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A Survey of Attitude
Representations

Malcoim D. Shuster'

Abstract

A survey of the attitude representations is given in a single consistent notation and set
of conventions. The relations between the various representations of the attitude, and the
kinematic equations are given completely. The transformations connecting different atti-
tude covariance representations are presented for the case where the errors in the attitude
are sufficiently small that they can be represented by an infinitesimal rotation. Examples
of the use of each representation are presented and some historical notes provided.
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Introduction

In comparison with orbit studies, where the position of an object is represented
as one of a small number of known representations, which are aimost always the
familiar Cartesian, cylindrical, and spherical coordinates of vectors, the represen-
tation of attitude, i.e., orientation, is exceedingly more diverse. The attitude rep-
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resentations in current use comprise vectors of three and four components. as
well as 2 X 2,3 X 3 and 4 X 4 matrices. For each of these representations there
is some application for which its use is advantageous.

The development of the attitude representations can be found in many books
on Classical Mechanics and on attitude control, in particular, in the books of
Goldstein (1], Hughes (2], Junkins and Turner [3], the short section by Mark-
ley [4] in Wertz [5], and in the book of Kane, Likins, and Levinson [6], to cite the
most recent and most useful. The present treatment has much in common with
that found in each of these excellent texts and with the forthcoming book by the
present author [7]. However, an attempt has been made to be much more com-
plete and to make a strong distinction between abstract and numerical quantities.

The conventions adopted here are consistent with those of Goldstein [1],
Hughes [2], and Markiey [4] and are mostly consistent with those of Junkins and
Turner {3] (who label the scalar component of the quaternion differently). The
differences in the sign conventions which distinguish many expressions in this
work from those of Kane, Likins and Levinson {6] result from the fact that the
present work has adopted the passive description of rotations as have Goldstein,
Hughes, Junkins and Turner, and Markley, while Kane, Likins and Levinson and
several of the references cited in this survey have adopted the active description.
Qur conventions seem to be largely consistent with those adopted in Inertial
Navigation [8,9].

An attempt has been made to include all of the useful resuits on attitude repre-
sentations as well as many results whose utility may be seriously open to question.
Therefore, in order to keep the length of this article almost within manageable
proportions, only the slimmest skeleton of a derivation, if any, has been presented,
very little discussion. and hardly any figures. Despite its breadth, this survey may
be justly accused of superficiality. This work makes no claim to be didactic, al-
though experienced readers may find some didactic value in it.

On the other hand, a great deal of information. amounting to more than 600
equations. is presented in one place, in a single set of conventions, from a single
point of view. and explicitly stating what analytically each item means. The grow-
ing sophistication of attitude dynamics, control and determination activities may
be judged from a comparison of this survey and the review by Mayer {10], which
appeared in 1960.

Readers should take note that while this material has been presented largely
from the standpoint of spacecraft attitude, the material applies equally well to
aircraft, seacraft, landcraft, and missiles. For this reason the word vehicle has
been used instead of spacecraft wherever possible.

Vector Spaces

Physical vectors, the basic quantities in the study of attitude, do not have a nu-
merical value by themselves but only in conjunction with other vectors (generally
an orthonormal basis as discussed in the foliowing section). However, the most
basic properties of vectors, i.e., the algebraic properties which define a vector
space, do not depend on the specific numerical values of the vectors.
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A vector space {11, 12] consists of a set of vectors, ¥ = {u,v,w,...}, a set of
scalars, ¥ = {a,b,c, ...}, and two operations: vector addition and muitiplication
of a vector by a scalar. The set of scalars is a field, i.e., a set whose elements have
the same aigebraic properties as the real (or compiex) numbers. In reai-world
applications the field is almost always the field of real numbers, though in rare
cases the complex numbers are also used, as in the exploration of the abstract
properties of quaternions.

The set of vectors forms a group under vector addition satisfying necessarily:

(a) if u and v are vectors, thensoisu + v,
(b) vector addition is associative and commutative:

u+v)+w=u+ (v+uw), 9]
and
u+tv=v+u, (2)
(c) there exists a vector 0 such that
v+0=v ) 3

for every vector v, and
(d) for every vector v there exists a negative vector (—v) such that

v+ (-v)=0. 4)
By convention we write
u+(-v)=u-v )

and speak of vector subtraction.
Multiplication of a vector by a scalar is defined and satisfies

a(bv) = (ab)v, 6)
(a + by =av + bv, @)
a(u + v) =au + av, 8)
as well as
lvo=v. )
It follows that
Ov=0, and (—a)v = —(av). (10)

If further the vector space is endowed with a scalar product (- ) whose values
are in ¥ and which satisfies

u‘v=v-u, (11)
v-v=0, (12)

v-v=0 ifandonlyif v=20, (13)
u - (av) = a(u ‘- v), (14)

u+tv) - w=u-w+v-w, (15)
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Y is said to be an inner-product space. (Note that if ¥ were the field of compiex
numbers, the right member of equation (11) would be replaced by its complex
conjugate.) The length of a vector, written |v], is defined as

ol = (v - )" (16)

In three-dimensional space a non-trivial vector product (X), with values in ¥
can be constructed which satisfies

uxXxv=-uvxXu, (17)
(au) X v = a(u X v), (18)
u+v)yXw=uXw+vXw. (19)

There is no commonly accepted name for a vector space with both a scalar and a
vector product, and the concept seems to be useful only in three dimensions.”
These relations define all the abstract properties of vectors without ever saying
what a vector is. Henceforth, our presentation will be specialized to a three-
dimensional space.

Right-Handed Orthonormal Bases
Any vector v in three-dimensional space can be written in the form
v=ai+ bj+ck, (20)

where i, j, and k are the basis vectors, which are necessarily linearly independent.
The numbers a, b and ¢ are the coordinates (or components) of v with respect to
this basis. As long as the basis vectors are linearly independent, the coordinates
are well defined.

If the basis vectors satisfy

i-j=i-k=j-k=0, (21
the basis is said to be orthogonal. 1f, in addition, it is true that
ii=j-j=k- k=1, (22)
the basis is said to be orthonormal, and the basis vectors are then usually indi-
cated by a caret, i, j, 2. An orthonormal basis which satisfies
ixj=k, jxk=i, kxi=7, (23)

is further said to be right-handed or dextral. (The basis is said to be left-handed
if the sign of the right-member of each of the above equations is reversed.) It is
the scalar product which permits the components of a vector to be computed. For
an orthonormai basis,

a=i-v, b=jv, c=k-v. (24)

The notation for the scalar and vector products can be made more compact if
instead of Z, j, k, we write &,, €., ;. Then the orthonormality conditions can be

’In higher-dimensional vector spaces the equivalent construction is accomplished as an exterior
product. For more information on exterior aigebras see the book by Flanders [13].
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written as
e e =384, i,j=1,2,3, 25)
where & is the Kronecker symbol, defined as
1, ifi=j,
8 = {0, if i j (26)
The condition for right-handedness becomes likewise
é; (& X &) = e, 27

where ¢, is the Levi-Civita svmbol, which is defined by
€123 = €13 = €33 = 1, €133 = €313 = €331 = —1, (28)

and all other elements vanish. Thus, € is antisvmmetric with respect to the in-
terchange of anv two indices.

