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ABSTRACT
In Non-Intrusive Load Monitoring (NILM), as in many other ma-
chine learning problems, significant computational resources and
time are spent training models using as much data as possible.
This is perhaps driven by the preconception that more data leads
to more accurate models and, eventually, better performing algo-
rithms. When has enough prior training been done? When has
a NILM algorithm encountered new, unseen data? This work ap-
plies the notion of Bayesian surprise to answer these important
questions for both, supervised and unsupervised algorithms. We
compare the performance of several NILM algorithms to establish
a suggested threshold on two combined measures of surprise: post-
dictive surprise and transitional surprise. We validate the use of
transitional surprise by exploring the performance of a particular
Hidden Markov Model as a function of surprise threshold. Finally,
we explore the use of a surprise threshold as a regularization tech-
nique to avoid overfitting in cross-house performance. We provide
preliminary insights and clear evidence showing a point of dimin-
ishing returns for model performance with respect to dataset size,
which can have implications for future model development, dataset
acquisition, as well as aiding in model flexibility during deployment.

CCS CONCEPTS
• Hardware → Smart grid; • Computing methodologies →
Machine learning.
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1 INTRODUCTION
Non-Intrusive Load Monitoring (NILM), often referred to as load
disaggregation, dates back to the seminal work presented in [11].
In a nutshell, NILM describes the problem of identifying present
electrical appliances within a time series consisting of a sequence of
(power) measurements taken at a central point in the distribution
grid of a building. In recent years, more and more energy datasets
have emerged (e.g., [16, 21, 23, 24] to name a few), which can vary
considerably in terms of complexity, methodology, appliance char-
acteristics and usage patterns, setting, etc. (e.g., see [17, 26]). With
some datasets spanning several years of collection, considerable
time and computational resources are spent in training new models.
Newer approaches to NILM increasingly adopt deep learning meth-
ods (e.g., [10, 19]), which can involve millions of tunable parameters,
not to forget the often arduous process of hyperparameter tuning. It
stands to reason, then, that effectively isolating the most important
segments of a dataset relative to a model could improve time-to-
deployment as well potentially regularize against overfitting.

We relate the concept of Bayesian surprise [1, 13] to NILM by
modeling appliance activations in a non-parametric Gaussian mix-
ture model and introducing postdictive surprise. Additionally, we
introduce the concept of transitional surprise by simply modeling
the relationships between appliance states in a Markovian sense.
Our preliminary results show that:

(1) the diminishing returns of increased amounts of similar data,
(2) the potential “model-agnostic” regularization effect of train-

ing data truncation, and
(3) the usefulness of transitional surprise to (crudely) approxi-

mate system dynamics.

2 RELATEDWORK
Itti and Baldi [1, 13] define Bayesian surprise to be a measure of
dissimilarity to assess the effect of data 𝐷 on the belief distribu-
tions of an observer. More precisely, Bayesian surprise is defined as
the dissimilarity (or divergence) between the prior and the poste-
rior distributions over a set of possible modelsM. Itti and Baldi’s
interpretation of Bayesian Surprise has found application in vari-
ous forms: de-biasing of thematic maps in [6], automatic detection
of landmarks in computer vision [27], detection of salient acous-
tic events [28], identification of calcifications in mammogram im-
ages [7], and to determine suitable thresholds for extreme value
models [20].
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In [18], Bayesian updating of an agent’s beliefs was grouped into
two general categories. First, Bayesian surprise is the term given to
the change in beliefs over latent variables; the unobservable quan-
tities inferred through observations. Second, postdictive surprise
refers to the divergence between the prior and posterior predictive
distributions, quantifying the surprise over observable quantities.
In [8], the concept of confidence-corrected surprise is developed, in
which the degree of commitment to a particular generativemodel in-
fluences the extent to which observations update an agent’s beliefs.
However, given that the intent of the present work is to develop
a “model-agnostic” formulation for NILM datasets, surprise in the
present work is restricted to a fixed model (i.e., |M| = 1).

