
Internet Device Graphs
Ma�hew Malloy

comScore

mmalloy@comscore.com

Paul Barford

comScore, University of Wisconsin

pbarford@comscore.com

Enis Ceyhun Alp

comScore, University of Wisconsin

ecalp@cs.wisc.edu

Jonathan Koller

comScore

jkoller@comscore.com

Adria Jewell

comScore

ajewell@comscore.com

Abstract
Internet device graphs identify relationships between user-centric

internet connected devices such as desktops, laptops, smartphones,

tablets, gaming consoles, TV’s, etc. �e ability to create such

graphs is compelling for online advertising, content customiza-

tion, recommendation systems, security, and operations. We begin

by describing an algorithm for generating a device graph based

on IP-colocation, and then apply the algorithm to a corpus of over

2.5 trillion internet events collected over the period of six weeks

in the United States. �e resulting graph exhibits immense scale

with greater than 7.3 billion edges (pair-wise relationships) be-

tween more than 1.2 billion nodes (devices), accounting for the

vast majority of internet connected devices in the US. Next, we

apply community detection algorithms to the graph resulting in a

partitioning of internet devices into 100 million small communities

representing physical households. We validate this partition with a

unique ground truth dataset. We report on the characteristics of

the graph and the communities. Lastly, we discuss the important

issues of ethics and privacy that must be considered when creating

and studying device graphs, and suggest further opportunities for

device graph enrichment and application.

1 INTRODUCTION
Identifying internet users at scale in a persistent fashion (i.e., with-
out requiring an explicit login ID) is important in a variety of

contexts including online advertising, content customization, rec-

ommendation systems, security, and operations. �e standard

mechanisms for device identi�cation are web cookies and adver-

tising identi�ers. Cookies are unique strings associated with web

browsers that are assigned by publishers or 3rd parties when a user

visits a web page. Advertising identi�ers are unique strings placed

on mobile devices by the major operating system vendors (e.g.,
Apple’s Identi�er for Advertisers (IDFA), Google’s Advertising ID,

and Microso�’s Advertising ID). �ese identi�ers are available to

advertisers and third parties whose apps are running on the mobile

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’17, August 13–17, 2017, Halifax, NS, Canada.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4887-4/17/08. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3097983.3098114

device, and have a similar purpose in terms of enabling persistent

user identi�cation.

New challenges in user identi�cation have emerged in the past

several years due to the explosion in the number of internet con-

nected devices used by individuals on a daily basis. For example, a

single person might use a desktop and a laptop, one or more smart-

phones or tablets, a gaming console, a smart watch, and a smart

TV multiple times throughout the course of a day. �us, a critical

objective is the capability to identify users across devices. Addressing
this objective requires i) massive data gathering capability and ii) a
method for linking device identi�ers.

In this paper we describe internet device graphs. A device graph

is composed of nodes that represent internet connected devices

and edges that represent some relationship between them. Rela-

tionships can be identi�ed in a number of ways such as shared

IP addresses, operating simultaneously in close physical proxim-

ity, entity-based (i.e., owned by the same family or enterprise), or

community-based (i.e., part of the same social or interest group).

�e goal of device graphing is to identify these relationships ac-

curately and at scale, in a way that o�ers utility in practice (e.g.,
enabling users to be identi�ed across devices), and conforms to

established privacy guidelines and ethical principles. While there

are a number of commercial device graph o�erings (e.g., [3, 5, 8]),
we are aware of no research publications that describe methods for

establishing relationships between user-centric devices at scale.

We develop an approach for generating a device graph based on

IP-colocation. Edges in the graph are formed when pairs of devices

share an IP address at the same time, commonplace when connect-

ing to the internet via a home router. Our device graphing method

assumes the availability of measurement data with i) a device ID
(e.g., a web cookie or advertising ID), ii) an IP address, and iii) a
timestamp. Interpreting the IP colocation graph comes from the

observation that IP space is o�en intimate – IP addresses are shared

by devices that belong to the same person, family members, friends

and co-workers e.g., when connecting to the internet via the same

access point. Time scales of weeks to months capture habitual

behavior and reinforce true user-level and household-level relation-
ships. Edge weights are designed so that a weak edge corresponds

to co-workers, acquaintance, or simply coincidental connections.

Moderate weight edges are shared by devices that belong to mem-

bers of the same household. �e strongest edges are shared by

devices that belong to the same user (e.g., a mobile phone and a PC

belonging to the same person) or multiple IDs for the same device

(e.g., a cookie and an advertising ID on the same mobile device).

�e IP colocation graph enables clustering of devices into com-

munities of densely connected nodes using community detection

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1913

algorithms. �e communities generated from the IP colocation

device graph also have real-world interpretations. Tuning the com-

munity detection algorithms and culling low weight edges from

the graph can produce small groups of devices that belong to the

same person, larger groups that correspond to devices in the same

physical household, or even larger groups corresponding to the

same workplace or broad interest community.

We demonstrate the e�cacy of our methods by applying them to

a dataset comprised of over 2.5 trillion web measurements gathered

over the course of a six weeks in the US from comScore’s digi-

tal network. �e resulting graph is gigantic, including more than

than 7.3 billion edges (pair-wise relationships) and 1.2 billion nodes

(unique device IDs). We apply the Louvian community detection al-

gorithm [16] with a variety of objective functions, taking additional

steps to make the algorithm tractable at scale while improving ac-

curacy. Applying community detection algorithms to the graph

with appropriate parameters results in a partitioning of devices

into more than 100 million communities corresponding to physical

households in the United States. We report on the characteristics of

the graph and communities. Lastly, we validate our �nding against

a unique dataset that provides approximate ground truth on the

composition of internet devices in over seven thousand US house-

holds. When tuned to produce appropriate sized communities, we

show that the graph and community detection algorithms are able

to match more than 90% of the ground truth households with an

average precision and recall above 85%, which is an overwhelming

success given the scope and scale of the graph.

