicates the bias neurgnvhile
(b) m; andm, indicate respectively the left and right motor neuron.

Fig. 3. (a) four real s-bots forming a linear swarm-bot. 549
(b) four simulated s-bots forming the same linear structure

The cylinders represent the turret, while the chassis ipesha

as a parallelepiped. The arrow on the cylinders indicate thi 270
orientation of the turret. The wheels are displayed as dglis
(motorized wheels) and spheres (passive wheels, which ha

on

8 180 -
different colors, dark and light gray, to allow distinguisty §
respectively the two chassis’ fronts). The black segmentédet o
the turrets of two robots represents a physical link betweel 90 1
them (gripper). The white line above each robot’s turrest th
goes from the turret’s center toward its perimeter, indsdke 0 : : :
direction of the traction force and, with its length, itsensity. 0 50 100 150

Cycles

L Fig. 5. Absolute orientation of the chassis of four s-bots
through rigid links. Here, we test the same CONorming a linear structure in two trials lasting 150 cyclestea

troller with s-bots connected through “semi-rigid”(thick and thin lines respectively). At the beginning of leac

; : : ial, s-bots start moving with randomly assigned orientatjo
links. Contrary to the other experiments IIIUStrategs can be seen by the different starting points of the cuA®s.

in this paper, in the case of semi-rigid links th&ime elapses, the robots achieve coordination and converge t

gripper is not completely closed and the assembld same direction of motion, as shown by the curves’ overlap
. : - t the end of the graph. Notice how the final emergent direction

s-bots are partlally free_ to move W!th respect _t f motion of the swarm-bot is different in the two trials.

each other. In fact, a partially open gripper can slide

around the turret perimeter and can partially rotate
by pivoting on the gripping point. the motors controlling the wheels and the turret of
One interesting aspect of semi-rigid links is thatach individual s-bot affects the traction perceived
they potentially allow swarm-bots to dynamicallyby other s-bots, however, significantly differs in the
rearrange their shape in order to better adapt tase of rigid and semi-rigid links. While in the case
the environment. Indeed, experiments conducted rigid links the forces produced by motors and
in simulation show how swarm-bots assembledollisions directly affect the traction perceived by
through semi-rigid links are able to dynamicallyother s-bots, in the case of semi-rigid links these
rearrange their shape in order to pass throudbrces might affect also the shape of the swarm-bot.
narrow passages and avoid falling into holes [17As a consequence, traction forces are transmitted
[25]. The way in which the torque produced byonly in part when using semi-rigid links.
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TABLE IV
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN SIMULADN AND REALITY. COMPARISON BETWEEN
SWARM-BOTS WITH RIGID AND SEMI-RIGID LINKS. SEE CAPTION OFTABLE | FOR MORE DETAILS

Line 4, rigid links Line 4, semi-rigid links

Simulation | Real Simulation | Real
Avg. perf. 156.96 120.85 150.57 108.00
Std. dev. 28.39 29.53 27.87 34.14
Std. err. 6.35 6.60 6.23 7.63
ratio with th. max.| 0.85 0.65 0.81 0.58
ratio with sim. 1.00 0.77 1.00 0.72
Rot. equil. 0 0 0 2

Perceived Rotational

Forward traction limit
T First motion
2
3) 5 Turret front and
3 caster wheel
<1
o .
- Chassis
3,
QD
28
2
2 8 . Motorised
S Second motion wheels
front and ;
caster wheel Orientation of
) turret
Intens!ty of 5 90 180 Right Back
traction Back Left _ Fig. 7. Schematic representation of the effect of a front
Direction of traction inversion from the point of view of a single robot. The bold
(a) arrow indicates the direction of the traction perceived hoy $-
bot. The grey caster wheel cannot pass the rotational lirhie. T
Forward arrows ‘1’ and ‘2’ indicate the direction in which the chassi
turns respectively before and after the front inversiontfiis
1 - case the inversion was from the first to the second front, see
3) 075 & text).
3
05 ¢S
=]
025 g 180
0 » %@Ac—m__
2
(2) -0,25 § é 90
05 8 o
0,75 S 04
0
-1 @
< -90 4
Intensity of 90 180 270 Back o
traction 0 Let  Front Right
Back ¢ Direction of traction 180 ‘ ‘ ‘
0 50 100 150
(b) Cycles

