
Minimum Cost Maximum Flow Algorithm for
Dynamic Resource Allocation in Clouds

Makhlouf Hadji, Djamal Zeghlache

Institut Telecom, Telecom SudParis
UMR CNRS 5157

9, Rue Charles Fourier
91011, Evry, France

Email: {makhlouf.hadji, djamal.zeghlache}@it-sudparis.eu

Abstract—A minimum cost maximum flow algorithm is pro-
posed for resources (e.g. virtual machines) placement in clouds
confronted to dynamic workloads and flows variations. The
algorithm is compared to an exact method generalizing the
classical Bin-Packing formulation using a linear integer program.
A directed graph is used to model the allocation problem for
cloud resources organized in a finite number of resource types; a
common practice in cloud services. Providers can use the mini-
mum cost maximum flow algorithm to opportunistically select the
most appropriate physical resources to serve applications or to
ensure elastic platform provisioning. The modified Bin-Packing
algorithm is used to benchmark the minimum cost maximum
flow solution. The latter combined with a prediction mechanism
to handle dynamic variations achieves near optimal performance.

Keywords-Cloud Computing, Resource Allocation, Linear In-
teger Programming, Minimum Cost Maximum Flow.

I. INTRODUCTION

Optimal virtual machine placement in clouds has received
considerable attention recently to facilitate cloud resources
and services provisioning on an on demand basis to users and
multiple tenants. The dynamic variations of workloads, jobs
and application flows have nevertheless not been addressed
with the same focus. The actual demand is typically not
known in advance. This makes reservation based and on-
demand cloud services provisioning difficult since it is not
possible to reserve the right amount of resources a priori. The
dynamic variations are typically observed during operations
at the infrastructure or platform levels to scale cloud services
(see for example: [1]). The idea is to predict these variations
based on past observations to anticipate future demand by
extending or adapting previous allocations probatively.

Authors in [1] use a demand forecaster to ensure
evolutionary machine placement into multiple cloud providers.
They use simulations and numerical studies to evaluate the
performance of their algorithm and show that their algorithm
is close to the optimal solution given by the stochastic
integer program. They also indicate that the evolutionary
algorithm can reach the minimum cost when the resource in
the reservation plan is accurately provisioned compared with

the actual demand, otherwise, additional costs are incurred.

The approach in our contribution also consists of predicting
future loads and variations. To avoid the cost and complexity
of [1] using a demand forecaster combining several predictors
(Kalman filtering, double exponential smoothing and Markov
prediction), we just resort to an autoregressive process
to anticipate variations in incoming flows and workload
dynamics. Instead of using a separate and external predictor,
we embed the prediction and adaptation process in the
algorithm itself and seek a near optimal solution that can
achieve performance close to Bin-Packing algorithms that
are optimal for virtual machine placement in virtualization
enabled physical resources when the demand is known in
advance. Our goal is also to derive a quasi exact algorithm
instead of using meta-heuristics or evolutionary algorithms.

The use of optimal dynamic resource allocation leads to
significant increase in providers’ revenues as stated in [2]
and gives the opportunity to adjust cloud resources prices
to foster uptake as well as achieve access and congestion
control. These aspects were addressed in [3] for cloud
federations, using insourcing and outsourcing to increase
revenues, using an exact mathematical model based on linear
integer programming, to set prices dynamically and achieve
optimal resource allocation and management.

In this paper we focus on optimal dynamic placement of
virtual resources in data centers and cloud infrastructures to
serve multiple users and tenants with time varying demands
and workloads. As mentioned earlier static allocation
policies and pricing lead to inefficient resource sharing, poor
utilisation, waste of resources and revenue loss. The paper
derives a low complexity and effective algorithm by modeling
the optimal resource placement in clouds as a maximum
flow problem leading to a viable implementation for cloud
providers. Without any loss in generality, we consider that
resources are offered as Virtual Machines (VMs) to focus
on the model instead of overemphasizing complex resources
in the study. Details on complex resources can be found in

2

[4]. Since our algorithm applies to complex resources with
marginal adaptation, resources are limited to Virtual Machines
to be placed in physical resources acting as containers.