In summary, this paper makes the following contributions. First,

we introduce device graphing and IP-colocation based methods to

generate a device graph (Section 2). Next, we apply community

detection algorithms to the graph to generate groupings of devices.

�e approach is demonstrated through implementation with a large

internet measurement dataset and results are validated through a

unique ground truth dataset (Section 3). Lastly, we discuss privacy

and ethics (Section 4), and related work (Section 5).

2 METHODOLOGY
In this section we describe our methodology for generation of an IP-

colocation device graph and identi�cation of communities from the

graph. Our method is a two step process: i) generate a graphG that

establishes longitudinal relationships between devices by observing

them on the same IP address in a short time frame, and ii) use G to

create appropriate communities, depending on the application, by

employing community detection algorithms.

�ere are two primary objectives in device graph generation:

accuracy (i.e., a relationship in the graph or a community group

re�ects a true relationship or community) and scalability (the utility

of the graph and community groups is proportional to their scale).

Achieving accuracy is complicated by IP address and device ID

assignment dynamics, and by user mobility. Achieving scalability

depends on developing computationally e�cient algorithms and

implementations.

Before detailing our methodology for device graph generation,

we proceed with common terms in graph analysis. A weighted

graph G = (V ,E) is a set of nodes V and a set of weighted edges

E. A weighted edge e ∈ E is a two element subset of V and an

associated weight: e = (i, j,w) ∈ V × V × R. In a device graph,
a node i ∈ V is a device ID (e.g., a web cookie or advertising ID).

One of our primary e�orts is determining groupings of devices

that have strong relationships in the graph. We refer to these

groupings as communities. When a community is aligned to a

physical household, we refer to it as such. A community is a set of

one or more nodes, H = {i, . . . } ⊂ V . �e set of communities is

denotedH = {H1,H2 . . . }. H is a partitioning ofV , i.e,Hi∩Hj = {}
for any i , j, and

⋃
i Hi = V .

2.1 IP-Colocation Device Graph
Starting with a dataset consisting of tuples of (device ID, IP address 1,
time), generation of the IP-colocation device graph proceeds as

follows. First, time is discretized into epochs. On epoch t = 1, for

each IP address in the dataset, an edge is established between every

pair of device IDs that share that IP address. �e weight of the edge

is equal to the inverse of the total number of distinct device IDs

on that IP address during that epoch. IP addresses with more than

Nmax distinct devices are not considered. �e process continues for

all epochs in the dataset, and a �nal weight is assigned to each pair

of devices by summing over all epochs and all IP addresses. Only

edges with weights greater than γ are included in the �nal graph.

�e algorithm is detailed in Algorithm 1.

Algorithm 1 IP-Colocation Device Graph

1: parameters: Nmax, γ
2: input: tuples (device ID, IP address, time)
3: V = set of unique device IDs

4: for each time step t , each IP k
5: Nt,k = number of distinct device IDs on IP k at time t
6: if Nt,k ≤ Nmax

7: for all pairs of device IDs (i, j) on IP k at t
8: wi, j (t ,k) = 1

Nt,k

9: wi, j =
∑
t,k wi, j (t ,k) for all (i, j)

10: E = {(i, j,wi, j) : wi, j > γ }
11: return Gγ = (V ,E)

Algorithm 1 requires two parameters. �e �rst parameter, Nmax,

is set to exclude high volume IP addresses, which limits the total

number of edges established per IP address. Se�ing this value

too high creates a large edge set, and can make implementation

intractable. Moreover, when Nmax is su�ciently low, mobile and

corporate IP addresses are largely excluded, o�en a desired property.

�e second input is the edge cuto� parameter γ , which results in

discarding of edges below a speci�ed weight.

�e algorithm speci�es an inverse relationship between the edge

weight and the number of devices on an IP address. Roughly speak-

ing, the weight of an edge can be interpreted as the number of

epochs two devices share alone on an IP address. For example, if

two devices are alone together on an IP address for a single epoch,

they receive a weight of 1/2. As weights are additive across epochs,

two devices that are alone together for two epochs form an edge

with a weight of 1. Likewise, ten devices that share an IP for one

epoch establish 10 choose 2 edges, each with a weight of 1/10. We

1
In this paper, we consider IPv4 addresses. IPv6 will be considered in future work.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1914

also note that the graph includes self-edges: a device entirely alone

on an IP address builds a self-edge with a weight of 1. Many func-

tions of the distinct number of device IDs on an IP addresses, or

other a�ributes, could be used to de�ne the weight of an edge.

2.2 Community Detection
While an IP-colocation device graph alone is a rich dataset that can

provide great utility in a number of applications, one of our main

objectives is to group devices into small clusters of strongly related

nodes, corresponding to users, households, and larger internet com-

munities. With this goal in mind, we applied community detection

algorithms to Gγ , using the parameter γ to control the size of the

communities, resulting in various partitionings of V .

Community detection is the process of partitioning a graph into

clusters of nodes such that the nodes in the same group are densely

connected, while the nodes from di�erent groups are sparsely con-

nected. �e problem of community detection has drawn consider-

able a�ention from di�erent disciplines, producing many methods.

Due to the immense scale of the graph, we focused on the well stud-

ied Louvain method [16], using four distinct cost functions on Gγ ,

for various values of γ . �e Louvain approach is a greedy method

that proceeds by repeating two steps - �rst, the algorithm a�empts

to optimize the cost function by moving nodes to the communities

of their neighbors. �e second step involves creating a new graph

by treating communities as nodes, and repeating, which naturally

generates a hierarchy of communities. Each level in the hierar-

chy, denoted ` = 1, 2, ..., corresponds to a di�erent partitioning

of the node set. Both decreasing γ and increasing ` correspond to

increasing the size of the communities.

�e communities we generate have real-world interpretations

beyond simply sharing an IP address. When γ is large and ` = 1,

the communities are smallest, and correspond to groups of devices

that belong to the same person – which we refer to as the user-level.
Decreasing γ to produce larger communities results in groups of

devices that belong to the same physical households or small work-

place – the household-level. Further decreasing γ and increasing

` generates internet communities that connect extended families,

friends and co-workers.