€ijk = TEjix = TEj; = €. (29)
Equation (29) and the value of €5 are sufficient to compietely specify €. The

Levi-Civita symbol satisfies

3 13
> €ix€mnk = Oimbjn — 8indim, and > €ik€mpx = 28im . (30)
k=1

J=i k=i
Equation (27) is equivalent to
é Xe= E €@y . (31)

As a result of these equations, if
u= u|é1 + uzéz + u;é;, and v = Vlé| + Vzég + v, (32)

are any two vectors. then

3 3 3
u-v= E 2 sijuivj = E UrVi (33)
ym) je) k=]
and
3 ) 3
uxv=2372 €ild;Vi€s . (34)
iml joml kel
Eguation (34) can be rewritten in more familiar form in terms of the determinant
é, e, &
uXv=ju u, ul. (35)
Vi V2 Vs

The Matrix Representation of Vectors

The vectors u and v designate abstract quantities such as the position or the
velocity of the vehicle. Likewise &, €,, and &5 designate the abstract directions of
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the three coordinate axes. By abstract we mean that we can attach a meaning to
these quantities without having to attach a numerical (concrete) value to them.
These abstract vectors satisfy all the above relations satisfied by elements of a vec-
tor space and the scalar and vector product relations. The numerical values as-
sociated with abstract vectors, are the coordinates, which are arranged here as
column vectors, i.e., as 3 X 1 matrices. These are not unique but depend on the
choice of the coordinate system, i.e., the basis.

Consider again v = v,&, + v,€, + vi@;, and denote by E the basis {€,, €, &:}.
The components of v with respect to £ are called the representation of v with
respect to E, which is written as a column matrix (or column vector)

Vi

ve=|v |, (36)

where for an orthonormal basis
v,=6e;'V. (37)

To avoid ambiguity, it is generally necessary to indicate the basis as well as to
identify the abstract vector whose components are being considered. When there
is no confusion, the basis designation will be dropped. Uniess otherwise noted, in
order to distinguish between abstract vectors and vector representations, the for-
mer are indicated by bold italic letters and the latter by boid unslanted sans-serif
letters. Often to save space equation (36) is written in terms of a row matrix or
row vector as

ve=[v; v. w], or vi=[y v, w], (38)

where the superscript T denotes the matrix transpose.
Of particular interest is the representation of a basis with respect to itself,

1 0 0
(é])z =10})=1, (éz)t =l1}=2, (ég)t =10|=3. (39)
0 0 1

Equations (39) are true for every basis. Thus, the numerical values, i, 5, and 3
are independent of the basis (as are the values of 6; and €;:). Their physical sig-
nificance, however, depends on the specific identification of the basis E.

The scalar and vector products of abstract vectors can now be extended to rep-
resentations. If u and v are the respective representations of the abstract vectors
u and v with respect to a common basis, then the scalar product for representa-
tions is defined to have the same value as the scalar product for the correspond-
ing abstract vectors. Thus, from equation (33),

u'vséukvk. (40)

k=1

Likewise, the vector product of two representations with respect to a common
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basis is defined to be equal to the representation with respect to that basis of
the vector product of the two corresponding abstract vectors. Thus, from equa-
tion (34),

Uavs — Usvy

uXve=|uw —uvs|. (41)
uv, — Uy

The scalar product of two vector representations can likewise be written in terms
of matrix operations as

u-v=u’v. (42)

Likewise, for the vector product we define the antisymmetric matrix {[u}} (read
“u antisvmmetric”) according to

3
([ul}; = kzl Eijkld (43)
or equivalentiy,
0 Uj —Us
Ul={-u O u, |. (44)
Uz —uy 0

It follows then from equation (41) that
uxv=—[uv. (45)
Some authors define instead

[ux] = —{[u]], ' (46)

in order that the sign in equation (45) be reversed. In practice, however, one cal-
culates vector products infrequently, and the matrix defined by equation (44)
turns out to be more convenient overall. It could be said with no little justifica-
tion that the theoretical study of attitude is the study of the matrix [[u]].

While abstract vectors have the advantage of being “coordinate-free” and ex-
pressions in terms of abstract vectors are generally physically meaningful, they
have the disadvantage of being subject to two different multiplication operations.
For vector representations, on the other hand, these two products become simpie
matrix muitiplication, which can be manipulated much more readily. The matrix
definitions of the scalar and vector products as given by equations (42) and (45)
can be extended to the computation of scalar and vector products of arbitrary
3 X 1 matrices, which need not correspond to vector representations with respect
to a common basis. This turns out to be very useful in practice. Also, vector data
consists of coordinates, not abstract quantities. Hence, it is always representations
of a vector which figure in real-world applications.
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The matrix [[u]] satisfies

([ul]” = =[(u]], (47)

([u]lv = —[[V]]u, (48)

((uju=o0, (49)

(W} ([v]] = —(u - v)I + v, (50)

(]’ = —ul?[[u]}, (51)

[l [v]] = [V [[u]] = vu” — uv™ = —[[u X v]], (52)
uv’[[w]] + [w]lvu” = —[[u X (v X W)]]. (53)

These resuits follow directly from the definition of [[u]} or from equation (50)
which is easily verified by direct substitution. Equation (50) is equivalent to the
Grassman identity:

ax(bxe)y=(a-c)b - (a:b)c. (549)
We note also the Jacobi identity:
axXx(bxe)+bXx(exa)+exXx(@axb)=0. (55)

If M is an arbitrary square matrix, it is also true that

M[u]] + [[uIM7 + [[MTu]] = (tr M) [[u]], (56)
and
M[u]IM " = [[adj(M "ul}, (57)
where adj(M) denotes the adjoint matrix [14] of M. From this we may derive
M[[u]]M™ = (det M) [[(MT)"u]], (58)

where M is any nonsingular matrix. It follows from equation (52) for any 3 X
3 matrix that

[[(Mu) x (MV)]] = M[[u X V]]M". (59
If we write M in terms of its columns
M=[u u uy, (60)
then clearly
det M = u, ' (u; X u;). (61)
From equations (60) and (61) it follows for the special case
M;=u; v, (62)
that
det M = [u; - (U2 X Uy)][vy * (V2 X v3)]. 63) -
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The representation of vectors by column matrices requires only the existence of
a basis. However, in order to compute the components of the vectors with respect
to that basis, the vector space must possess a scalar product, whose definition
must precede that of components. The ultimate definition of the scalar product
then is not equation (33) or (40), which are only the representation of a scalar
product, but some geometrical construction, such as the construction of a per-
pendicular projection. Once a scalar product exists, however, it is possible to de-
fine the vector product in terms of representations. Note aiso that there is no
fundamental connection between right-handedness and the physical orientation
of the axes. Equation (23) makes no statement about right-handed screws, which
are simply a convention, only about the aigebraic nature of the operation. The
special status accorded right-handed coordinate frames is therefore artificial to
some extent. What is important, however, is that physical rotations not transform
right-handed coordinate systems into left-handed coordinate systems.

Orthogonal Transformations

Let £ = {é,,é.,€;} and £’ = {é},é3,é}} denote two orthonormal bases. Then
an arbitrary abstract vector x can be represented either as

X = X1, + X263 + X363, oOras x = xi{éj + x3é} + xjé;. (64)

Thus, the representation vectors are

X X{
Xmx,={x,|, and X =X =[x |. (65)
X3 x;

Now, € and £’ can each be expanded in terms of the other basis as

é! = ilc,.,é,., and & = Zch,f,-é; , (66)
2 j-
with
Ci=é& +é, and Cj =& é. (67)
Thus,
Ci = Cj, (68)
or as matrices
C'=C (69)

The coefficients C; and C are the cosines of the angles between the two sets of
axes, or direction cosines. The matrix C, therefore, is called the direction-cosine
matrix.