In [12], the authors propose a Bayesian surprise metric to dif-
ferentiate between useful information and redundant observations
during online learning of mixtures of Gaussians. The main motiva-
tion behind this measure is to prevent outliers from significantly
changing the model parameters as well as restrict redundant sam-
ples from over-specifying component parameters, which would
lead to overfitting. In the context of online learning, our work can
be considered somewhat of an extension of [12] to non-parametric
methods, rather than storing outliers and instantiating new compo-
nents based on Gaussian Mean Shifting. However, the main focus of
the present work is to use GMMs to explore the point at which the
data is no longer surprising with respect to improving the perfor-
mance of any model. By contrast, [12] uses the concept of Bayesian
surprise within a GMM to optimize its own clustering performance.

3 SURPRISE METHODOLOGY FOR NILM
A natural approach to characterize the novelty of incoming data is
to examine the change in the signal and compare it to the changes
so far observed. In other words, clustering on the first-differences of
the signal permits an intuitive notion of surprising data: appliance
events not yet seen. Following the basic appliance characterizations
in [11], simple ON-OFF or multi-state appliances can have their
initial activations modelled as Gaussian around some mean value.

However, transient characteristics of appliances, such as the con-
sumption spike at the start of a fridge’s condenser cycle, can result
in a highly varying activation value. Moreover, the consistency of
these initial activations are dependent on sampling frequency. We
consequently preprocess the data using a fast, steady-state block-
filter developed in [14]. This filter imputes the mean value between
change-points identified using an adaptive threshold on the raw
power and first-differences in the signal. This steady-state power for
individual appliance states is far more amenable to Gaussian mod-
elling given its improved consistency. A Gaussian mixture model
(GMM) can be learned using the discrete changes in the aggregate
as in [12], but in contrast to Gausian Mean Shifting to detect new
components, we extend GMMs to the Bayesian non-parametric
regime, which relaxes the constraint of finite parameterizations.

In non-parametric GMMs, the unbounded number of mixture
weights 𝜋𝑘 are generated according to a Dirichlet Process prior,
which ensures

∑∞
𝑘=1 𝜋𝑘 = 1. The stick-breaking representation

introduced in [9] gives an intuitive generative process for these
objects. Inference in these models can be stochastic, for example by
using Markov Chain Monte Carlo methods such as Gibbs sampling.
Alternatively, a variational approximation to the desired posterior

can be posited, the parameters of which are by design amenable
to optimization relative to the evidence lower bound (ELBO). The
variational approximation first proposed in [4] for these models
takes the form:

𝑞(𝜈, 𝜃, z) =
𝐾−1∏
𝑘=1

𝑞𝛾𝑘 (𝜈𝑘 )
𝐾∏
𝑘=1

𝑞𝜏𝑘 (𝜃𝑘 )
𝑁∏
𝑛=1

𝑞𝜙𝑛 (𝑧𝑛), (1)

where {𝛾, 𝜏, 𝜙} are the variational parameters subject to coordinate
ascent optimization. 𝑞𝛾 are beta distributions parameterized by the
individual stick lengths, 𝜈𝑘 . 𝑞𝜏 are in our case Gaussians parameter-
ized by 𝜃𝑘 = {𝜇𝑘 , Σ𝑘 }, although extension to general exponential
families is possible.𝑞𝜙𝑛 are multinomial, parameterized by indicator
variables 𝑧𝑛 , which denote the component to which the observation
𝑥𝑛 is assigned. To speed up inference, a truncation on the maximum
number of possible states is imposed on the variational approxi-
mation, similar to truncation in methods such as blocked Gibbs
sampling [4]. This value, 𝐾 , is itself a variational parameter which
can be fixed or optimized with respect to the ELBO. 𝐾 was fixed in
our work to 30 unique components. Under this approximation, the
resulting posterior predictive distribution needed for computing
postdictive surprise can be neatly factored as expectations with
respect to the variational distribution:

𝑝 (𝑥𝑁+1 |𝑥1, ..., 𝑥𝑁 , 𝛼,𝐺0) ≈
𝐾∑
𝑘=1
E𝑞

[
𝜋𝑘

]
E𝑞

[
𝑝 (𝑥𝑁+1 |𝜃𝑘 )

]
(2)

For many machine learning algorithms, decay in the postdictive
surprise might be sufficient to demarcate useful data from superflu-
ous data during training. However, it is often the case that temporal
relationships between appliance states are learned and contribute
to inference. Such methods would include Hidden Markov Models
(HMMs) and their many extensions, more recent deep learning
techniques such as those based on Recurrent Neural Networks, and
many more. In the interest of simplicity, we restrict the notion of
“transitional surprise” to the Markovian sense. That is, we treat the
state sequence as a Markov chain, such that the current state of the
system is determined only by the state before it. For a system of 𝐾
appliance states, this transitional surprise constitutes comparing
the rows of the 𝐾 × 𝐾 transition matrix. This approximation to
the dynamics is clearly crude, but even weak convergence of the
transition matrix to some stationary form can prove useful.

To summarize, for each sliding window of 𝑤 events, preceded
by 𝑁 events, we compute the (approximate) postdictive surprise as:

𝑆𝑜 = 𝑑
[
𝑝 (𝑥𝑁+1 |𝑥1:𝑁 , 𝛼,𝐺0) | | 𝑝 (𝑥𝑁+𝑤+1 |𝑥1:(𝑁+𝑤) , 𝛼

∗,𝐺0)
]
, (3)

where 𝑑 is some divergence metric (usually Kullback-Leibler di-
vergence), and 𝛼∗ is the posterior update for the concentration
parameter if a prior was placed on it. Over the same window of
𝑤 events, we compute the transitional surprise over the truncated
maximum number of states 𝐾 as:

𝑆𝑡 =

𝑤∑
𝑗=0

𝐾∑
𝑘=1

𝑑
[
𝑇𝑘 (𝑧1:𝑁+𝑖 ) | |𝑇𝑘 (𝑧1:𝑁+𝑖+1)

]
, (4)
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Table 1: REFIT House 3 Performance expressed as MAE for
Decreasing Surprise Thresholds

(𝑆𝑜 , 𝑆𝑡 ) % of Tr. Set DAE RNN S2P S2S GRU

(0.05, 0.6) 9.2 40.7 36.1 37.9 30.7 32.9
(0.02, 0.5) 18.3 36.8 30.1 24.2 24.4 25.9
(0.01, 0.5) 26.1 31.9 30.0 25.2 25.1 27.7
(0.005, 0.3) 54.1 33.4 29.9 23.6 23.8 27.4

where at time 𝑡 , 𝑇𝑗,𝑘 = 𝑝 (𝑧𝑡+1 = 𝑘 |𝑧𝑡 = 𝑗). The notation 𝑇𝑘 (𝑧1:𝑁+𝑖 )
denotes the transition row built using event indicators 𝑧 for obser-
vations 1, 2, ..., 𝑁 + 𝑖 .

In order to simplify the concept of a surprise threshold under
which data is no longer considered surprising, 𝑆𝑜 and 𝑆𝑡 are nor-
malized according to their maximum values. Since the initial value
of the above divergences can certainly be exceeded as observations
are made, the maxima were updated and preceding surprise val-
ues were re-normalized to the revised maxima. The postdictive
and transitional surprise values can therefore be interpreted as
the fraction of the maximum observed surprise, rather than the
actual value of equations 3 and 4. Since in an online setting it would
be unreasonable to wait indefinitely for surprising windows, we
suggest a patience parameter, 𝜌 . In the experiments that follow,
we used 𝜌 = 100; that is, 100 windows are observed beyond the
most recent window exceeding the surprise threshold. If no other
windows exceed the threshold, the previously surprising window
is returned as the cutoff point.