3 EVALUATION
In this section we describe results of the application of Algorithm 1

and the community detection algorithms to a large, unique dataset.

Our objectives are to demonstrate implementations and to provide

perspective on the scale and characteristics of the resulting graph

and communities.

3.1 Data and Implementation
comScore’s digital network is one of the largest in the world, collect-

ing information on over 60 billion internet events daily
2
. Data from

this network is collected through digital tagging of websites, videos,

mobile apps, advertisements, web widgets and distributed content.

Tagging is implemented through two means: JavaScript/HTML tags

and SDK tag implementations. In both implementations, a client

2
In an independent web crawl in November of 2013, 18.19% of the Alexa top 100,000

domains placed 3rd party cookies of the analytics company [17]. �is is the second

largest percent amongst 3rd party hosts.

machine executes code locally and reports information directly to

a data warehouse in the form of a record.

While the information reported in a record varies depending on

the client and the tag implementation, three pieces of information

are critical to the device graph i) a device ID, ii) an IPv4 address,

and iii) a timestamp. Although the IP address and a timestamp are

invariantly included with each record, a device ID may or may not

be included depending on the security se�ings of the client. Device

IDs are either: i) a 3rd party web browser cookie or ii) an advertising
ID – including the Apple Identi�er for Advertising (IDFA), Google

Advertising ID, and Microso� Advertising ID. A limited number of

records were excluded for the following reasons: i) the record did

not include a 3rd party cookie or an advertising ID, ii) the 3rd party
cookie was identi�ed as being created less than 24 hours prior to

generation of the record, iii) the identi�er was a known invalid

identi�er (i.e., device identi�ers consisting of a string of zeros, or
cookies failing a checksum) and iv) the identi�er was hyperactive –
speci�cally, devices present on more than a thousand IP addresses.

Our study uses data collected in a 42 day (6 week) period from

December 5, 2016 through January 15, 2017 and is restricted to

the US. �e epoch used was a UTC day; as such, the UNIX times-

tamp of each record is rounded to the nearest UTC day. Nmax, the

maximum number of unique device IDs per epoch for which an

IP address is considered, was set to 20. Results are reported for

γ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. Algorithm 1 was run in an Apache

Hadoop environment with 500+ worker nodes implemented in 1000

lines of Apache Pig [1]. A�er collection, aggregation for a single

day’s data was on the order of an hour. Processing time for gener-

ating the graph from the aggregate data, in this deployment, was

on the order of a three hours.

Community detection was implemented using open source C++

code [15] on a singlemachine comprised of Intel(R) Xeon(R) CPUE5-

2699 v4 chipsets, totaling 88 cores, and 768GB of memory. Timing

results were collected for each γ and cost function, and ranged

from less than 2 hours to more than 16 hour depending on the

parameters.

3.2 Characteristics of the Graph
�e resulting graph, G0, consists of 1.3B nodes and 7.3B edges

(excluding self edges), with an average degree of 11.4 edges per

node. Of the 1.3B nodes, 344M corresponded to advertising IDs, and

935M to web cookies. Tables 1 and 2 show statistics of the graph,

including breakouts by node type (web cookie or advertising ID).

While G0 is not fully connected, there is a large connected com-

ponent to which 85% (1.08B) of nodes belong. Table 3 shows the

size of the largest connected component and the approximate av-

erage shortest path corresponding to that component, calculated

using open source code [38]. �e average shortest path is de�ned

as the minimum number of edges connecting two nodes, and was

computed by sampling 500 pairs of nodes.

Figure 2 and Figure 3 show the edge weight distribution and

the node degree distribution of G0. �e maximum weight of any

edge was a cookie to cookie edge with a weight of 274, while the

maximum degree of any node was 3090, corresponding to a cookie.

Figure 4 shows a plot of the size of the connected components

against the ratio of nodes that belong to such sized or smaller

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1915

HTC One M8

ChromeOS

LG Nexus 5 D820 16GB

iPhone

Windows 10

iPhone

iPhone 5s 16GB

INTEL MAC OS X

ChromeOS

INTEL MAC OS X

INTEL MAC OS X

Galaxy Note 4 SM-N910V

iPod Touch

Windows 10

INTEL MAC OS X

Windows 7

INTEL MAC OS X

Windows 10

Windows 7
INTEL MAC OS X

iPhone

Windows 10

iPhone

HTC One M8

Windows 10

LG G3 D850

Windows 7

INTEL MAC OS X

Windows 10

Galaxy S4 i9500 16GB

iPhone

LG Nexus 5 D820 16GB

LG Nexus 4 16GB

ChromeOS

INTEL MAC OS X

Linux H/W

iPhone

iPhone 6 16GB

iPhone 5 16GB

LG Nexus 4 16GB

Chromecast Internet TV Stick

Windows 10

iPhone

Asus Transformer Pad Infinity 10.1 TF700T/K Wi-Fi 32GB

iPhone

iPhone 5 16GB

HTC One M8

Windows 7

ChromeOS

INTEL MAC OS X

Windows 10

INTEL MAC OS X

Windows 7

iPhone

INTEL MAC OS X

Windows 7 INTEL MAC OS X

INTEL MAC OS X

Windows 10

iPhone

LG Nexus 5 D820 16GB

Windows 7

iPhone

INTEL MAC OS X

Windows 7INTEL MAC OS X

Windows 7
Windows 10

iPad Air Wi-Fi 16GB

XBox One

Windows 7

LG Nexus 5 D820 16GB

Chromecast Internet TV Stick

iPhone 5s 16GB

Figure 1: Visualization of a small portion (a 4-hop subgraph) of the IP co-location graph G0.4 created by Algorithm 1. Each
node represents a device ID (either a cookie or an advertising ID).�e thickness of the edge between two nodes is proportional
to wi, j , de�ned in Algorithm 1. Node colors indicate communities, corresponding to physical households, as determined by
the Louvain Modularity community detection algorithm. Labels are supplemented using the user agent string.