Our objective is to allocate demands, expressed as a vector
of VM instances D = (d(small), d(medium), d(large), . . .), to
different data centers (or Physical Resources) to maximize
cloud provider’s revenues. We resort to time-series analysis
to predict or forecast demands based on past and current
observations and use dynamic prices to achieve near optimal
placement and revenue gains.

Two placement algorithms are investigated. The first is a
modified exact Bin-Packing algorithm serving as a reference
to benchmark a second algorithm proposed by our work,
the minimum cost maximum flow algorithm (MCMF). The
problem at hand is NP-Hard [5] [6] and the Bin-Packing
approach encounters scalability issues when the number
of instances and the number of events grow; it exhibits
exponential explosion and leads to unacceptable delays.
The MCMF is an alternative that performs very well and
matches the global optimum most of the time. The MCMF
will also be shown to convergence to quasi optimal solutions
in much shorter times and does not suffer from state explosion.

Section II of this paper introduces the time-series model
used to predict future demands. An auto-regressive method
(AR(k)) is used to forecast demands for a historical period
k. The exact modified Bin-Packing model that uses a linear
integer programming formulation and the proposed Minimum
Cost Maximum Flow (MCMF) are presented in Section III
while section IV addresses their performance evaluation.
Related work on cloud computing optimization and dynamic
resources allocation in cloud computing is presented for
completeness in Section V. Conclusions and future research
are presented in Section VI.

II. THE SYSTEM MODEL

The model considers a cloud provider offering virtual
resources (CPU, Memory, I/O Bandwidth, . . .) (seen as VMs)
from physical resources (seen as Physical Machines (PMs)).
A PM can be switched ON or OFF. Providers shut down
or put PMs into sleep mode to save energy and reduce cost
whenever appropriate. When a PM is power ON a cost is
associated to the objective function of the models to include
the energy bill according to workload. Different cost functions
are considered for each PM to capture this energy saving
practices by the providers. These costs are assessed, known
and provided by the providers themselves.

Figure 1 depicts an exemple where physical machine 1
(PM1) can offer 2 small VMs instances and large 1 VM
instance while PM2 and PMn offer respectively during a given
allocation window or cycle, (1 Medium, 1 Large) VM set

and (1 Small, 1 Large) set. These offered resources will vary
dynamically with completed tasks, new requests and even
when applications migrate across physical machines or cloud
providers. During an allocation cycle ∆t, a cloud provider
controls these free capacities, turns physical machines ON
or OFF and simultaneously aims at assigning optimally
the demands to the PMs. The provider will turn PMs ON
when the demand exceed the activated fraction of the overall
capacity to avoid rejecting user requests and thus maintain
good reputation. The provider will aim at maximizing their
return on investment at all time to balance cost and revenue.

The proposed dynamic resource allocation and pricing
framework is illustrated in figure 1. As already mentioned
small, medium and large VM instances are offered by the
provider that sets prices dynamically during the allocation
cycles ∆t according to predicted future VMs demands by
a forecaster. Per unit of resource prices or costs incurred
to users should decrease as a function of their demand and
without loss of generality we start off with a simple price
function in line with this usual practice for a demand dj of
VM instance j ∈ I:

Pj =

{ 1
dj
, if dj > 0;

0, if dj = 0.

Given the prediction by the forecaster, providers with
knowledge of their free resources and adapted prices per in-
stance type can rely on their VM scheduler to allocate demands
to PMs with the objective of maximizing their revenues. The
Forecasting and VM Scheduler work in tandem to enable
providers to have the right amount of physical resources ready
to fulfill the current and future demands.