Fig. 6. Motor commands issued by the left (a) and right (b)

motor units, mapped onto a [-1, 1] interval (-1 and +1 resped=ig. 8.  Absolute orientations of the chassis of four s-bots

tively correspond to maximum backward and forward speedfy-axis) during a trial lasting 150 cycles (x-axis). Thecavs

of one of the best evolved neural controllers in correspooee indicate the cycles in which two s-bots reach the rotatidinzit

to traction forces having different directions and intéiesi See and invert their front of motion. During the last phase, the tw

text for the explanation of numbers in round brackets. s-bots that never changed their front still move by usingrthei
first front, while the other two s-bots use the second front.
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160 1 = - D Simulation
5 140 . Real
8120 4
c
£ 100 -
k)
=l 80 4
K
E 60
o 40 4
(@]
20
0
Line 4, Line 4, Line 4, Line 4, Line 4,
rigid links, rigid links rigid links rigid links,  rigid links,
no limit brown terrain  white terrain

Fig. 10. Performance of the best evolved controller in sim-
ulation and reality (average and standard error of the miista
covered in 20 trials, each lasting 25 s). Light and dark gray
bars represent respectively the tests carried out with sitedl
and real s-bots. Labels indicate the experimental condition
line 4 indicates tests involving four s-bots forming a linear
structure;rigid links indicates rigid connections between s-bots;
(a) no limitindicates tests performed without the introduction of the

rotational limit and of the front inversion mechanistown
terrain and white terrain indicate two different rough terrain
conditions (see text).

experiments, in line with the results presented in
Section IV-A. Figure 16 shows an example of
the behavior of simulated and real swarm-bots
assembled through semi-rigid links. Notice how
the swarm-bots modify their shape while moving,
without losing their ability to coordinate.

F. Coordinated object pushing/pulling behavior

Fig. 17 shows the case of four s-bots connected
to an object, rather than between them. In this
situation, the s-bots continue to coordinate moving

(b) in a common direction while pushing/pulling the
Fig. 9. The trajectory of (a) four simulated and (b) four reaPbject. Notice that the four s-bots and the cylindri-
s-bots forming a linear swarm-bot in a coordinated motion tegfa| object form a single physical system. In such a

lasting 15 seconds. The gray circles indicate the final jposit _: : : : :
of the s-bots. In the case of real s-bots, trajectories haen b situation, as soon as the resistance given by static

automatically extracted from a video obtained by recordhg t friction is overcome, the pushing/pulling forces are
behavior of the real s-bots from a camera mounted on the ceilingansmitted through the rigid links of the structure
and coordination can take place. Moreover, a slight
resistance produced by dynamic friction of the
Despite the increased complexity, the obtainegassive object does not disturb the coordinated
results show that the evolved controller preservemotion because, as we showed in Section IlI-A,
its capability of producing coordinated movementthe evolved controller keeps moving despite a small
both in simulation and in reality (see Fig. 15 andraction that comes from the rear. However, as s-
Table 1V). Moreover, performance drops only obots are only able to coordinate if the friction of the
4% and 11% passing from rigid to semi-rigid linksobject with the ground is not too high, the tests in
respectively in the tests with simulated and reaimulation and in reality used a lightweight object.
swarm-bots. The performance of the experimentdote that this test was not carried out to study the
performed with real s-bots with semi-rigid linksproblem of collective transport, which is not within
is 28% lower than the corresponding simulatiothe scope of this paper (see Section V for a review
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(b) (b)

Fig. 11. The two types of rough terrain used to test thEi9- 13. (a) & swarm-bot composed of four s-bots forming a
robustness of the controller. (a) a very regular rough irerraSquare shape. (b) a swarm-bot composed of eight s-bots forming

made of brown plastic isolation foils. (b) an irregular rough? “Star” shape.

terrain made of white plaster bricks that look like rough st&n

180

180

—~ 160 D Simulation B 160 = } D ! . Real }»

£ S 140 +— L T

S 140 + | [l Real I 8 120 J

g 120 g 100

S 100 1 g 8 il

) | |

5 80 B 60

L 60 o

& a0 § 407

3 20 20 1

0 0 T T T T T
. . . X Line 4, Line 4, Square 4, Square 4, Star 8, Star 8,

Line 4, Line 4, Line 6, Line 8, rigid links  rigid links rigid links rigid links rigid links rigid links
rigid links rigid links rigid links rigid links