G0 Statistics

node count, |V | 1,278,838,913

edge count, |E | 7,305,293,292

average degree 11.4

Table 1: Summary statistics of the IP-colocation graph.

component. A connected component is a portion of the graph such

that every pair of vertices is connected by a path. Plots are shown

for γ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0.

Finally, Figure 1 shows a visualization of a small portion of G0.4

(a 4-hop subgraph). Weights of the edges are indicated by the

thickness of the line connecting two nodes. Each color denotes a

community generated by Louvain Modularity, ` = 1. �e labels are

supplemented using the user agent string.

3.3 Characteristics of the Communities
Louvain [16] community detection was applied to the IP coloca-

tion graph using a variety of cost functions and edge cut-o� levels.

G0 Statistics by Edge Type

advertising ID – advertising ID 784,626,308

advertising ID – cookie 2,822,643,027

cookie – cookie 3,698,023,957

G0 Statistics by Node Type

advertising ID 343,520,426

cookie 935,318,487

Table 2: Summary statistics of the IP-colocation graph by
device ID type.

Speci�cally, the cost functions employed were modularity, devi-

ation to indetermination, deviation to uniformity and balanced

modularity [18]. �e edge cuto� levels were γ = 0, 0.2, 0.4, 0.6, 0.8

and 1.0. �e cost functions were selected due to prevalence in

literature, and availability in the open source code used to run

community detection. In general the cost functions produced very

similar communities, with the exception of balanced modularity,

which produced signi�cantly smaller communities.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1916

Largest Connected Mean Shortest

Component Path

G0 1,084,255,633 9.6

G0.2 761,850,044 15.3

G0.4 444,211,103 23.3

G0.6 132,247,459 48.5

G0.8 21,916,077 99.2

G1.0 112,191 43.7

Table 3: Number of nodes in the largest connected compo-
nent as a function of edge weight and approximate mean
shortest path between nodes in that component.

≤ 1/
8

(1/
8,1

/4]

(1/
4,1

/2]

(1/
2,1

]
(1,

2]
(2,

4]
(4,

8] > 8

Edge Weight w

0.0

0.5

1.0

1.5

2.0

2.5

Co
un

t o
f E

dg
es

 (B
ill

io
ns

)

edges
cookie - cookie edges
advertising ID - cookie edges
advertising ID - advertising ID edges

Figure 2: Edge weight distribution of the IP-colocation de-
vice graph G0.

�e choice of γ has a strong e�ect on the properties of the com-

munities generated. As edges below a certain weight are culled

from the graph, the number of singleton nodes (i.e., nodes with
only self edges above γ) increases and the density of connections

both inside and across communities drop. Weaker connections

between more loosely associated devices are excluded, which mani-

fests as smaller communities. Whenγ is su�ciently large, the graph

becomes increasingly disconnected (see Table 3), ultimately pre-

venting formation of large communities. As user-level connections

(i.e., devices that belong to the same person) correlate with higher

edge weight in the graph, communities produced with γ = 1.0

can be interpreted as groups of devices belonging to an individual.

As the edge cuto� is reduce, household level connections become

prevalent.

Each choice of cost function and cuto� level produces a hier-
archy of communities as the Louvain approach performs greedy

optimization by repeating two steps. First, the cost function is opti-

mized locally by moving nodes into surrounding communities. �is

generates small communities, corresponding to devices that belong

to the same user or household. In the second step, a new graph is

built where nodes are the communities from the previous step. �e

�rst step is repeated, generating communities of communities.

1 2 3-4 5-8 9-1
6

17
-32

33
-64 >64

Degree

0

50

100

150

200

250

300

Co
un

t o
f N

od
es

 (M
ill

io
ns

)

total
cookies
advertising IDs

Figure 3: Degree distribution of the IP-colocation device
graph G0.

100 103 106 109

Component Size N

10−1

100

Fr
ac

tio
n

of
 n

od
es

 in
 si

ze
 N

 o
r s

m
al

le
r c

om
po

ne
nt

γ=0
γ=0.2
γ=0.4
γ=0.6
γ=0.8
γ=1.0

Figure 4: Connected component cumulative distribution.
�e plot show the fraction of nodes in a connected compo-
nent of size N or smaller in Gγ .

Figure 5 shows the distribution of household sizes for the Lou-

vain algorithm applied to G0.4 with the various cost functions,

hierarchy level ` = 1. �e cost functions ordered by increasing

mean community size were balanced modularity, modularity, devi-

ation to uniformity, and deviation to indetermination, producing

mean communities of size 3.39, 4.79, 4.80, and 4.83.

Figure 6 shows the distribution of household sizes when modu-

larity, hierarchy level ` = 1, was run on G0, G0.2, G0.4, G0.6, G0.8

and G1.0. �e mean community size decreases from 8.3 to 2.8 as γ
is increased from zero to one, which is captured in Figure 7.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1917

1 2 3-4 5-8 >9
Community Size

0

20

40

60

80

100

120

Co
un

t o
f C

om
m

un
iti

es
 (M

ill
io

ns
)

modularity
deviation to indetermination
devication to uniformity
balanced modularity

Figure 5: Distribution of community sizes generated by the
Louvain algorithm, ` = 1, with various cost functions ap-
plied to G0.4.

1 2 3-4 5-8 9-1
6

>16

Community Size

0

20

40

60

80

100

120

Co
un

t o
f C

om
m

un
iti

es
 (M

ill
io

ns
)

γ=1.0
γ=0.8
γ=0.6
γ=0.4
γ=0.2
γ=0.0

Figure 6: Distribution of community sizes generated by Lou-
vainModularity, ` = 1, applied toG0,G0.2,G0.4,G0.6,G0.8 and
G1.0.

3.4 Validation
Validation was facilitated by a ground truth dataset provided by

the comScore Total Home Panel (THP), which collects data from

customized wireless routers installed in a volunteer’s home. �e

routers act as gateways to the internet capturing browsing statistics

for all devices in the household. �e router also records both an

obfuscated version of the media access control (MAC) address, and

the device IDs (3rd party cookies and advertising IDs) associated

with any device that connects to the internet via the router.