Fig. 1. The system model

3

A. Forecasting future demands

The prediction of future demands in virtual machines is
essential to reserve the right amount of physical resources
and achieve durable optimal placement in physical hosts at
initial provisioning. Even if cloud services include elasticity
services that can react to such variations, the ability to predict
demands can considerably reduce the need for frequent and
disrupting adaptation, migration and consolidation changes to
absorb fluctuations.

Different forecasting models can be found in the literature
(see [2], [7] for example). The objective of forecasting
demands in clouds is essentially to minimize costs, achieve
better and longer term resource allocations and distribute the
demand optimally across data centres and physical resources.

There exist several methods to predict requests as
exemplified in [1] and time series models [8] that we have
adopted for our minimum cost maximum flow algorithm
to achieve dynamic optimal placement in clouds. Since our
objective is to assess the efficiency and complexity of our
algorithm compared to Bin-Packing, we adopt a simple
auto-regressive model (AR(k)) where k is the historical size.
We limit ourselves to a simple AR prediction as we intuit that
using moving averages (ARMA) and extensions (ARIMA)
will enhance the prediction outcomes and performance.

The AR(k) model estimates the future request dt for a time
t given by :

dt =

k∑
i=1

ϕidt−i + εt (1)

where the parameters ϕi can be easily estimated using the
historical values of the demands, and εt is uncorrelated white
noise with mean 0 and a variance σ2.

B. Modified Bin-Packing algorithm

Basically, packing problems consider sets of items and
item-holding objects called bins, and aim to group items in
such a way that they all (or a maximum number of them) fit
into the minimum number of bins [6]. In our case, bins are
the different Physical Machines noted by PMs, and the items
are the Virtual Machines Instances (for example, we consider
small, medium and large instances) to fit into PMs.

In this paper, we introduce a modified and extended
Bin-Packing algorithm that is more appropriate for the
dynamic placement problem at hand to have a reliable,
exact and well established method for benchmarking the
minimum cost maximum flow algorithm. We derive the
Bin-Packing model for a finite set of VM instances and with
no loss of generality specialize the instances to a set often
used in cloud computing services (Amazon, Azure, others
. . .): I = {Small,Medium,Large, . . .}. The problem is
characterized by a number of items (the VMs), a profit (price
per resource unit) and a set of bins (the PMs that will host the

VMs) with their associated free (left over) capacity and costs
(hosting and PM usage costs that include energy consumption
costs). The aim is to select the subsets of profitable items
(the VMs) and appropriate bins (the PMs) to optimize the
objective function combining the cost of using the PMs and
the profit obtained by hosting the selected VMs.

Let us now derive the model by defining n as the number
of available PMs from a cloud provider and noting by dj the
demand in VM instances of type j at time t. Variable Cij

is used to represent the available hosting capability of PM i
with respect to VMs instances of type j. A gain (price per
unit), Pj is also associated to each instance j ∈ I. This price
is set after forecasting the future demand.

Assuming full knowledge by the provider of all lumped
costs (including energy bill), the composite hosting cost,
when assigning VM j to PM i is represented by γij . Decision
variable xij is introduced to reflect that VM instances of type
j are assigned to physical machine i.

In order to take into account the need to power physical
machines ON if the currently activated resources are
insufficient to satisfy the predicted demand, binary variable
yij is introduced. This variable indicates if PM i is powered
ON to host a VM instance j.

The cloud provider using a VM Scheduler finds the best
resource allocation to maximize revenue expressed by:∑n

i=1

∑|I|
j=1 Pjxij and to minimize the corresponding costs∑n

i=1

∑|I|
j=1 γijyij . This leads to the use of the objective

function in equation (2) to achieve optimal placement.

This optimisation is subject to a number of constraints
expressed by inequality (3). The cloud providers new
allocations can not exceed the available free resources in the
data-centers. An additional family of constraints is given by
equality (4) to satisfy the current demand and the integrity
constraints expressed by (5) and (6).