From equation (67) the columns of C;; are seen to be the representations of the
é,,i = 1,2,3, with respect to the basis £’ while the rows of C;; are the representa-
tions of the &/,i = 1,2, 3, with respect to the basis £. Thus, in terms of columns,

C=[@): @) @:)] =[] ©2): (85):]" (70)



From
xi=¢&-x, and x/ =¢&/ x, (M)
if follows that
3 3
x! =2 Cyx;, and x = D Cix/, (72)
=1 J=1
or, in matrix notation,
X =Cx, and x=CT¥x, (73)

where the indicated operation is matrix muitiplication. Substituting these two
equations into one another, it follows immediately from equations (73) that

C’C=CCT=1 or CT=C"". (74)

This follows also from equation (70). Such a matrix is said to be orthogonal.
From equation (74)

1 = det(CC’) = (det C) (det C”) = (det C)?, (75)
from which it follows that
det C = *1. (76)

When det C = 1, the orthogonal matrix is said to be proper or special. Other-
wise, it is improper. Proper orthogonal matrices represent rotations, while an im-
proper orthogonal matrix may be factored as the product of a proper orthogonai
matrix and an inversion. An inversion is simply the matrix —/, and changes the
sign of every component.

If £, £, and E£" are three orthonormal bases connected by two orthogonal
transformations described by the orthogonal matrices C' and C”

',

then the combined orthogonal transformation is described by the orthogonai ma-
trix C according to

' —E,
and
C=CrC. an
For any orthogonal matrix
©)- (Y =x"y, (78)
and
(Cx) X (Cy) = (det C)C(x X y). (79)

Equation (79) is equivalent to
C[u]IC™ = (det C){[Cu]]. (80
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Equation (80) is a special case of equation (58). Thus, every orthogonal transfor-
mation preserves scalar products, but only proper orthogonal transformations
preserve vector products. Rotations are proper orthogonal transformations. Note
that (det C) C in equations (79) and (80) is a proper orthogonal matrix even if C
is improper orthogonal.

In terms of components, equation (80) is equivalent to

3 3 3
2 2 Eimn Cmi Caj = (det ) 2 €k Cut . (81)
me) g} k=)
Applying equation (30) leads to [15-17]
(tr O)C — C* = (det C)[(tr O)] - CT], (82)
and
(tr C)? — tr(C*) = 2(det C) (tr C). (83)

It is important to distinguish the algebraic properties of vectors (what, in fact,
makes vectors vectors) from the tensorial properties of vectors, i.e., how they
transform under changes of bases, which is not so much a property of vectors as
of their representations.

The Rotation Matrix and Related Quantities

A rotation about the z-axis. or rather the é;-axis, through an angle 4 is repre-
sented pictorially in Fig. 1. Mathematically, this rotation is described by

é] = cos 68é, + sin 0é;, (84a)
é; = —sin 6é, + cos 0é,, (84b)
é; =é;, (84c)
P-4 A
€2 €
3
¢
0 A
- €

FIG. 1. Rotation about the é3-Axis.
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é! = 2 R;(3,0)é. (85)
j=1
Thus,
cos® siné O
R@B3,6)=| -sind cos@ 0], (86)
0 0 1
and
x = R@3,0)x. (87)

In this context the direction-cosine matrix R is calied the rotation matrix. Neces-
sarily, R is proper orthogonai. Note that the rotation matrix is a function of the
representation of the axis of rotation and not of the abstract vector. (The value of
the matrix changes if the indices of the coordinate axes are aitered. even if the
physical rotation axis remains the same.) Since the representation of the axis of
rotation is necessarily the same with respect to the primed and unprimed bases,
no confusion can result as to which value to choose. For rotations about the other
two axes

1 0 0 cosd 0 -siné
R(1,0)=]0 <cos@ siné |, R(2,0) = 0 1 0 , (88)
0 -sinf cosé sin@ 0 cosé

obtained by cyclic permutation of equation (84)
A generai expression for the rotation matrix for an arbitrary axis of rotation
may be obtained by noting that

R(3,01 = cos 1 — sin92 = cos 1 — sin 63 x 1, (89a)
R(3,6)2 = cos 62 + sin 61 =cos 2 — sin 93 x 2, (89b)
R(3,6)3 = 3. (89¢)

Hence, by anaiogy, if fi is an arbitrary unit column vector, and v, is the projec-
tion of the column vector v, onto the plane perpendicular to A (this is also a
three-dimensional column vector), then

R(R,0)v; = cos v, —sinf@f X v, (90a)
=cos §v, + sin G[[A]]v. . (90b)

Also, vy, the projection of v along fi, is not changed by the rotation, since by anal-
ogy with equation (89c) '

R(A,0)A = A. (91)
Thus, in general,
R(A,0)v = vy + cos Ov, + sin @[[A]]v,, (92)
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From equation (54) it follows that

v=@{\- -v)A —AX A XV (93)
= AR’V — [[A])*v (94)
=v+v., (95)

which gives the general decomposition of v into components which are parallel
and perpendicular to fi. Thus, for an arbitrary column vector v and arbitrary unit
column vector A,

R(A,8)v = ARV — cos 0 [[A]]*v + sin 6 [[A]]v, (96)

where equation (51) has been used to remove the term in [[A}}’. Since v is an ar-
bitrary column vector, it foliows that

R(f,6) = cos 81 + (1 — cos )AR” + sin 8 [[A]], 97)
or in terms of individual elements,

c+nil—=c) mny(l —c)+ nys nmny(l =c) = nys
RMA,0) = |nimi(1 —¢c) —nss  c+ni(l—=c) nany(l—c)+ nys
nin(l —c)+ns mny(l—c)—ms ¢+ ni(l -0

’

(98)
where ¢ = cos 0 and s = sin 6. Equivalently,
R(A,68) = I + sin 6[[A]] + (1 — cos 8) [[A])~ (99)

Any of equations (96) through (99) is generaily known as Euler’s formula [18].°
The derivation of Euler’s formula has been subject to constant repetition in the
literature. Beatty [19] cites more than a dozen such works which appeared be-
tween 1962 and 1976.

If we write the abstract axis of rotation vector as

3 3
A=2né =2nél, (100)
iw=] =]
then equation (85) can be written equivalently as
e/ =cosfe;, + (1 ~cos@)(h-é)h + sinbh X é (101a)
=@, +sinfn Xé + (1 —cos@)it X (”h Xé&). (101b)

These should be compared with equations (97) and (99). Note in particular the
signs multiplying sin 6. Equation (100) is the abstract counterpart of equation (91).
The angle and axis of rotation are recoverable from R according to

cos 0 = %(tr R -1), (102)

’In its original presentation by Euler the rotation matrix was written as a function of three angles:
the two spherical angies describing the axis of rotation and the angie of rotation.
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and for sin @ # 0,

1 Ry — Ra
il = — Rsyi — Ry |, (103a)
2sin @
Ry — Ry
or in component form,
1 3 3
n = > 2 &R (103b)

- 2 sin 0,‘-1 k=1
For @ = 0, il is undefined but not physicalily significant. For 8 = m, R has the form
R(A,m) = —1 + 207, (104)

so that any column of / + R(f, 7) is proportionai to A. The sign of A is not sig-
nificant in this case.

An important result is Euler’s theorem [20,21], which states effectively that
every proper orthogonal matrix is a rotation matrix, i.e., it can be described by
Euler’s formula. Thus, the expressions rotation matrix and proper orthogonal
matrix may be used interchangeably.

The rotation matrix, because it is orthogonal, satisfies

RR=1. (105)

Since R'R is symmetric, equation (105) implies only six constraints. Thus, the
fact that rotations can have at most three degrees of freedom and can be de-
scribed by at most three independent parameters foilows directly from the orthog-
onality property.