�e device IDs associated with each custom wireless router de-

�ne the over 7,000 ground truth households, where each household

(0,
2)

(0,
1)

(0.
2,2

)

(0.
2,1

)

(0.
4,2

)

(0.
4,1

)

(0.
6,2

)

(0.
6,1

)

(0.
8,2

)

(0.
8,1

)

(1.
0,2

)

(1.
0,1

)

(γ, ℓ)

0

2

4

6

8

10

12

14

16

M
ea

n
Co

m
m

un
ity

 S
iz

e

modularity
deviation to indetermination
deviation to uniformity
balanced modularity

Figure 7: Mean community size at hierarchy levels ` = 1 and
` = 2 for Louvain community detection applied to G0, G0.2,
G0.4, G0.6, G0.8 and G1.0.

is comprised of one or more device IDs. Only device IDs that corre-

spond to MAC addresses active in the home for more than 2 days

are included. �is eliminates ‘guest’ devices that do not have a long

term association with the household. �e ground truth households

were established using the same time frame as the graph: December

5th, 2016 - January 15th 2017.

With ground truth households from the home panel, precision
and recall of the graph communities were calculated. More speci�-

cally, let H be the set of communities produced by the community

detection algorithm applied to the graph under test. First, for a

ground truth community H ′ (i.e., a physical household), the corre-
sponding graph community H∗ is de�ned as the community which

has the largest intersection of device IDs:

H∗ := arg max

H ∈H
|H ′ ∩ H |. (1)

If more than one such community exists, the smallest one is chosen.

Precision and recall for H∗ are given by

precision =
|H ′ ∩ H∗ |
|H∗ | recall =

|H ′ ∩ H∗ |
|H ′ | . (2)

A match is declared if precision are recall are both greater than 50%.

Both the mean precision and recall, and the match rate are plo�ed

in Figures 8 and 9.

Figure 8 shows the precision-recall curve for the various IP-

colocation graphs and community detection algorithms tested. To

create the precision-recall curves, Louvain was run onGγ for γ val-

ues of 0 through 1 in increments of 0.2. As increasing γ reduces the

number of edges, it reduces the size of the households produced by

the Louvain algorithm, creating a precision/recall curve. Precision

and recall are reported for the four cost functions considered in

addition to hierarchy output levels ` = 1 and ` = 2.

We note a few values from the precision-recall curves. Louvain

Modularity applied to G0.4 produced a mean precision of 90.8%

and recall of 83.8% across 6,401 matched ground truth households,

indicating that discarding low weight edges is a viable approach to

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1918

55 60 65 70 75 80 85 90 95 100
Mean Recall (%)

30

40

50

60

70

80

90

100

M
e
a
n
 P

re
ci

si
o
n
 (

%
)

°=1.0

°=0

modularity (`=1)

modularity (`=2)

deviation to indetermination (`=1)

deviation to indetermination (`=2)

deviation to uniformity (`=1)

deviation to uniformity (`=2)

balanced modularity (`=1)

balanced modularity(`=2)

Figure 8: Mean precision-recall curve showing veri�cation
of the community detection algorithms against the ground
truth communities corresponding to physical households.

0.0 0.2 0.4 0.6 0.8 1.0
°

70

75

80

85

90

95

M
a
tc

h
 R

a
te

modularity (`=1)

modularity (`=2)

deviation to indetermination (`=1)

deviation to indetermination (`=2)

deviation to uniformity (`=1)

deviation to uniformity (`=2)

balanced modularity (`=1)

balanced modularity(`=2)

Figure 9: Percent of ground truth communities (physical
households) that were successfully matched to the graph
based communities. A graph community is considered to be
successfully matched if there exists a ground truth house-
hold with greater than 50% precision and recall. �e ground
truth households are composed of device identi�ers that
connect to wireless routers in 7,037 physical households.

generating accurate and appropriately sized communities. Devia-

tion to indetermination and uniformity produced similar precision

recall curves. �e results indicate overwhelming success.

4 PRIVACY CONSIDERATIONS
While any dataset that contains device identi�ers can pose privacy

questions, the scale and user-centric focus of device graphs has the

potential to raise new privacy concerns. At the forefront of these

concerns is association with personally identi�able information

(PII), and special consideration must be given to preclude such

associations. To that end, graph data structures are a�ractive from

a privacy perspective since they capture pair-wise relationships, and

do not disclose the information used to generate the relationship. In

other words, even if a device graph is constructed from information

that may be considered sensitive (e.g., shared login or shared PII), it

can be stored and analyzed without any of the sensitive information.

Speci�c to our IP colocation-based device graph, additional mea-

sures mitigate potential disclosure of sensitive information. All

of the IP addresses used to generate graphs for this paper were

obfuscated. �e obfuscation is based on time dependent one way

hash of the IP address that allows devices to be associated with

each other, but not a physical IP. Furthermore, device identi�ers

in our dataset, both cookies and advertising IDs, are stored as a

one way hash. All device IDs are further assigned an integer value

before processing, and the mapping back to the one way hashed

version of the ID is not stored for the purposes of this study. While

these obfuscations of the device IDs can limit the utility of a graph

in practical applications, the assumption is that these measures in

full would not be necessary for proprietary application. We refer

the reader to comScore’s privacy policy for further discussion [2]

and the policies speci�ed by device graph vendors (e.g., [3, 5, 8]).
�ere are practical steps that users can take to limit the chances

that their devices are included in a device graph. In particular,

browser privacy se�ings that reject third party cookies prevent

inclusion of a browser cookie in our device graph. Moreover, incog-
nito browsing, which creates session cookies that are deleted when

the browsing session is complete, largely precludes inclusion, as

the IP colocation device graph only includes cookies that have a

lifetime greater than 24 hours. In regards to advertising IDs, OS

privacy se�ings allow users to opt out and preclude inclusion of

their advertising ID in the graph. More broadly, we appeal to the

large literature on user privacy in the web (e.g., [36]) and methods

to limit information leakage (e.g., [45]).
Lastly, �e Menlo Report [23] speci�es core ethical principles,

provides context for these in computing and communication re-

search, and provides guidance on Institutional Review Board (IRB)

and self evaluation. �is report and subsequent discussions in [34]

form the basis for our consideration of ethics in device graphing.