This leads to an exact model extending the Bin-Packing
problem when heterogeneous items are involved as in the
addressed dynamic cloud resource allocation in this paper:

minZ =

n∑
i=1

|I|∑
j=1

γijyij −
n∑

i=1

|I|∑
j=1

Pjxij (2)

Subject To:

xij ≤ Cijyij ,∀j ∈ I,∀i = 1, . . . , n (3)

n∑
i=1

xij = dj ,∀j ∈ I (4)

4

yij =

{
1, if the PM i is ON to assign the VM j to it;
0, elsewhere.

(5)

xij ∈ N,∀j ∈ I,∀i = 1, . . . , n (6)

For completeness all used variables and constraints are listed
below:
• n is the number of available Physical Machines.
• I is the set of all available VM instances types. |I| rep-

resents the number of considered instances. For example,
for I = {small,medium, large} this gives |I| = 3.

• dj represents the demand in VMs of instance j.
• Cij represents the number of available (free) VMs of

instance j offered by the Physical Machine i.
• xij indicates if a VM of instance j is assigned to Physical

Machine i.
• yij is the associated variable when we power ON a PM
i to assign a VM j to it.

• Pj is the price (gain) of one VM of instance j.
• γij is the associated hosting cost when a VM of instance
j is assigned to a Physical Machine i.

C. Minimum Cost Maximum Flow algorithm

The exact formulation based on the modified Bin-Packing
model suffers from scalability problems with large instances
and increasing number of PMs as well as the length of
the requests. This has been the motivation for seeking
an alternate approach to the dynamic resource placement
problem and this led to the Minimum Cost Maximum Flow
(MCMF) algorithm proposed in this work. The MCMF on the
contrary is not subject to the scalability issues of Bin-Packing.

The MCMF is based on a directed graph representation of
the dynamic resource allocation problem. The directed graph
is represented by G = (V,E) with V corresponding to the
set of vertices and E is the set of arcs.

The number of vertices for the graph G is fixed to |V | = 2+
|I|(2+|PM |) and the number of arcs to |E| = 2|I|(1+|PM |)
where |PM | represents the number of available PMs in the
cloud provider. We consider two fictitious vertices S and T
representing the source and the destination respectively. For
each type of instance, we create |PM | vertices linked with
two other fictitious vertices. One vertex, ui, is located at the
entry of this set, and the second one, vi is located at the exit.
This overall set is noted Ai with i ∈ I. For example, if the
request asks for three instances (small, medium, large), three
sets of vertices are created. Figure 3 depicts the created graph
and the position of all its vertices (PMs and fictitious vertices).
The corresponding arcs are created using the steps listed
below:
• We associate an arc from S to each entry vertex of Ai

(noted by ui) for all i ∈ I. We also associate a capacity to
this arc (S, ui) equal to the requested demand in instance

i noted by di. A cost equal to zero is associated to this
arc as it just represents the initial resource request.

• From each exit vertex vi of a component Ai (for all i ∈
I), to the destination vertex T (we create the arc (vi, T))
to which we associate a capacity equal to the demand in
instance i (i.e. di) and a cost equal to zero.

• For each component Ai (for all i ∈ I), we repeat the
following steps:

– We associate an arc from the entry vertex ui of Ai to
all intermediate vertices representing PMs and noted
by ji1, j

i
2, j

i
|PM |. On each constituted arc (ui, j

i
k) for

k = 1, . . . , |PM |, we associate a capacity represent-
ing the available (free) resources (VMs in our case)
on the PMk and a cost function gcost witch will be
detailed bellow.

– We add an arc from each intermediate vertex jik for
k = 1, . . . , |PM | to the exit vertex vi of Ai. This
arc is represented by (jik, vi). The same capacity as
on the arc (ui, j

i
k) will be associated to (jik, vi) and

a cost equal to zero is assigned to this arc.
– A last case consists in assigning a zero capacity value

and an infinite cost to the arcs (ui, j
i
k) and (jik, vi) to

all PMs jik (k = 1, . . . , |PM |) that are either turned
OFF or have no resources left to allocate.