As a consequence of equations (80) and (99) the rotation matrix satisfies

R'R(A,60)RT = R(A\, ), (106)
where R’ is an arbitrary rotation matrix and
A = RA. (107)

Like the rotation matrix R, the axis and angie of rotation (i, 8), also constitute
a representation of the rotation. Note, however, that the description of a rotation
in terms of the axis and angle of rotation is not unique, since (i, 8) and (—fi, —6)
(or, equivalently (—f, 2 — 6)) correspond to the same rotation. An important
related representation is the rotation vector 0, defined by

0= 0}, (108)

Of particular importance is the case when the angie of rotation, 6, is infinitesi-
maily smalli. In that case one usually writes the angie of rotation as A8, and notes
that sin A9 = A#@, and cos A8 = 1. Euler’s formula becomes then

R =1+ [[A6]] + O(]A8}Y, (109)
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where
AG = AGR, (110)

is the infinitesimal rotation vector, and O(x°) denotes a quantity which becomes
proportional to x° as x tends to zero. The components of A@ are termed the in-
finitesimal angles. In contradistinction to finite rotations, infinitesimal rotations
commute when quadratic and higher-order terms can be ignored.

From

R(A,6;)R(H,6,) = R(A, 6, + 6,), (111)

it follows by induction and from equation (109) that

R(8,6) = lim [R@.G/N)]' = lim [1 + %uﬂn]” = exp{{[0])}, (112)

where exp{-} denotes the matrix exponential function. Explicit evaluation of the
matrix exponential function via the Taylor series leads to equation (97) or (99).

The composition rule for the axis and angle of rotation or, equivalently, for the
rotation vector are derived most easily from the composition rule for the Euler-
Rodrigues symmetric parameters, which are treated in a later section of this
survey. If two successive rotations are represented in terms of the axis and angle
of rotation,

R(f3,65) = R(f;,0:)R(A1,6,), (113)
then the relevant composition rules are
cos(03/2) = cos(8,/2) cos(62/2) — sin(6,/2) sin(8,/2)f, - A,, (114)
sin(6,/2) cos(8,/2) sin(8,/2) cos(8,/2)
= - ﬁl + - ﬂz
sin(8,/2) sin(6/2)
_ sin(6,/2) sin(()2/2)ﬁ
sin(63/2) 2

Equation (115) foliows most simply from the quaternion composition rule dis-
cussed below. Note again that the ambiguity in the sign of 6, is unimportant
physically. Likewise, if two successive rotations are represented in terms of the
rotation vector,

fi

X fi; . (115)

R(6;) = R(6,)R(8,), (116)

then the relevant composition rules follow trivially from those of the axis and
angle of rotation.

Note that the two rotation vectors which appear in the right member of equa-
tion (115) are not referred to the same coordinate system. The first rotation vec-
tor 0, is referred to the initial coordinate system (as is 8;), but @, is referred to
the intermediate coordinate system reached after the first rotation. If it is desired
to combine two rotation vectors which are both referred to the initial coordinate
system, then the second rotation vector must be transformed to the intermediate



frame, and the composition rule becomes instead

R((8:):) = R((6:)<)R((81)) = R(R((8:)z) (8:):)R((6:)z)
= R((8))R((62):) , (117)

where equations (106) and (107) have been used. Similar arguments apply to the
representation in terms of the axis and angle of rotation. Equation (117) is known
as Rodrigues’ Transposition Theorem. The net result when both rotation vectors
or both axes of rotations are referred to the initial basis is to change the sign of
the term in A, X A, in equation (115).

The rotation matrices form a group. The group operation is matrix mulitiplica-
tion and the group identity element of the group (the identity roration matrix) is
the 3 X 3 identity matrix, and the inverse of the rotation matrix is given by the
transpose, which, since it is proper orthogonal, is necessarily a rotation matrix
also. This group is usually denoted by SO(3), the group of special orthogonal ma-
trices in 3 dimensions, and is a subgroup of the group O(3), the group of orthog-
onal matrices in three dimensions.

The Euler Angles

Consider a rotation matrix defined in terms of three consecutive rotations
about body-referenced axes of the form

R(ﬁh ﬁé’ ﬁ’j’; oly 02’03) = R(ﬁ’j’, 03)R(ﬁ£102)R(ﬁhol) ’ (118)
where
A, A2 and A7 = 1, 3 or 3. (119)

To understand the significance of this parameterization and the primes, consider
the result of the three consecutive rotations, which can be written in terms of the
bases as

R(AS,93)

R(4.67) R(fy.0,)

E' )

E” E"
The representation of i, must be with respect to the basis £ (or E’, since from
equation (91) A, has the same representation with respect to both anterior and

posterior bases), and similarly for A} and A3. Thus,
iy = (f))e, i = (A1), A5 = (A))-. (120)
If the successive rotations are considered as physical rotations of the body
(read “vehicle”), then at each stage £, E’, £, and E” are the body-fixed axes of
the vehicle. Frequently, E is the basis of an inertial coordinate system but may be
any coordinate system not fixed in the body. In general, we shall refer to  as the
primary reference system. Hence, 6, 6; and 0, are the body-referenced Euler
angles [22}, which are more commonly written as ¢, 3, and .*

“The acronautics community and a segment of the space community prefer the reverse order for
naming the three Euler angies. General books on Mechanics ican mostly toward the convention
of this survey. Many authors prefer to simply number the angiles.
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(The use of the variant form of the Greek theta. 3, avoids the possibility of
confusion with the (total) angie of rotation 8.) The column vectors i, i} and
are called the body-fixed Euler axes. Since these are restricted by convention to
the values 1, 2 and 3, the body-fixed Euler axes (or simply Euler axes) corre-
spond to the coordinate axes of the body-fixed bases. In order that the represen-
tation in terms of the Euler angles have the required three degees of freedom, it
is necessary that

fi, % A; and A} % Nj. (121)

Given this restriction, there are twelve possible sets of Euler angles: six symmet-
ric sets, whose labels are written as

1-2-1 1-3~-1

2-3-2 2-1-2

3-1-3 ' 3-2-3
and six asymmetric sets, designated by

1-2-3 1-3-2

2-3-1 2-1-3

3-1-2 3-2-1

In each label the first (leftmost) integer denotes the first rotation axis. For ex-
ample, the 1-3-2 set of Euler angles correspond to i, = 1, A} = 3, and i} = 2.
The asymmetric sets of Euler elements have been called variously Cardan angles,
Tait angles, or Bryant angles.

The 3-1-3 Euler angles have been particularly popular for the description of
spinning tops and atomic nuclei, and it is the set of Euler angles most frequently
encountered in the quantum theory of angular momentum [23]. The rotation of
coordinate axes in terms of the 3—1-3 Euler angles is depicted in Fig. 2. The six
members of each of the two types of Euler-angle sets share many common ana-

k k'

FIG. 2. The 3-1-3 Euler Angles.
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lytical properties. Within each type there are minor differences between the
members of the two columns, which are grouped according to whether or not the
label of the second axis is the cyclic successor of the label of the first axis.

For the 3-1-3 Euler angles the rotation matrix is given by

Rayu(e, 9, ¢)

cosy sinyg O 1 0 0 cose sSineg 0
=|—-sing¢ cosyp 0{|]0 cos? sind —sin¢g cose O (122a)
0 0 1J{0 —-sind cosd 0 0 1
cycp — sycdse cse + spcdcp  sysd
= | —sYcp — cPcdse —sPse + cPcdce st |, (122b)
sUsp ~sdce cd

where sy has been written in place of sin ¢, et cetera. Every rotation matrix can
be written in terms of 3-1-3 Euler angles (or any other set). In contrast to
equations (122), the parameterization of the rotation matrix in terms of 3-1-2
Euler angies is given by

Ryn(e, 3, ¢)
cosyyg 0 —sing ||l 0 0 cose sing 0
= 0 1 0 0 cosd sind —sing cos¢ O (123a)
singg 0 cosy 0 -—sind cosd 0 0 1
cpcp — sPsIse cfsp + sPsdcp  —scd
= —cd¥se cdco s . (123b)

scp + cPsOse  sPse — cysdep  cpcd

Note that it is sin & which appears in the simplest element. The equation for the
rotation matrix as a function of each of the twelve sets of body-referenced Euler
angles is presented in several texts (2,5, 6]. The reader should take note of quali-
tative differences in the formuias for the symmetric and asymmetirc sets of
Euler angies. In actual applications, when computing the rotation matrix from the
Euler angies, it is usually better to compute equation (122) or equation (123) di-
rectly from “elemental” rotations within the program. Graphical methods also
exist [24-26] for computing the rotation matrix and angular velocity as a function
of the Euler angles.