5 RELATEDWORK
To the best of our knowledge there are no prior research papers on

algorithms or systems for internet device graphing. While there are

several companies that have device graph o�erings (e.g., [3, 5, 8]),
they publish very li�le or nothing about their data or methods. One

of the objectives of our work is de�ne the problem, and describe

and demonstrate how it might be addressed. Related work largely

falls into three areas: large graphs and community detection (e.g.,
social networks), IP and dynamics, and internetmeasurementwhich

includes mapping home networks and mapping internet topology.

Large Graphs and Community Detection. Large graphs have been
extensively studied in recent years. Many of the publicly available

graph datasets that have been extensively studied are orders of

magnitude smaller than the IP colocation graph (see the online

databases of publicly available graph datasets [7] and [4]). None-

the-less, analysis of graphs of similar size do exists, and include

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1919

[12], [52]. A broad overview of community detection is provided

by Fortunato in [28]. Classical methods for community detection in

graphs include graph partitioning (e.g., [21]), hierarchical clustering
(e.g., [41]) and spectral clustering (e.g., [53]). Greedy techniques

(e.g., [20, 42]) are favorites for large graphs since they have low

computational complexity. �e Louvain [16] approach is a popular

greedy algorithm, since it is reported to detect communities with

high accuracy and low computational complexity at immense scale.

An inherent shortcoming of the modularity based techniques is the

resolution limit [29], which prevents small communities from being

accurately detected in large networks.

It is important to highlight the immense size of our device graph

in comparison to much of the community detection literature, with

some exceptions. �e WebBase 2001 graph, which is used in the

original Louvain Modularity paper has 118 million nodes and 1 bil-

lion edges [16]. While other studies propose parallel algorithms for

similarly sized graphs [44], we are unaware of any implementations

on graphs larger thanG0. Many of the studies in the literature [30–

32, 43] that employ and compare Louvain Modularity are conducted

on graphs that are an order of magnitude smaller than our device

graph. To the best of our knowledge, the IP-colocation graph is the

largest graph to which Louvain algorithms have been applied
3
.

Community structures speci�c to the internet have been consid-

ered for some time, and are proli�c in the large scale community

detection literature. Examples include, Flake et al. which describes

how self-organization in web link structures enables identi�cation

of interest communities [27]. Backstrom et al. provided one of the

earlier studies on communities in social networks by character-

izing relationships in LiveJournal and DBLP [13]. Other studies

have examined how graph structures of social connections evolve

over time [37], inferring user pro�les based on community connec-

tions [40] and social structures in speci�c networks [51].

IP Dynamics. IP address assignments to internet-connected de-

vices can be assigned statically or dynamically. Static assignments

may be used in small networks but are di�cult to manage at scale.

�us, dynamic assignment e.g., via DHCP are the norm.

Prior studies have examined the stability of IP address assign-

ments to individual devices. Central to these studies is the need

for persistent identi�cation of the same device. Xie et al. use the
UDmap to to identify dynamically assigned IP addresses in [54].

�e key to persistent device identi�cation is using Hotmail user

login names. Casado and Freedman use web cookies to track clients

accessing CDNs in [19]. We are informed by their client tracking

method, however the objectives of their study di�er signi�cantly

from ours. Indeed, the main advantage to our approach (over use

of the IP itself to de�ne a household) is resilience to IP dynamics.

Network address translation (NAT) enables generation of the

IP colocation device graph by allowing multiple devices to share a

single IP address. Proli�c use of NATed IP addresses by wireless

access points are paramount to the utility of the proposed graph. A

useful recent assessment of the prevalence of NAT in the internet

was presented by Akamai [6]. �ere have been many studies that

a�empt to estimate the number of devices behind NATs e.g., [14,
35, 39]. All of these rely on clients revealing themselves through a

3
While tuning the algorithms for graphs of this size presents practical challenges,

one could argue this is not particularity important since running the algorithm simply

required a machine with su�cient memory.

feature such as IPIDs, a hardware �ngerprint or a combination of

features, which might be useful in future device graphing studies.

Internet Measurement. Measurement and characterization of

internet structure and topology has been an active area of research

for many years. An objective in these studies is to establish accurate

(i.e., unique identi�cation of nodes and links) network-layer maps

of service provider networks (e.g., [47, 50]). A number of studies

have developed new techniques for data collection that improve

accuracy and mapping coverage, e.g., [10, 11, 24, 48]. Other e�orts
have considered the inherent accuracies in probe-based network

mapping [26, 46, 49, 55] and how Internet Exchange Points (IXPs)

have had an impact on the accuracy of network-layer maps, e.g.,
[9, 11]. Our work di�ers from these studies in that it is based on data

that is typically collected directly from devices e.g., via Javascript
tags or passive network traces, and our goal is in understanding

relations between devices.

Finally, there are several studies that are more closely related

to ours in their goals and approach. Heidemann et al. report on
the population of devices that respond to ping-style measurements

in [33]. We believe that enhanced active probe-based measurements

are a possible starting point for future device graph studies. �e

problem of measuring and characterizing home networks is also

related to our work. For example, DiCioccio et al. develop a tool

called HomeNet Pro�ler, which when deployed within a home

network can collect information about WiFi connected devices [22].

HomeNet Pro�ler is similar in some respects to the home panel

that we use in validating our device graph. �e limitation of many

of those methods to generation of device graphs is that they are

not applicable at scale. However, prior studies that use probe-

based methods to gather device information broadly in the internet

(e.g., [25, 33]) coupled with methods for device identi�cation behind

NATs (e.g., [35, 39]) do suggest possible approaches to assembling

datasets suitable for IP-colocation device graphing.