Fig. 14. Performance of the best evolved controller in sim-
tglation and reality (average and standard error of the miista
covered in 20 trials, each lasting 25 s). See the captiongpflfi

for a detailed explanation of the figure. Additionallquare 4
indicates tests involving four s-bots forming a square shstae

8 indicates tests involving eight s-bots forming a “star” shap

Fig. 12. Performance of the best evolved controller in sinedlat
and real swarm-bots formed by a different number of s-bo
(average and standard error of the distance covered inae, tri
each lasting 25 s). See the caption of Fig. 10 for an explamati
of the figure. Additionally:line 6 indicates tests involving six

s-bots forming a linear structure.
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180

— 160 4 D Simulation
5 E
< 140 4 . Real
8 120 4
g
2 100 -
o 80 4
o
2 60
3
3 40
© 20
0
Line 4, Line 4, Line 4, Line 4,
rigid links rigid links semi-rigid links  semi-rigid links

Fig. 15. Performance of the best evolved controller in sim-
ulation and reality (average and standard error of the niista
covered in 20 trials, each lasting 25 s). See the captiongflf

for a detailed explanation of the figure. Additionalgemi-rigid
links indicates tests involving s-bots connected througihdy
opened grippers.

@)

of the corresponding literature). Its aim was rather
to study the robustness of the evolved behavior,
In particular, we verified whether the coordination
mechanisms underlying such behavior were capablé
of exploiting “indirect” traction signals perceived
by the s-bots through a passive object to which they
were connected.

Tests performed in this experimental condition
show that the s-bots preserve their ability to co-
ordinate and to move in a coherent fashion both
in simulation and in reality. Consequently, also
the object is transported by the coordinated action
of the s-bots. Fig. 18 shows two examples of
the trajectories traced by a simulated and a real
swarm-bot. The figure shows that after an initial (b)
coordination phase, the robots succeed to move in

. . . . . Fig. 16. The trajectories produced by (a) four simulated and
the same direction while transporting the object. (b) four real s-bots forming a linear swarm-bot with semi-rigid

- , : links, during a test lasting 15 s. Th ircles indicte t
Quantitative comparison between this experk D & o B e caes of ol o bots. o

= inal position of the s-bots. In the case of real s-bots, ¢tajées
mental condition and the case of four s-bots asave been automatically extracted from a video recording@f t
sembled in a square formation (i.e., the most sinfeal s-bots.

ilar shape) showed a slight performance drop (see

Fig. 19 and Table V). In particular, the performance . .

drops of 23% and 29% respectively in the test@' Analysis of scalability

run in simulation and in reality. The decrement of To have a general idea of how performance
performance is mainly due to a higher probabilitcales with the number of robots, we measured the
of falling in the rotational equilibrium. The resis-time the real s-bots take to converge to a single
tance to motion of the passive object is probablgiirection of motion in swarm-bots composed of
the main cause of this. As a consequence, tli#ferent numbers of individuals. The time needed
performance of the experiments performed withy the s-bots to convergence was estimated on
real s-bots is 33% lower than the correspondintipe basis of graphs analogous to the one reported
simulation experiments, in line with the case oin Fig. 8. The results of the tests are reported
square formations (27% lower). in Fig. 20 and Table VI. These results indicate




REF. SMCB-E-08222005-0584.R1 16

TABLE V
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN SIMULADN AND REALITY. COMPARISON BETWEEN A
SQUARE SWARMBOT AND S-BOTS CONNECTED TO A CYLINDRICAL OBJECT IN A SQUARELIKE FORMATION.

Square 4, rigid links Square 4, + object

Simulation | Real Simulation | Real
Avg. perf. 136.02 99.00 105.34 70.4
Std. dev. 65.44 57.22 80.72 53.28
Std. err. 14.63 12.79 18.05 11.91
ratio with th. max.| 0.74 0.53 0.57 0.38
ratio with sim. 1.00 0.73 1.00 0.67
Rot. equil. 4 5 8 9

leader-follower paradigm has many different instan-
tiations, in which either the leader role is fixed [27],
or it varies according to some arbitration rule [28]
or it emerges from the interaction among the robots
or between the robots and the environment [11]. In
some cases, the leader role is taken by a centralized
controller, which plans a trajectory that the robots
follow keeping a certain group formation [27], [29],
[30]. Finally, a kind of leader follower paradigm is
accomplished defining a neighbor-based hierarchy
according to which robots maintain the relative
position with respect to a given neighbor [27], [31].
On the contrary, the work presented in this paper
Fig. 17. Four s-bots connected to a cylindrical passiveatbje does not define any leader that drives the group
coordination, because the latter is the emergent