For the symmetric sets of Euler angles the axis and angie of rotation are given by

cosg = cos % cos £ ; !Il, (124a)
and
) 1 sin d{(cos ¢ + cos ¢)
n= T<in sin 3(sin ¢ — sin¢) |. (124b)

(1 + cos ?)sin(e + ¢)

No similar simple expression exists for the asymmetric sets of Euler angles.
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The Euler angles are not unique. In fact,
Rys(p, %, ¢) = Ras(p + m, =% ¢ — m). (125)

To maintain a unique set of Euler angles (at least for 4 > 0 or ), one usually
demands

0=¢<2m 0< 9 =< m, 0=<¢ <2m. (126)

The ambiguity stated in equation (125) holds for all six symmetric sets of Euler
angles. For the six asymmetric sets the equivalent relation is

Rglz((P, J, l[l) = Rglz((p + T -9y - 7r) . (127)

In order to maintain a unique set of Euler angles in this case (at least for
¥ # *m/2), one usually demands

O=ep<2m -m2<d9=m2, 0=y <2r. (128)

The Euler angles from a given rotation matrix are determined from inspection of
the elements. Taking as an example the 3-1-3 set of Euler angles we note from
equation (122b)

Ri3 = cos 9, (129a)
R; = sin 4 sin ¢, Ry3 = sin 9 sin ¢, (129bc)
R3; = —sin 9 cos ¢. Ry = sin 9 cos ¢. (129de)
Thus,
9 = arccos(R33), (130)
and for sin ¢ > 0,
¢ = arctan,(R3, —Ry), ¢ = arctany(R,3, Ry), (131)

where arctan,(y, x) is a function which gives the angle whose tangent is y/x and
which is in the correct quadrant. In FORTRAN this function has the name
“ATAN2.”

Forsin ¢ = 0, the rotation matrix for the 3—1-3 set of Euler angies has the form

cos(p £ ¢) sin(p £ ¢) 0
Rys;=| Fsinfpx¢) =*cos(pxy) 0 |, (132)
0 0 *1

so that ¢ and ¢ are not uniquely determined, aithough depending on whether
9 =0or m ¢ + ¢ or ¢ — ¢, respectively, is determined. One usually chooses
arbitrarily as a solution

Y =0, @ = arctan,(Riz, Ru). (133)

A slightly different approach to determining the Euler angles from the direction-

cosine matrix has been described by Nicholson, Markley, and Seidewitz {27).
Kolve [28] has presented general expressions for the direction-cosine matrix as

a function of arbitrary symmetric and asymmetric sequences of Euler angles. If
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i, j, i are the indices of the axes of the three successive rotations characterizing a
symmetric sequence of Euler angles, and & is the remaining coordinate axis, then
the direction-cosine matrix may be written in the form
i j k
i cd stsp —a;scp
Rii(p,B,¢) = j| sysd ccp — sycOse a;(cPsp + sycdcp)
k| ajeps® —a(syce + cpcdsp) —sysp + cficdcp
(134)

where

3 +1, for j the cyclic successor of i,
a; = > €x = § —1, for i the cyclic successor of j, (135)
- 0, otherwise.

Likewise, if i, j, and k are the indices of the three successive axes characterizing
an asymmetric sequence of Euler angles, then the direction-cosine matrix may
be written

i j k
i cycd aysyce + cysdse  sYse — ajcysdcp
Rix(p, 0, ¢) = j| —aysycd ccp — azsysOsp  ajcPse + sysdce
k| aysd —a;cOsp cdcp
(136)

Equations (122b) and (123b) are special cases of these equations. Note that for a
3-1-2 sequence of Euler angles the rows and columns of equation (136) are in
the order 3-1-2, as indicated by the indices shown in the border of the matrices,
and similarly for equation (134).

To extract the Euler angles from the direction-cosine matrix the corresponding
generai formuias for the symmetric sequence of Euler angies are

¥ = arccos(R;;), (137)
which for sin 9 # 0 leads to
¢ = arctany( Ry, —a;Ru), ¥ = arctan,(R;, a; Rui), (138)
or, for sin 9 = 0, we choose arbitrarily
¢ = arctany(a; R, Ry), ¢ = 0. (139)
For the asymmetric sequence of Euler angles we have similarly
& = arcsin(a;Ru), (140)
which for cos 9 # 0 leads to
@ = arctan,(—a; Ry, Ri), ¢ = arctany(—ayR;, Ri), (141)
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or, for cos ¥ = 0, we choose arbitrarily
¢ = arctany(a; Ry, R;), ¢ =0, (142)

In equations (137) and (140), as previously, the inverse trigonometric functions
assume their principal values to insure uniqueness.

Note that these equations for determining the Euler angles do not necessarily
yield values which satisfy equations (126) or (128), nor is the prescription given by
equations (126) and (128) necessarily the best, since the imposition of the con-
straint can lead to discontinuities in the Euler angles even if the rotation matrix
varies continuously. We shall see in a later discussion that discontinuities in the
Euler angles are unavoidable, even with the relaxation of these prescriptions.

It is possible to combine the symmetric Euler angles for two successive rota-
tions relatively simply. If (@1, 91, ¥1) and (2, 32, ¥2) are two sets of symmetric
Euler angles with respect to the same sequence of body axes, say 3-1-3, then the
composition of these two symmetric sets of Euler angles is defined by

Ri3(@3, Oy, ¥3) = Rais(@2, G2, Y2)Rans(1, 0, ¥1) (143)
This is equivalent to {29]
Rais(¢s — 901,02, ¥3 — ¥2) = Ria(, ¢ + ¢2,3,), (144)
from which we may derive {29, 30]
¥, = arccos(cos % cos ¥; — sin 3, sin 9; cos(¢; + ¢2)), (145a)
@3 = ¢ + arctan,(sin 9, sin J; sin(y; + ¢2), cos ¥, — cos 33 cos 3,),
(145b)
Y3 = ¢, + arctan,(sin &, sin 3, sin(y, + @), cos 3, — cos 35 cos 3,).
(145¢)

These equations hold for all six symmetric sets of Euler angles and can be derived
also from the spherical triangle of Fig. 3. Apparently, no equally simple expres-
sion exists for the asymmetric sets of Euler angles.

V-2

FIG. 3. Geometric Composition of the 3-1-3 Euler Angles.



The Euler angles are singular for certain attitudes. The rotation matrix as
a function of the 3-1-3 Euler angles when these are infinitesimally small is
given by

1 Ao + Ay O
R3i3(Ae, &%, AY) = | (8¢ + AY) 1 Ad |. (146)
0 —-Ad 1

From equation (146) it is obviously impossible to represent an infinitesimal rota-
tion about the y-axis in terms of infinitesimal 3-1-3 Euler angles. However, for
the identity rotation, R = [, it is true that

R33(0,0,0) = /. (147)

It follows that if initially the three Euler angles all vanish, and some infinitesimal
rotation is performed on the system about the y-axis, the 3—1-3 Euler angles must
change instantaneously from (0, 0, 0) to some finite value. A similar phenomenon
occurs when 4 = . (In gyroscopes, this phenomenon is called gimbal-lock, and
it manifests itself as a seizing of the gimbals, because these, not being massless,
cannot move by a finite amount in an infinitesimal time.) Since a very smalil
change in the attitude can lead to a large change in the 3-1-3 Euler angles, these
are not accurately determined when 1 is close to either 0 or 2#. This phenomenon
is true for all six symmetric sets of Euler angles.
Note, however, that

1 Ae —Ay
Ru(de,A0,4y) = | —4¢ 1 ad |, (148)
Ay —-A8 1

which is well behaved for infinitesimal 3-1-2 Euler angles. However, this repre-
sentation has similar singuiarity problems when ¥ = *7/2. Thus, to be able to
describe all attitudes accurately in terms of Euler angles, at least two sets must be
employed. Note that equation (148) shows that the components of the infinitesi-
mal rotation vector in equation (109) can be interpreted as infinitesimal 3-1-2
(or any other asymmetrical set of) Euier angles.