6 SUMMARY
�is paper introduces device graphing. We describe a method for

device graphing based on IP-colocation, which enables generation

of graphs of immense scale. We complement this with Louvian

community detection to generate groupings of devices that have

utility in practical applications. We implement our device graphing

approach and community detection methods to 2.5 trillion records,

resulting in a graph with over 7 billion edges and over 1.2 billion

nodes, and communities corresponding to 100 million households

in the US. �e accuracy of the grouping of devices into households

is validated through the use of a unique, ground truth dataset.

While the graph and communities exhibit immense scale and

strong accuracy, there are a handful of opportunities for improve-

ment. Devices that connect to the internet exclusively via mobile

carrier will not be identi�ed in the IP-colocation graph. Future

complications, including IPv6, and changes in residential service

provider IP allocation, must be addressed. Additionally, it is com-

mon place that multiple device IDs are transmi�ed by a single

device. �is occurs not only when a user clears cookies or resets an

advertising ID, but simply when a device presents an advertising

ID and one or more browser cookies. Special consideration can be

given to these scenarios and we leave this to future work.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1920

REFERENCES
[1] Apache Pig. h�ps://pig.apache.org. Accessed: 2016-02-10.

[2] comScore Privacy Policy. h�ps://www.scorecardresearch.com/privacy.aspx. Ac-

cessed: 2017-02-17.

[3] Drawbridge. h�p://www.drawbridge.com/c/graph/. Accessed: 2017-02-17.

[4] �e Koblenz Network Collection. h�p://konect.uni-koblenz.de/networks/. Ac-

cessed: 2017-02-15.

[5] Lotame Cross Device. h�p://www.lotamecrossdevice.com. Accessed: 2017-02-17.

[6] Prevalence of Network Address Port Translation (NAPT). h�ps://www.ietf.org/

proceedings/93/slides/slides-93-hopsrg-1.pdf. Accessed: 2016-09-19.

[7] Stanford network analysis project. h�p://snap.stanford.edu/data/. Accessed:

2017-02-15.

[8] �e Tapad Device Graph. h�p://www.tapad.com/device-graph/, 2016.

[9] Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., and Willinger, W.

Anatomy of a Large European IXP. In Proceedings of ACM SIGCOMM conference
(2012).

[10] Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy,

M., Magnien, C., and Teixeira, R. Avoiding Traceroute Anomalies with Paris

Traceroute. In Proceedings of ACM SIGCOMM Internet measurement conference
(2006).

[11] Augustin, B., Krishnamurthy, B., and Willinger, W. IXPs: Mapped? In

Proceedings of ACM Internet measurement conference (2009).
[12] Backstrom, L., Boldi, P., Rosa, M., Ugander, J., and Vigna, S. Four degrees of

separation. In Proceedings of the 4th Annual ACM Web Science Conference (2012),
ACM, pp. 33–42.

[13] Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X. Group Formation

in Large Social Networks: Membership, Growth, and Evolution. In Proceedings
of ACM SIGKDD (2006).

[14] Bellovin, S. A Technique for Counting NATted Hosts. In Proceedings of ACM
Internet Measurement Workshop (November 2002).

[15] Blondel, V., Guillaume, J.-L., and Aynaud, T. h�p://sourceforge.net/projects/

louvain/.

[16] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast Unfold-

ing of Communities in Large Networks. Journal of Statistical Mechanics: �eory
and Experiment 2008, 10 (2008), P10008.

[17] Cahn, A., Alfeld, S., Barford, P., and Muthukrishnan, S. An Empirical

Study of Web Cookies. In Proceedings of the 25th International Conference on
World Wide Web (2016), International World Wide Web Conferences Steering

Commi�ee, pp. 891–901.

[18] Campigotto, R., Céspedes, P. C., and Guillaume, J.-L. A generalized and

adaptive method for community detection. arXiv preprint arXiv:1406.2518 (2014).
[19] Casado, M., and Freedman, M. Peering�rough the Shroud: �e E�ect of Edge

Opacity on IP-based Client Identi�cation. In Proceedings of the USENIX NSDI
(April 2007).

[20] Clauset, A., Newman, M. E., and Moore, C. Finding Community Structure in

Very Large Networks. Physical review E 70, 6 (2004), 066111.
[21] D. Spielman, S. T. Nearly-linear Time Algorithms for Graph Partitioning, Graph

Sparsi�cation, and Solving Linear Systems. In Proceedings of ACM Symposium
on �eory of Computing (2004).

[22] DiCioccio, L., Teixeira, R., and Rosenberg, C. Measuring Home Networks

with HomeNet Pro�ler. In Proceedings of the Passive and Active Measurement
Conference (March 2013).

[23] Dittrich, D., and Kenneally, E. �e Menlo Report: Ethical Principles Guiding

Information and Communication Technology Research. In US Department of
Homeland Security Tech Report (August 2012).

[24] Durairajan, R., Sommers, J., and Barford, P. Layer 1-Informed Internet

Topology Measurement. In Proceedings of ACM Internet Measurement Conference
(November 2014).

[25] Durumeric, Z., Wustrow, E., and Halderman, A. ZMap: Fast Internet-Wide

Scanning and its Security Applications. In Proceedings of the USENIX Security
Symposium (August 2013).

[26] Eriksson, B., Barford, P., Sommers, J., and Nowak, R. Inferring Unseen Com-

ponents of the Internet Core. IEEE Journal on Selected Areas in Communications
(2011).

[27] Flake, G., Lawrence, S., Giles, C., and Coetzee, F. Self-organization and

Identi�cation of Web Communities. IEEE Computer 35, 3 (August 2002).
[28] Fortunato, S. Community Detection in Graphs. Physics Reports 486, 3 (February

2010).

[29] Fortunato, S., and Barthelemy, M. Resolution Limit in Community Detection.

Proceedings of the National Academy of Sciences 104, 1 (2007), 36–41.
[30] Greene, D., Doyle, D., and Cunningham, P. Tracking the Evolution of Commu-

nities in Dynamic Social Networks. In Advances in social networks analysis and
mining (ASONAM), 2010 international conference on (2010), IEEE, pp. 176–183.