. It of If- izi .
that swam-bots formed by a higher number Orfesu Of & Sel-organizing process

assembled s-bots take longer to coordinate. ThisCoordinated motion can also be performed with-
data confirm similar results obtained in simulation@ut keeping the team in a precise formation. In this
for which it was found that the coordinated motiorfase, the resulting behavior is closer to what can be
behavior scales well with the number of robots (se@bserved in many different animal species, such has
[15], [17]). flocks of birds or schools of fish. Many researchers
have provided models for schooling behaviors, and
V. RELATED WORK replicated them in artificial life simulations [14].

Coordinated motion is a task which attracted*S 2" example, it is worth m_entioning the se_minal
the interest of many researchers and has be@lﬁrk of Reynolds, Wh?, d_eﬂr:es th_e behavior of
commonly studied in the literature. Also referre?/'rtual creatures, called "boids”, making use of qnly
to as “formation control”, it requires that a numbe OIC?I drules [32]thThetV‘:jqu of Reyng!ds thgs S“t’.“'
of independent entities coordinate their actions jjlated many other studies on coordinated motion,

order to move coherently. One of the first wor g'Chsire ?: based okn ﬁome bllcf)Iog|caI' miplratlon
on this topic dates back to 1991, when Wan ], [34]. These works have self-organization as a

proved how a simple leader-follower mechanis ommon “feature” with the experiments presented
could produce coordinated motion in a group o this baper. Hov.vever,.the obtained resglts are
simulated robots [26]. This is a common strateg sually limited to S|mglat|on, and th.e lgxpenmen.tal
to perform a decentralized control of a group o etup does noF consider the possibility of testing
robots, as it reduces coordination to thepriori the controllers in real robots.

definition of a hierarchy among the robots. The Among the related works, it is worth mentioning
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TABLE VI

AVERAGE TIME THAT THAT THE REAL S-BOTS COMPOSING SWARMBOTS FORMED BY A DIFFERENT NUMBER OF MEMBERS
TAKE TO CONVERGE TO THE SAME DIRECTION OF MOTIONAVERAGE, STANDARD DEVIATION, AND STANDARD ERROR FOR20
REPLICATIONS.

Square 4 | Line 4 Line 4 Line 6 Star 8
rigid links | semi-rigid | rigid links | rigid links | rigid links
links
Conv. time | 5.75 5.60 6.40 7.57 9.70
Stand. dev. | 3.38 3.17 2.37 3.66 3.28
Stand. error| 0.76 0.71 0.53 0.82 0.73
180
— 160 4 [[] simulation
5 140 - . Real
8 120 |
5100 —+
S 801
L 60
3 40
@]
20 4
0

}
N

(b)

Square 4, Square 4, Square 4, Square 4,

rigid links rigid links rigid links, rigid links,
+object +object

Fig. 19. Performance of the best evolved controller in simu-
lation and reality (average and standard error of the distan
covered in 20 trials, each lasting 25 s). See the caption of
Fig. 10 for a detailed explanation of the figure. Additiogall
+object indicates tests involving s-bots connected through a
passive cylindrical object.

a class of robotic systems developed for collective
transport/manipulation. This task is slightly differ-
ent from the coordinated motion task studied in
this paper, since particular attention is given to the
displacement of an object toward a given location
or along a given trajectory. In this task, tight
coordination among the robots is heeded, especially
in the cases in which the object to be transported
must be first lifted and then moved. In such situ-
ations, force sensors are often used that provide a
feedback mechanism to control the stability of the
transported object. Force sensors are not exploited
for achieving coordination in the group, as in the
experiments presented in this paper. They are rather
used to keep under control the planned force to be
applied on the transported object [35], [36], [37], or
for correctly distributing the payload in the group

Fig. 18. The trajectories followed by four simulated (a) and38]- In SOme cases, COIIeCtiYe manipulation has
real s-bots (b), connected to a cylindrical object duringest t been achieved though centralised approaches [35],

lasting 15 s. The light and dark gray circles indicate thelfin

position of respectively the s-bots and the object.