In addition, the rotation matrix can be expressed also in terms of space-
referenced Euler angles. Thus, we can write

R¥™*(fi,, Az, P3; 8,,6,,05) = R((HP**)c, 85) R((GF*)z ,62) R((FF**);, 6,) ,
(149)

where the axis column vectors in equation (149) are now the representations of
inertial or “space”-fixed coordinate axes (i.e., the coordinate axes of E, when
these are inertial axes) but still with respect to the current body-axes.’ These,
in general, do not have the values 1, 2, or 3 (except for AP**, since the initial

*Here we see illustrated a frequent inconsistency in notation. In equations (106) and (118), the
prime distinguishes the abstract vector, while in equation (73) the prime indicates the basis of
representation. This ambiguity in notation can be avoided only by indicating both the abstract
vector and the basis of representation.
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body and inertial reference axes are the same). However, it is possible to show by
application of equations (106) and (107) that equation (149) is equivalent to

R™<(f,, Az, A3; 61,02, 63) = RAP™)s, ;) R((AF)z, 62)R((AF**),, 63) ,
(150)

where the representations of the space axes are now with respect to the space axes
and hence have the values 1, 2, or 3. This result foliows directly from equa-
tion (117). (This shows also that from the point of view of parameterization,
there is no advantage in using space-referenced Euler angles instead of the body-
referenced variety.)

The most obvious advantage of the Euler angles is that they have the minimum
dimension. However, the large computational burden imposed by their use and
the problem of the singularity make them only infrequently the best choice in
real-world applications.

Of particuiar interest is a new representation offered very recentlv by Mark-
ley [31], which represents the attitude in terms of inertial and body represen-
tations of a given abstract vector and an angle parameter. In certain special
cases, this representation reduces effectively to the Euler angles. A related seven-
dimensional representation has been applied to dynamical studies by Broucke [32].

The Axis-Azimuth Representation

Similar to the Euler angles is the axis-azimuth representation (33, 34], which
has been used chiefly in applications dealing with spinning spacecraft. In this
representation two of the angles give the elevation and right-ascension of the spin
axis, usually taken to be the z-axis (or k-axis) of the spacecraft. The xy-plane
of the spacecraft is then the spacecraft equatorial plane. Thus, with respect to
inertial axes, {I J, K}

fz i cos & cos a
Ki gk = lf . .I ={cosésina |. (15D
kR K sin &

The remaining angle, ¢, the azmiuthal angle or simply the azimuth, is the angle
about the spacecraft z-axis to the spacecraft x-axis (denoted here by i, the y-axis
is j) measured from the projection of the inertial X-axis (typically the vernai
equinox, denoted here by i ) on the spacecraft equatorial plane. Thus, if Iy is
the projection of the vernal equinox onto the spacecraft equatorial plane, then

A

In|cosp=Iy-i=1I-1, (152a)
Inising = (Ivxi) k=—-Iy-j=-1j. (152b)
In terms of the eiements of the rotation matrix,
a = arctan,(Rj;, Ry), (153a)
& = arcsin(R3), (153b)

¢ = arctan,(— Rz, Ry). (153¢c)



The ranges of the axis-azimuth variables are
0= a<2n -m/2 =<8 =72, 0=¢ <2r. (154)

The choice of different axes for defining the three angles («, 8, ) leads to differ-
ent possibilities for the axis-azimuth representation, as it did for the symmetric
sets of Euler angles.

The axis-azimuth representation is similar but not identical to the Euler-angle
representation. For instance, if (¢, 3, ¢) is a 1-2-3 set of Euler angles, then

@ = arctan,(—cos & sin a, sin §), (155a)
4 = arcsin(cos 8 cos a), (155b)
y=d. (155¢)
Similarly, if (¢, J, ¢) is a 3-1-3 set of Euler angles, then
e=a+ 72, (156a)
9 =m/2-5, (156b)
¢ = ¢ — arctan,(sin & cos a, —sin a). (156¢)

The Euler-Rodrigues Symmetric Parameters and the Quaternion

Euler’s formula, equation (97), can be rewritten as

R(m,ma) = (ni = [0 + 29n" + 2n.[n]], (157)
or,
R(m,7m4)
ni—ni—-mni+ni 2(mmz + Mams) 2(mms — mem)
=1 2(mm—mm3) -ni+ni—-ni+nd 2(mms + nem) ,
2(msm + nam2) 2(m3mz — Nemi) i —Mi+mi+m
(158)
where
™
n=1{mn|=sin6/2), 7= cos(6/2). (159)
m

The quantities 71, 12, 13, and 74, originally written {£, 7, {, x}, are known as the
Euler-Rodrigues symmetric parameters, more commonly, Euler symmertric
parameters [35, 36], or quaternion of rotation [37]. These are usually arranged in a
four-dimensional column matrix, %, given by

n= [17‘] =[m m m n. (160)

The column matrix of Euler-Rodrigues symmetric parameters satisfies a simple
normalization constraint
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7H =g’ +ai=1. (161)

The Euler-Rodrigues symmetric parameters can be extracted from the rotation
matrix. Noting

- tr R=R,; + Rp + Ry,

=4ni - 1. (162)
Hence,
m=:%\/1+zm. (163)

If n4 # 0, then the remaining components can be calculated as

1 1 1
= — (R — R3), = —(Ra1 — Rp), = ——(R:+ — Rn).
™ 41"( 23 32) m 41"( 31 13) L E] 41"( 12 n)
(164)

Note that the sign of 7 is not determined by equations (163) and (164). However,
since R is a quadratic function of %, the sign of % is not physically significant.
This non-uniqueness of the Euler-Rodrigues symmetric parameters is related to
the non-uniqueness of the axis/angie representation.

If n. is close to zero, equations (163) and (164) will not be very accurate due to
loss of numerical significance in the computation of the square root. To get
around this problem, note from the unit normalization of the quaternion, equa-
tion (161), that the diagonal elements of equation (158) can be written as

Riu=1-29}-2n}, (165a)
Rp=1- 29} - 29}, (165b)
Ry =1-2n} - 29}, (165¢)

which can be solved for any of the other components and the off-diagonal ele-
ments of R used to find the remaining components of %. The resuits are

1 1
n = I—Z' V1 + Ry = Rz — Ry, N2 = W(Rn + Ra), (166ab)
1

1 1
S c— + R e— —
3 yy (Ris + Ry), ™ an, (R — Ry), (166¢d)

1 1
N2 = :—2‘ Vi - Ry + Rz — Ry, m= ""—4 (Rz| + Rlz), (167ab)
Ul

1 1
= — + = — —_
m an (Rs + R3), 7 an (Rs1 — Rp), (167cd)

1 1
N = I—'\/l - Ry — Rz + Rs, m= (RSI + R|3)' (1683b)
2 4m,

1 1
M= 4—m(R32 + Ryu), yz 41,3(R12 Ry). (168cd)
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Greatest numerical accuracy is obtained for the Euler-Rodrigues symmetric
parameters if equations (163) and (164), equations (166), equations (167), or
equations (168) are selected for evaluation according to which set has the largest
argument in the square root. The four sets of equations above for computing the
quaternion from the direction-cosine matrix have a simple geometric interpre-
tation [38].