[31] Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay, R.,

Padmanabhan, K., and Samatova, N. Community Detection in Large-scale

Networks: a Survey and Empirical Evaluation. Wiley Interdisciplinary Reviews:
Computational Statistics 6, 6 (2014), 426–439.

[32] Haynes, J., and Perisic, I. Mapping Search Relevance to Social Networks. In

Proceedings of the 3rd Workshop on Social Network Mining and Analysis (2009),
ACM, p. 2.

[33] Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G.,

and Bannister, J. Census and Survey of the Visible Internet. In Proceedings of
ACM Internet Measurement Conference (October 2008).

[34] Kenneally, E., and Bailey, M. Cyber-security Research Ethics Dialogue and

Strategy Workshop. ACM SIGCOMM Computer Communication Review 4, 2
(2013).

[35] Kohno, Y., Broido, A., and Claffy, K. Remote Physical Device Fingerprinting.

IEEE Transactions on Dependable and Secure Computing 2, 2 (April 2005).
[36] Krishnamurthy, B., and Wills, C. Privacy Di�usion on the Web: A Longitu-

dinal Perspective. In Proceedings of the 18th International Conference on World
Wide Web (New York, NY, USA, 2009), WWW ’09, ACM, pp. 541–550.

[37] Kumar, R., Novak, J., and Tomkind, A. Structure and Evolution of Online Social
Networks. Springer, 2010.

[38] Leskovec, J., and Sosič, R. Snap: A general-purpose network analysis and

graph-mining library. ACM Transactions on Intelligent Systems and Technology
(TIST) 8, 1 (2016), 1.

[39] Maier, G., Schneider, F., and Feldmann, A. NAT Usage in Residential Broad-

band Networks. In Proceedings of the Passive and Active Measurement Conference
(March 2011).

[40] Mislove, A., Viswanath, B., Bummadi, K., and Druschel, P. You are Who You

Know: Inferring User Pro�les in Online Social Networks. In Proceedings of ACM
International Conference on Web Search and Data Mining (February 2010).

[41] Murtagh, F. A Survey of Recent Advances in Hierarchical Clustering Algorithms.

Computer Journal 26, 4 (1983).
[42] Newman, M. E. J. Fast Algorithm for Detecting Community Structure in Net-

works. Phys. Rev. E 69 (Jun 2004), 066133.

[43] Pujol, J. M., Erramilli, V., and Rodriguez, P. Divide and Conquer: Partitioning

Online Social Networks. arXiv preprint arXiv:0905.4918 (2009).
[44] Riedy, E. J., Meyerhenke, H., Ediger, D., and Bader, D. A. Parallel Community

Detection for Massive Graphs. In International Conference on Parallel Processing
and Applied Mathematics (2011), Springer, pp. 286–296.

[45] Roesner, F., Kohno, T., and Wetherall, D. Detecting and Defending Against

�ird-party Tracking on the Web. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (Berkeley, CA, USA, 2012),

NSDI’12, USENIX Association, pp. 12–12.

[46] Roughan, M., Tuke, S. J., and Maennel, O. Bigfoot, Sasquatch, the Yeti and

other Missing Links: what we don’t know about the AS Graph. In Proceedings of
ACM Internet measurement conference (2008).

[47] Sherwood, R., Bender, A., and Spring, N. Discarte: a Disjunctive Internet

Cartographer. In Proceedings of ACM SIGCOMM conference (2008).
[48] Sherwood, R., and Spring, N. Touring the Internet in a TCP Sidecar. In

Proceedings of ACM Internet Measurement Conference (2006).
[49] Spinelli, L., Crovella, M., and Eriksson, B. AliasCluster: A Lightweight

Approach to Interface Disambiguation. In Proceedings of the Global Internet
Symposium (2013).

[50] Spring, N., Mahajan, R., and Wetherall, D. Measuring ISP Topologies with

Rocketfuel. ACM SIGCOMM conference (2002).
[51] Traud, A., Mucha, P., and Porter, M. Social Structure of Facebook Networks.

Physica A: Statistical Mechanics and its Applications 391, 16 (August 2012).
[52] Ugander, J., Karrer, B., Backstrom, L., and Marlow, C. �e anatomy of the

facebook social graph. arXiv preprint arXiv:1111.4503 (2011).
[53] von Luxburg, U. A Tutorial on Spectral Clustering. Statistics and Computing 17,

4 (December 2007).

[54] Xie, Y., Yu, F., Achan, K., Gillum, E., Goldszmidt, M., and Wobber, T. How

Dynamic are IP Addresses? In ACM SIGCOMM Computer Communication Review
(2007), vol. 37, ACM, pp. 301–312.

[55] Zhang, Y., Oliveira, R., Wang, Y., Su, S., Zhang, B., Bi, J., Zhang, H., and

Zhang, L. A Framework to �antify the Pitfalls of using Traceroute in AS-level

Topology Measurement. IEEE Journal on Selected Areas in Communications (2011).

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1921

https://pig.apache.org
https://www.scorecardresearch.com/privacy.aspx
http://www.drawbridge.com/c/graph/
http://konect.uni-koblenz.de/networks/
http://www.lotamecrossdevice.com
https://www.ietf.org/proceedings/93/slides/slides-93-hopsrg-1.pdf
https://www.ietf.org/proceedings/93/slides/slides-93-hopsrg-1.pdf
http://snap.stanford.edu/data/
http://www.tapad.com/device-graph/
http://sourceforge.net/projects/louvain/
http://sourceforge.net/projects/louvain/

	1 Introduction
	2 Methodology
	2.1 IP-Colocation Device Graph
	2.2 Community Detection

	3 Evaluation
	3.1 Data and Implementation
	3.2 Characteristics of the Graph
	3.3 Characteristics of the Communities
	3.4 Validation

	4 Privacy Considerations
	5 Related Work
	6 Summary
	References