936], a distributed leader-follower approach [39],

[28], [38] or a distributed approach based an



REF. SMCB-E-08222005-0584.R1 18

12

Differently from the work presented in this paper,
no real coordination within the group is necessary

81 for clustering and sorting. The collective action,
61 instead, enhances the self-organization aspects and
44 speeds up the accomplishment of the task.

1 VI. CONCLUSIONS

0 - T T T T

Square 4, Lined4,  Lined, Line6,  Stars, This paper showed how a group of several robots
rigid links semi-rigid rigid links  rigid links  rigid links phyS|CaIIy assembled in a swarm-bot can dlsplay
ke a coherent behavior on the basis of a simple dis-
Fig. 20. Time that real s-bots take to converge to a singltributed control system in which individual robots
direction of motion in swarm-bots formed by a _different ”“_mbehave access on|y to local sensory information. More
of robots (average and standard error of the distance abvere o . .
20 trials, each lasting 25 s). specifically, the paper showed how it is possible
to evolve a behavior that allows the robots to
coordinate their movements on the basis of self-
o . . organization principles. The robots start by nego-
priori planned trajectories [37] tiating a common direction of motion and then,
A different approach characterises other work$nce coordinated, they continuously compensate
which are devoted to minimalism: collective transpossiple misalignments caused by noise or other
port/manipulation is distributed and ' individualenyironmental factors. This solution is based on
complexity is minimized [40]. The work of Kube 5 traction sensor able to detect the intensity and
and Zhang [4] is an interesting example of thighe orientation of the traction that the top part of
approach. They start from the assumption thake robot (that is physically connected with other
cooperation does not necessarily require intentiopyhots) exerts on the bottom part (that is in contact
but it can be easily achieved exploiting perceptuglith the ground).
cues freely offered by the environment, and pos- The most significant achievement presented in
itive feedback loops that reinforce the collectivghis paper concerns the successful transfer of con-
response. A similar approach is taken in the Woro|lers evolved in simulation to real robots. The
presented in this paper. The main difference, apagsults illustrated show that the neural controller
from experimental details, lies in the coordinatiotan generalize to conditions that are very different
mechanism exploited by the robots. In fact in théom those in which it was evolved. In particular,
former case, the environment contains landmarkge evolved behavior was successfully tested in the
(i.e., light bulbs) that guide the robots in locatingo|iowing conditions: (a) swarm-bots composed of
the object and in moving toward the goal locationg |arger number of assembled robots (up to eight
On the contrary, in the experiments presented heyg| robots, but similar results have been obtained
no such environmental cue is exploited by th@ simulation using up to 36 robots [17], [15]);
group, _but coordination is based solely on a self) swarm-bots with varying shape; (c) swarm-
organizing process. bots assembled through semi-rigid links that allow
Self-organization is also at the basis of someelative motion of the connected robots; (d) swarm-
experiments in clustering and sorting of objectbots that navigate on rough terrains, which produce
[6], [7]. In these works, a number of objects ardiigh noise and disturbances; (e) robots indirectly
scattered in a closed arena. The objects can beannected through a passive object.
different types, and the robots are programmed to Very few works in the literature present collec-
collect them in one cluster or to segregate themive behaviors tested with physical robots, which
in concentric rings. The individual behavior carhave effectiveness comparable to the system pre-
be summarized as follows: pick up an item andented in this paper. Such effectiveness is the result
drop it where the local density of same type itemef a design methodology that allowed obtaining
is higher. This simple rule makes no reference teelf-organization in the robotic system, along with
the formation of a single cluster, which insteadts characteristic properties. Among these character-
emerges through a self-organizing process [6], [7istics we observed the high flexibility of the evolved