Unlike the case of the Euler angles, where, depending on the attitude, two dif-
ferent sets of angles were needed in order to achieve an accurate representation of
the rotation. the four sets of equations above all yield the same set of Euler-
Rodrigues symmetric parameters (within a sign). Since the sum of the squares of
the Euler-Rodrigues symmetric parameters is unity, at least one of these parame-
ters must have a value of at least 1/2. Thus, one of the above sets of equations will
always yield a suitable solution. Note that this set of equations can be identified
before any square roots are caiculated.

The best method for extracting the Euler-Rodrigues symmetric parameters
from the rotation matrix was the subject of considerable interest in the recent
past [39—45]. The above procedure, was revealed at the end of this controversy to
be the best.

Unlike the Euler angles, which cannot be combined easily for successive rota-
tions, the Euler-Rodrigues symmetric parameters have a very simple composition
rule, which can be obtained by the following steps: the composition of Euler-
Rodrigues symmetric parameters, which is denoted by

=797, (169)
is defined here so that it is also true that
R®@") = R@)R(®) . (170)

The steps for extracting the Euler-Rodrigues symmetric parameters are shown
diagrammatically in Fig. 4. First the rotation matrices corresponding to the two
sets of Euler-Rodrigues symmetric parameters, 7) and 7', are computed. then the
two rotation matrices are combined by matrix muitiplication. and finaily the de-
sired set of Euler-Rodrigues symmetric parameters is extracted from the resulting
rotation matrix according to equations (163) and (164), or from equations (166),
or from equations (167), or from equations (168).

Carrying out analytically the operations indicated in Fig. 4, the resulting ex-
pression for the composition of Euler-Rodrigues symmetric parameters is

—r o = 0 +mum—nXn
'@n == . 171
"N [ nime— -7 ] (171)

matrix muitiplication

R(®@"), R(M) R(@")
Eq. (157 T l Egs. (163) and (164)
- 3 - -
n,M - n"®n
FIG. 4. Composition of the Euler-Rodrigues Symmetric Parameters.
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The ambiguity in the sign in equation (171) is the result of the indifference of
equation (157) or (158) to the sign of 7. Traditionally, one chooses the positive
sign in equation (171), so that the multiplication rule for the Euler-Rodrigues
symmetric parameters can be written as

7@ n={Hhn= @, (172)
where
1 1
M4 m —N2 T Ne —M Mm "M
— i/ k] N4 m M — 3 Nse —T M
@ = ,  {ulr= . (173)
M —" Ns M3 /b1 m N+ M3
T T2 T M4 T T2 T T4

or, in terms of smaller submatrices,

([l 7|

(ML = nedaxs + [_ 0 —[[1’7” n

, {Thr = nadaxs + [
-7 0|

(174)
Note that the two 4 X 4 matrices defined in equation (173) are each orthogonal.

The Euler-Rodrigues symmetric parameters have several advantages over the
rotation matrix as an attitude representation. First, there are fewer elements
(4 instead of 9), so that less storage is required. Secondly, there are fewer con-
straints (1 instead of 6). Thirdly, the composition ruie is simpier (16 muitiplica-
tions instead of 27). Further reduction in the number of multiplications is possible
using the Strasser-Winograd algorithm (46,47]. Lastly, the constraint is very
simple to enforce,

7 — @), (175)

while the “orthogonalization” of a 3 X 3 matrix is much more difficult [48-55]. It
is well known that the orthogonalization of a 3 X 3 matrix can be related to the
problem of optimal attitude estimation [49, 56].

The column vector of Euler-Rodrigues symmetric parameters forms a group
under the muitiplication rule of equations (172) and (173) with unique identity
element

1=[0 0 0 1}, (176)
and inverse
7t = ["’]. am
N4

Note that aithough —1 aiso corresponds to the identity rotation, it is not the iden-
tity element of the group of column vectors of Euler-Rodrigues symmetric pa-
rameters. This last statement would not be true, however, had we chosen to define
the muitiplication rule for Euler-Rodrigues symmetric parameters with the nega-
tive sign in equation (171). In that case —1 rather than +1 would have appeared
in the fourth component of 1.




Note that
7= {71 = {7al, (178)

a fact that has been used by some authors [3] to simplify the evaluation of the
Euler-Rodrigues symmetric parameters as a function of the different sets of
Euler angles.

Equation (157) can be written equivalently as

Fhtihe = G el = [{f ‘1’] : am)
where R is the upper-left 3 X 3 partition of the right member of equation (179).
The column vector of Euler-Rodrigues symmetric parameters is a speciai case
of a more general object, the quaternion, defined to be any arbitrary four-compo-
nent vector (i.e., with arbitrary norm) which satisfies the multiplication rule of
equations (172) and (173). Thus. every column vector of Euler-Rodrigues symmet-
ric parameters is a quaternion (the quaternion of rotation), but the inverse is not
true. (The name quaternion, however, is generally used inaccurately to mean the
vector of Euler-Rodrigues symmetric parameters.) While the Euler-Rodrigues
symmetric parameters form a group, the quaternion g forms a skew field (i.e., a
field with non-commutative muitiplication, aiso called a division ring [12]) with
inverse given by

g"'= (6’«7)"[;:'], (180)

for
g#0=[0 0 0 Of. (181)

Given this more general definition, a quaternion corresponding to an arbitrary
three-dimensional column vector v can be defined according to

Ve [Z] (182)

and equation (179) is then equivalent to
! R
'v"s[‘(')]=[0v]=ﬁ®7®1‘;". (183)

Thus, the transformation of vectors under rotations becomes an example of
quaternion algebra. i
The conjugate quaternion g is defined as

= -q
q [q‘]- (184)

For the Euler-Rodrigues symmetric parameters the conjugate quaternion is iden-
tical to the quaternion inverse. If p and g are two quaternions, then their conju-



A Survey of Attitude Representsations 487

gates satisfy

P'a=p'q and p®7 =39 p, (185)
Note also
{@.=1{g}, and {3} = {gh, (186)
and
3'§=3"g=cos . (187)

In the above discussion the Euler-Rodrigues symmetric parameters for succes-
sive rotations have been written in the same order as the rotation matrices. This
has not always been the convention followed (see, for exampie, [57] and works
listed in the historical section). It was once the convention to write the compo-
sition of matrices also in the opposite order to today’s usage. The convention
changed when interest focused more on the aigebra of operators. The quaternion
had by this time fallen into disuse and did not succumb to the change in the con-
vention. This historical oddity has persisted in many works up to the present. The
need to abandon the older convention becomes apparent when equation (183) is
considered for two successive rotations. If 7, 7' and %" satisfy equation (170),
then under the old convention the associative law for the transformation of vectors
takes the form

@on)oVo@o#) ' =Ho@movVon)o @) ! (188)

Here “0” denotes quaternion multiplication with the operands written in the
“historical” order, ) © %' = 7' ® 7. With quaternion multiplication written in
the “natural” order, this shifting of position does not take place. Many authors
sidestep this confusion by avoiding aitogether the writing of an equation like
equation (169) (or its equivalent with “©”). The choice of the “natural” order has
other consequences, which will become evident in the section on Cayley-Klein
parameters.

There is no universal agreement on the choice of indices for the Euler-Rodrigues
symmetric parameters. Most authors prefer the vectorial indices to be 1 through 3
and the scalar index to be 4. Junkins and Turner [3] choose the scalar index to be
zero, which causes difficuities for some programming languages. At least one
work [58] has made the choice that the scalar index is 1 and the vectorial indices
are 2, 3, and 4, which makes the cyclic symmetry of quaternion expressions some-
what difficuit to recognize.