4 EXPERIMENTS
To explore the usefulness of a surprise threshold, we made use of
NILMTK, an open-source toolkit developed for NILM research that
includes implementations of some benchmark algorithms [2, 3]. In
this work, we explore the use of Denoising Autoencoders (DAE) [5],
LSTM-based Recurrent Neural Networks (RNN) [15], Windowed
Gated Recurrent Unit-based RNNs (WindowGRU) [19], Sequence-
to-Sequence autoencoders (Seq2Seq) [15], and Sequence-to-Point
convolutional networks (Seq2Point) [29].

To establish a relationship between algorithm performance and
the proposed surprisemetrics, three houses from the REFIT dataset [24]
were selected for study using the above disaggregation methods.
The included appliances in these experiments were the dishwasher,
the washing machine, the refrigerator, the kettle, and the toaster.
The Mean-Absolute Error (MAE) was used as a performance metric.
For each house, the available data was split into a training set and
test set by a 90%/10% split. 15% of the training set was reserved for
validation. The surprise metric was computed on the remaining
training data, such that each algorithm was training and validat-
ing on the same data. Each algorithm was trained over 15 epochs
using Adam optimization with a batch size of 1024 samples. For
a given house, each algorithm had its random seed fixed across
surprise-based training set reductions, removing initialization vari-
ability from their appliance-averaged performance. We relied on
the preprocessing functions, such as data normalization, part of
NILMTK.
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Figure 1: Appliance-averaged MAE performance, REFIT
House 2

Table 2: REFIT House 5 Performance expressed as MAE for
Decreasing Surprise Thresholds

(𝑆𝑜 , 𝑆𝑡 ) % of Tr. Set DAE RNN S2P S2S GRU

(0.05, 0.6) 12.8 34.9 32.7 27.8 26.3 31.1
(0.02, 0.5) 21.8 35.9 29.9 26.1 25.7 28.5
(0.01, 0.5) 26.4 32.2 29.9 25.0 25.1 29.0
(0.005, 0.3) 80.2 29.2 28.7 23.4 24.0 26.0

Figure 1, as well as Tables 1 and 2, show the behaviour of the
MAE for the average appliance across the benchmark methods for
houses 2, 3, and 5, respectively. The postdictive and transitional sur-
prise was computed using Jensen-Shannon divergence, a symmetric
extension of the KL-divergence.

Although no sharp transition exists between an optimally and
sub-optimally sized training set, the behaviour of these algorithms’
MAE in the three REFIT houses suggest that performance can in-
deed stagnate. Additional similar data, especially in houses 2 and 3,
seem unlikely to appreciably improve performance. An example
surprise threshold is shown in Figure 1 as a dotted grey line, indi-
cating an approximate point where performance began to plateau.
This cutoff was chosen as a joint threshold over postdictive and
transitional surprise, defined by:

𝑆𝑜 (𝑤 : 𝑤 + 𝜌) ≤ 0.01 & 𝑆𝑡 (𝑤 : 𝑤 + 𝜌) ≤ 0.05, (5)

where again,𝑤 is the window size and 𝜌 is the patience parameter.
We used this threshold to study further the potential regularizing
effect of surprise-based training cutoff, although significant explo-
ration with other available datasets is needed to further narrow
down acceptable threshold values.

In [25], disaggregation performance on unseen homes in the
same dataset as well as different datasets were examined. By their
choice of architectures, the authors restricted the number of tun-
able parameters relative to the existing literature. They also made
use of early stopping with an aggressive patience parameter to
terminate training. With these complexity and temporal regulariza-
tion methods, they showed intra- and inter-dataset transferability
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Table 3: REFIT Cross-house (3 → 5) MAE for full and cutoff
training in Watts