Figure 2 illustrates graph G for a one dimensional request.
Generalizing this graph construction to multidimensional re-
quests leads to the graph G depicted in Figure 3 for the small,
medium and large resource instances.

Fig. 2. The graph G for a dynamic demand of one instance type

Each arc on the graph is labeled with a tuple that consists
of its available capacity and proposed cost. For example, the
arc (ui, j

i
1) has a capacity of 1 and a cost of 0.33 as can be

observed in Figure 2.

To compute a minimum cost maximum flow in graph G =
(V,E) from S to T , we use the Edmonds-Karp algorithm [9]
to return the best (optimal) PMs that will dynamically provide
resources and host the requests (VMs or virtual resources). The
complexity of this algorithm is the minimum of O(|V |2flow)
and (|V |3fcost) where flow is the obtained flow on G and
fcost is its corresponding minimum cost. The output of the
algorithms are the PMs that will handle the demands and
convey the associated flow from the source S to the destination

5

Fig. 3. The generalized directed graph G (costs are missed for clarity)

T . If the outgoing flow form S is equal to the incoming flow
in T , the demand is accepted. Otherwise it is rejected. Note
that when a physical machine is selected to carry a flow for
more than one instance it is counted only once in the cost
function. Indeed, when a physical machine is turned ON for
the first time it is counted and obviously not counted for all
subsequent requests as long as it stays ON.

III. NUMERICAL RESULTS

The MCMF algorithm and the modified Bin-Packing
algorithm are evaluated using numerical analysis. The
objective is to assess the performance of the MCMF
algorithm combined with the AR predictor using the modified
Bin-Packing as a benchmark. The exact model of the
modified Bin-Packing problem is evaluated through a C++
language implementation and the linear programming solver
CPLEX [10]. The proposed MCMF is evaluated through
the Edmonds-Karp [9] algorithm. The assessment scenarios
considers a cloud provider using different physical machines
or nodes to host virtual resources offering multiple virtual
resource types.

Without loss of generality, we specialize the scenario to
three cases corresponding to 3, 5 and 8 instances and report
the results for the dynamic resource allocation problem
addressed in this paper. The requests for virtual resources
or demands D towards a cloud provider are generated as an
independent Poisson process with rate λ.

Figure 4 depicts the evolution of the cloud provider costs
for fixed and dynamic prices and indicates that it is essential
to use dynamic prices to achieve stable and reliable revenues.
The use of fixed prices leads to unstable and often high costs.

For the dynamic pricing based on future demands prediction
a stable gain can be obtained and maintained. For the fixed
price approach the losses can be significantly high when low
prices are applied for high demands. When cloud providers
forecast the demand and adjust prices accordingly, they are
capable of minimizing cost more accurately by adapting
prices and can serve more customers.

Fig. 4. Cloud provider’s costs behaviour with fixed and dynamic prices

To conduct the performance evaluation, 100 random and
independent simulations for each case are used with 20 to
200 PMs and a number of cost functions gcost related to
the hosting costs γ. The selected costs for the studies reflect
the intuitive expectation that the cost should be inversely
proportional to the available capacity so as to foster demand
when resources are unused and tamper user requests when
resources become too busy.

1) Inverse hosting costs: In this experiment, for each arc
(ui, j

i
k) in the graph G (see figure 3), we will consider the

hosting cost function gcost given as follows:

gcost(i, k) =

{
1

Cik
, if Cik > 0;

∞, elsewhere.
(7)

where Cik is the available capacity on arc (ui, j
i
k)

(k = 1, . . . , |PM |).