10 4

Convergence time (s)
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behavior, both with respect to modifications in theompletely removing those stagnation conditions in
environment and to the structure of the robotigvhich all robots keep moving around their center of
system itself. Another fundamental property of thenass. This rotational equilibrium may be avoided
presented robotic system is the high complexitin different ways, such as providing the robots
of the behavior exhibited at the collective levelwith additional information (e.g., additional sensors
notwithstanding the simplicity of the mechanismsletecting the speed of the two wheels), or by
characterizing the individual level. For instanceproviding the controller with recurrent connections,
the sensory-motor apparatus of the robots involves both. With these modifications, the robots should
only one sensor and few motors. Also, the neurdle able to detect that the system is in a stagnation
controller is the simplest possible, that is, a feedtondition, and therefore trigger a behavior that
forward single-layer neural network with very fewcould break the equilibrium.
input and output neurons. Therefore, all the com-
plexity of the observed collective behavior resides
in the interactions that take place among the robots
and between the robots and the environment. Thege Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative
interactions are shaped as traction forces, captured mobile robotics: Antecedents and directioniitonomous
by the tracti d ite th iety of Robots vol. 4, pp. 1-23, 1997.
.y e. raction sensor . espite the variety or con 2] G. Dudek, M. Jenkin, and E. Milios, “A taxonomy of
figurations of the robotic system and the number = multirobot systems,” iRRobot Teams: From Diversity to
of robots forming it. The analysis of the individual ~ PolymorphismT. Baich and L. E. Parker, Eds. A K Peters
behavi Is that int i th h tracti Ltd., Wellesley, MA, 2002.
ehavior reveals a Interac I(_)ns rough trac _Iort3] M. Dorigo and E. Sahin, “Swarm robotics — special issue
forces can be exploited resorting to two opposing  editorial,” Autonomous Robatsol. 17, no. 2-3, pp. 111—
tendencies: the first consists in complying with the[4] (]513|’?2?<0t . Collectt A
: - : . R. Kube an . ang, “Collective robotics: From
motion of the rest of the group. This behav!or social insects to robotsAdaptive Behavigrvol. 2, no. 2,
corresponds to the “positive feedback” mechanism  pp. 189-219, 1993.
that is at the basis of the self-organization of thel5] g- R. Kubg arrod EF-2 Btson_abeaut,j ‘ACooperative éransport
H H Yy ants and robots,Robotics an utonomous ystems
group, [1_4], [24]. The secon_d te_ndency co_n5|sts N Vol 30, no. 1-2, pp. 85101, 2000.
persevering in the current direction of motion, andjs] r. Beckers, O. Holland, and J.-L. Deneubourg, “From
it has the important role of favoring the emergence local actions to global tasks: Stigmergy and collective

of a common direction of motion and stabilizing robotics,” in Proceedings of thel*” International Work-
shop on the Synthesis and Simulation of Living Systems

the system against temporary disturbances. (Artificial Life IV), R. A. Brooks and P. Maes, Eds. MIT

; : ; ; ; Press, Cambridge, MA, 1994, pp. 181-189.
It is worth noting that this behavior was obtained [7] 0. Holand and C. Melhuish “Stigmergy, self-

through an automatic design methodology, that is, * organization, and sorting in collective roboticaftificial
artificial evolution, which is particularly tailored Life, vol. 5, no. 2, pp. 173-202, 1999.

; _ i ; [8] A. J. ljspeert, A. Martinoli, A. Billard, and L. M. Gam-
for the syntheS|s of self organizing behaviors [15]’ bardella, “Collaboration through the exploitation of lbca

[21]. In fact, evolutionary methods work in the interactions in autonomous collective robotics: the stick
bottom-up direction, as they define the controller at  pulling experiment,"Autonomous Robatsol. 11, no. 2,

the individual level and evaluate the performance of . PP- 149-171, 2001. = _
9] A. Martinoli, “Swarm intelligence in autonomous collec-

the system as a whole. They also tend to_prOdUC tive robotics: From tools to the analysis and synthesis
robust behaviors because unstable solutions and of distributed control strategies,” Ph.D. dissertatioon©

solutions easily affected by disturbances are rapidly ~Puter Science Department, Ecole PolytechniqéeFale
de Lausanne, 1999.

eliminated, as they have a poor performance. [10] M. J. B. Krieger, J.-B. Billeter, and L. Keller, “AntHie task

It is also relevant to stress that the evolved 3g?°jgg”p?)”%g;‘ig‘gg“ez'&ig cooperative robotsture
behavior constitutes an important building blocks 1 m. quinn, L. Smith, G. Mayley, and P. Husbands, “Evolv-

for swarm-bots that have to perform more complex ing controllers for a homogeneous system of physical

tasks such as co-ordinately moving toward a light robots: Structured cooperation with minimal sensors,”
Philosophical Transactions of the Royal Society of Lon-

target [17]’ and CO'Ord'nately eXplor'ng an environ- don, Series A: Mathematical, Physical and Engineering
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