Benchmark Method Full Training Cutoff Training

WindowGRU 37.83 33.03 ↓
DAE 34.78 33.00 ↓
RNN 32.54 30.62 ↓

Seq2Seq 27.17 29.43 ↑
Seq2Point 26.85 26.74 ↓

with minimal performance losses relative to their chosen base-
line. Nevertheless, these methods still make use of all available
training data. Bayesian surprise metrics provide an attractive alter-
native/supplement to early stopping, which by contrast truncate
the training set entirely. We examined the MAE performance of
each algorithm when trained on all data of REFIT house 3 and the
surprise-based subset determined by the joint threshold in equa-
tion 5. Table 3 shows the appliance-averaged MAE performance
of each benchmark method when tested on REFIT house 5. All
but one method showed improved cross-house transferability with
a restricted training set, giving some substance to the claim that
truncating the training set may provide regularization against over-
fitting.

Finally, to illustrate the usefulness of including the concept of
transitional surprise, we explored the performance of the super-
state Hidden Markov Model introduced in [22]. Clearly, a Markov-
ian model should suffice to show whether our Markovian notion of
transitional surprise is useful. We used house 1 from the Rainfor-
est Automation Energy (RAE) dataset [23], which consists of two
blocks: a 9 day block beginning on February 7, 2016, and a 63 day
block beginning March 6, 2016. Block 1 was used as the test set, and
block 2 (and its surprise-based subset) was used for training the
models. The seven appliances used for training were the clothes
washer and dryer, refrigerator, dishwasher, furnace/hot water unit,
and the heat pump.

Figure 2 shows the Van Rijsbergen’s effectiveness measure (de-
fined simply as 1− F1-score) as a function of cutoff point during
training. This measure decays slightly faster than that of the transi-
tional surprise, but significantly after the postdictive surprise had
converged. This lends credence to the claim that postdictive sur-
prise is an unreliable metric for terminating training in the general
case. The difference in decay rate between transitional surprise
and the effectiveness measure is understandable given that the
SSHMM by definition encodes the Markovian dynamics between
super-states of the user’s home. The super-state of the home at a
given instant in time can be thought of as the complete description
of the home, denoting the operational mode of each appliance in
the house. Each instant in time increments the underlying transi-
tion distributions between super-states of the home, rather than
individual appliance states. This will in general encode the state
dynamics more efficiently since there is more information used per
time-step. Nevertheless, the basic notion of transitional surprise
introduced here allows a useful overestimate of the learning rate of
the system dynamics.
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Figure 2: Effectiveness measure (1− F1-score) averaged over
7 appliances as a function of surprise-based training cutoff

5 CONCLUSIONS
Ultimately, the concept of surprise involves comparison over dis-
tributions as they are updated given new observations. The most
useful such distributions are unavoidably model-specific. Neverthe-
less, there are features intrinsic to the data itself that could be used
to predict the usefulness of more data in a model-agnostic way. This
work explored a postdictive surprise defined over the likelihood of
a non-parametric GMM. Furthermore, we explored a transitional
surprise defined in a Markovian sense, which was described by the
transitional relationships between latent states as determined by
the state assignments of the GMM. This crude approximation to
the system dynamics was shown to be useful relative to a strictly
postdictive notion of surprise, at least in an HMM-based applica-
tion. An approximate joint threshold was determined by examining
the MAE performance of five benchmark methods supported by
NILMTK over three REFIT homes. This threshold was used to ex-
plore the potential regularizing effect of a surprise-based training
cutoff.

Although similar in motivation to early stopping, surprise-based
truncation of data is fundamentally different in that the dataset itself
is restricted, rather than the time spent learning the data. The two
methods can thus be used together to protect against over-fitting
and aid in the transferability of learned parameters. Truncating
the training set using surprise-based methods allows a significant
reduction in research costs, both in terms of computational time
spent training and research time spent trying to optimize what may
prove to be fruitless methods. Finally, postdictive surprise using
non-parametric mixture models naturally extends to online settings,
where deployed NILM algorithms quickly become obsolete without
the flexibility to adapt to new appliances or appliance replacements.
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