For this specific scenario and the cost function in (7), the
difference in costs between the two algorithms is depicted in
Figure 5. The figure contains in fact six curves, three for the
modified Bin-Packing for the 3, 5 and 8 instances and three
entirely superposed to these corresponding to the MCMF
and the same sets of instances. The MCMF for this cost
always finds the optimal Bin-Packing placement. We have
also tested alternate cost functions such as 1

log(Cik+1) and(
1

Cik

)a
(with a ≥ 1) and observed that the MCMF achieved

the same optimal performance as the modified Bin-Packing.
The MCMF algorithm with 1

f(Cj) hosting costs was observed

6

to always lead to the optimal Bin-Packing solutions for
other than Poisson demand arrival distributions. Additional
assessments using arbitrary bursty arrivals and very different
distributions all lead to optimal Bin-Packing.
This motivates us to conjecture that the MCMF is optimal
for all costs of type 1

f(Cj)
. Proof of this optimality is out of

scope of the current paper, however, as we seek in priority
to understand how the MCMF behaves with cost and with
different cost models. In order to get a clear answer on
how close MCMF with AR prediction performs compared to
optimal, when faced with important variations in demands,
we resort to a test using a random cost to reveal potential
weaknesses.

Fig. 5. Cloud provider’s costs for three, five and eight type of instances:
case of inverse hosting costs

2) Random (0,1) hosting costs : The second scenario
considers consequently a cost function gcost for all arcs
(ui, j

i
k) (k = 1, . . . , |PM |) taking random values in 0 and 1.

Figure 6 summarizes the gaps in performance with respect to
the exact and optimal modified Bin-Packing algorithm.

The deviation from optimal are consistently small (for
less than 80 PMs in figure 6) and tend to vanish when the
number of PMs is high (above 80 PMs). This means that the
MCMF algorithm will be very close to optimal for a large
number of physical machines for large cloud providers with
many data centers a sector where actually the Bin-Packing
algorithm encounters scalability problems and takes longer
times to find the optimal solution.

From figure 6, we conclude that using more resource
instances in the provider service offer leads to higher
revenues (negative losses on the curves). Using 5 and
8 instances produces gains with a clear advantage for 8
instances. Providers will need however to strike a balance
between increasing the number of instances for higher
revenues with increasing complexity for customers or users.

Fig. 6. Cloud provider’s costs for three, five and eight type of instances:
case of random hosting costs between 0 and 1

IV. RELATED WORK

In [11], authors describe multiple problems and open
challenges concerning resource allocation in cloud computing
environment. They noted the importance of tacking into
account the consumption of huge amounts of energy caused
by hosting applications from consumers. Thus, they presented
vision, challenges and architectural elements for energy-
efficient management of cloud computing environments
based on dynamic resource provisioning and allocation
algorithms considering synergy between various data center
infrastructures.

Authors in [2] investigate the combination of workload
prediction algorithms and switching policies to solve the
dynamic resource allocation for enterprise applications. They
presented two switching policies: proportional switching
policy (PSP) and bottleneck aware switching policy (BSP).
They illustrated via simulation results that combining of
BSP with different workload predictions can clearly improve
system revenues.

Reference [12] addresses an analytical model of virtual
machine migration that provides improvement in response time
due to a migration decision. The presented model accounts for
predictability of resource requests and characteristics of the
virtualization of the infrastructure. To validate their model,
they used simulations on data center resource utilization traces.

The closest work to our model appears in [7]. The approach
in this case consists in two parts: (1) a market analysis
for forecasting the demand of each spot market and (2) a
dynamic scheduling and consolidation mechanism that allocate
resource to each spot market to maximize total revenue.
They showed that the proposed algorithm can approximate
the optimal solution of the NP-Hard problem of resource
allocations in both fixed and variable pricing schemes. In our
approach, we aim at a general solution using a Minimum

7

Cost Maximum Flow algorithm that achieves optimal virtual
resource or service placement in polynomial time and staying
very close to optimal for all inverse hosting cost functions of
type 1

f(C) . As mentioned earlier, we avoid resorting to meta-
heuristics and evolutionary algorithms and search for solutions
that can apply to any market and adapt to demand variations.
MCMF is proposed as a scalable and viable solution to reach
this objective.

V. CONCLUSIONS

An exact modified Bin-Packing problem and a Minimum
Cost Maximum Flow (MCMF) are proposed and evaluated
to address the dynamic resource allocation problem in cloud
computing environments. A simple autoregressive process is
used to predict fluctuating demands to set prices dynamically
to ensure gains instead of experiencing losses and hence
increase revenues for providers. The proposed MCMF
algorithm uses this time-series model to forecast future
requests and exhibits very good performance and scalability
properties as opposed to the modified Bin-Packing algorithm
that is NP-hard and subject to exponentially increasing
delays in finding the optimal solution for large clouds. The
O(min{n2flow;n3fcost}) complexity of MCMF can be
considered as low and negligible compared to the modified
Bin-Packing solution. The MCMF also finds the optimal
solutions for cost functions that lower prices as resources
become more available and act inversely when resources are
too busy. A test using a random cost, having no business or
market sense, is used to assess the robustness of the MCMF
to errors in matching prices with dynamic demands. The
MCMF resists especially well to such scenarios and stays
close to the optimal exact Bin-Packing algorithm while taking
much less time to find a viable solution to the dynamic
resource allocation problem in clouds.

Our future research will address solutions to the dynamic
resource allocation problem taking into account the costs of
networking and of migration of applications between data
centers.

ACKNOWLEDGMENT

We would like to thank Professor Thierry-Duvillard Cabanal
from the university of Paris 5 for his constructive comments.

REFERENCES

[1] C. T. Ching, D. Niyato, and C.-K. Tham, “Evolutionary optimal virtual
machine placement and demand forecaster for cloud computing,” In
Proceedings of IEEE International Conference on Advanced Information
Networking and Applications (AINA), March 2011.

[2] M. Al-Ghamdi, A. Chester, and S. Jarvis, “Predictive and dynamic
resource allocation for enterprise applications,” IEEE International Con-
ference on Computer and Information Technology (CIT 2010), pp. 2776–
2783, 2010.

[3] M. Hadji, D. Zeghlache, and W. Louati, “Resource allocation in cloud
federation: Exact algorithm,” Submitted, December 2011.

[4] J. Rao, X. Bu, K. Wang, and C. Xu, “Self-adaptive provisioning of
virtualized resources in cloud computing,” Proceedings of the ACM SIG-
METRICS joint international conference on Measurement and modeling
of computer systems, p. 13, June 2011.

[5] M. Garey, and D.S. Johnson, Computers and Intractability. W.H.
Freeman and Company, 1979.

[6] M. Maria-Baldi, T. Crainic, G. Perboli, and R. Tadei, “The generalized
bin packing problem,” Technical Report, CIRRELT, July 2011.

[7] Q. Zhang, E. Gurses, R. Boutaba, and J. Xiao, “Dynamic resource
allocation for spot market in clouds,” Proceedings of the 11th USENIX
conference on Hot topics in management of internet, cloud, and enter-
prise networks and services, 2011.

[8] P.J. Brockwell, and R. A.Davis, Introduction to time series and fore-
casting, ser. 0-387-95351-5. Springer 2nd edition, 2002.

[9] J. Edmonds and R. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the Association for
Computing Machinery, vol. 19, no. 02, pp. 248–264, April 1972.

[10] http://www-01.ibm.com/software/integration/optimization/cplex
optimizer/.

[11] R. buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management
of data center resources for cloud computing: A vision, architecture
elements, and open chalenges,” Proceedings of the 2010 International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2010), p. 12, July 2010.

[12] A. Kochut and K. Beaty, “On strategies for dynamic resource manage-
ment in virtualized server environments,” Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems, MASCOTS’2007,
pp. 193–200, 2007.