The Euler-Rodrigues symmetric parameters can be parameterized also in
terms of the Euler angles. From equations (159) and (160)

7(1,8) = [sin(@/2) 0 0 cos(®/2), (189a)
7(2,0) = [0 sin(®/2) 0 cos(@/2), (189b)
73,60 =[0 0 sin(@/2) cos(®/2)]". (189¢)
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In terms of the 3-1-3 set of Euler angles, for example,

sdc(p — o)
sds(o — )
cds(e + ¢)|’
coc(e + ¢)

(@, 9, 0) = 73, ) ® 7(1, 9) ® 73, ¢) = (190a)

where ¢¢ = cos(¢/2), 8¢ = sin(d/2), et cetera. In terms of the 3-1-2 set

cosicy — spcdsy
cocisy + spsdcy
cosdsy + spcdcy|’
cocdcy — Spsisy

(@ 9, 4) = 52, ¥) ® 7(1,9) ® 7(3,9) =

(190b)

showing again the qualitativelv different character of the symmetric and asym-
metric sets of Euler angles. The equations for the Euler-Rodrigues symmetric
parameters as functions of the tweive sets of Euler angles is given in (3].

Kolve [28] has presented general expressions also for the Euler-Rodrigues sym-
metric parameters in terms of the Euler angles. For a symmetric sequence of
Euler angles this is

i| cUs(e + ¢)

a0, = 1| S0 L (191)
4| cdc(o + @)
and the asymmetric sequence of Euler angles
i|cyecdse + a;SYsice
(o, 8,u) = 1| SHSICO — cisveDse (192

kisyctdco + a;cysdse|’
4{cycdce — a,sYsdsy
Again, the indices in the border label the rows. These lead to simple expressions

for the extraction of the Euler angles from the Euler-Rodrigues symmetric pa-
rameters. These are for the symmetric set

& = arccos(n? — ;7 — ni + 1d), (193)

and for sin & # 0 ‘
¢ = arctany(m;, m4) + arctana(a; my, m;), (194a)
¢ = arctan;(n;, ns) — arctanz(a;; n, m;) - (194b)

Otherwise, if sin 9 =0,

(195)

=0 a {arctanz(n,-,m), ifd =0,

arctan(a; ni,m;), if 3 = .
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For the asymmetric set of Euler angles these become
¢ = arcsin(2(nam; + a; M), (196)
and for cos & # 0
¢ = arctanay(m; + N, Ms + aiim;) + arctana(n: — MW, M — a; ), (197a)
¢ = arctany(m; + M, M + ayy) — arctany(m — M, e — ain;).  (197b)
Otherwise, if cos & = 0,

arctan,(n; + a; M, Ms + a;m;), for & = +a/2,

(/! = 0, = {arctanz(n,- - Mk, Ms — A 1]j), for ¥ = _17/2 (198)

The vectorial components of the Euler-Rodrigues parameters by themselves
can be used as a representation with the convention that n. = 0 [59]. The com-
position rule then is,

7' =(V1-in'y +VIi-ini’n— % X n)sgn(n,v), (199)

where

sgn(n, n) =sign(V(1 - 91 - [n1?) = n-9). (199b)

The sign factor insures that the ignored fourth component is always non-negative.
This representation is always finite but discontinuous as a function of the rotation
matrix. It becomes inaccurate when the angie of rotation is close to . Note that
as 7, passes through 0, the sign of 1 may change abruptly. Thus, 7 as a three-
vector is not a convenient representation for interpolation or filtering. For con-
tinuous attitude motion, the full 4 X 1 column vector of Euler-Rodrigues
parameters can always be made continuous.

Different arrangements of terms than as in equation (157) are also used. A dif-
ferent choice may reduce the number of computations or improve numericai
significance [60]. In this respect, note also equations (255a) and (387) below.

The Rodrigues Parameters

Closely related to the Euler-Rodrigues symmetric parameters is another atti-
tude representation, the Rodrigues vector [35] or Gibbs vector {61, 62], which is
defined as

P = n/ns = tan(§/2)r. +(200)

The three components of p, (p1, p2, p3), are the Rodrigues parameters. Thus,

=il e

and



R(p) = (1 = 6P + 2007 + 2l (202)
= (1 + (e U - {ipl)™ (203)

1 R — Rj
p=——————" R3| —Rn . (204)

1l +trR Ri— Ra

Equation (203) is generally known as Cayley’s formula [63].
The composition rule for the Rodrigues vector, which follows directly from
that for the Euler-Rodrigues symmetric parameters, is simply

,_P+p—pXp
p= - .
l1-p-p

(205)

The Rodrigues vector has the minimum dimension but the disadvantage that
|p| = = as 8 — . Thus, rotations through = cannot be represented (except for-
mally as ).

The Cayley-Klein Parameters

Also related to the quaternion is the Cayley-Klein matrix, Q, a complex
2 X 2 matrix defined according to [64, 65]

a b g« tigs g2 + iq,
= X . R 206
Q l:c d] = [—qz +iqh qs — lq;] (206a)

where i = V' —1, and the sans serif character has been used to distinguish V —1
from the index i. When the quaternion has unit norm, i.e., when it is equivalent
to the vector of Euler-Rodrigues symmetric parameters, we write

H= [" B] - [ medms Mt f"']. (206b)
y & =Mt M= b

This Cayley-Klein matrix, H (the symbol is upper-case eta, distinguishable in
mathematical formulae from Roman H by the lack of italics), is unitary. When the
Cayley-Klein matrix is unitary, the elements, a, 8, vy, 8, are called the Cayley-
Klein parameters.® Thus, if the Hermitian conjugate of Q (and, therefore, also
of H) is defined as

Qt = QOT, (207)
where the asterisk denotes complex conjugation, then
H'H=Ix; or H™'=H', (208)

where the implied operation is matrix multiplication. For the general Cayley-

*Our notation for the Cayley-Klein matrix is not standard. Other authors consider only the unitary

Cayley-Klein martrix and denote this matrix by Q (and similarly do not distinguish in notation
between § and 7). The reader offended by our dogged consistency can readily restore the more
standard though less precise notation.
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Klein matrix

Q7' = (det Q)'Q". (209)
The determinant of the Cayley-Klein matrix is given by
det Q = ad - bc = §'g, (210)

from which it follows that H is unimodular, i.e., det H = 1. Matrices which are
both unitary and unimodular are said to be special unitary.

The unitary Cayley-Klein matrices are isomorphic to the Euler-Rodrigues sym-
metric parameters. Thus,

H@)H(®) = H® ® 7), (211)

and similarly for the isomorphism between g and Q. Like the Euler-Rodrigues
symmetric parameters, the unitary Cayley-Klein matrices form a group, denoted
by SU(2), the group of special unitary matrices in 2 dimensions.” The group iden-
tity element is I;x;, and the inverse is given by the Hermitian conjugate. Like the
Euler-Rodrigues symmetric parameters, there are two sets of the Cayley-Klein
parameters corresponding to every rotation, which differ from one another only
by an overall sign.

Noting the similarities in the elements of the Cayley-Klein matrix, this has the

general form
Q= [_‘;_ :] and H= [_‘;_ f] 212)

aa® + BB* =1. (213)

with

In terms of the Pauli matrices [23], given by

N A

the Cayley-Klein matrix can be written as
Q=iq0y +iq:0;, + 19303 + qulzx2 = qul2x2 + iq - ©. (215)
For the unitary Cayley-Klein matrix, we have in particular

H = Nl + in - o= cos(§/2)]ax; + i sin(@/2) (A - o) (216)
- cxp{i%(ﬁ - a’)} - exp{%(o- o')}. (217)

Noting equation (209) we can write the relationship between the unitary Cayley-

"Note that each of the representations of the rotations forms a group, because the physical rota-
tions form a group. However, the group operation (composition rule) may not be easy to write
down, as is the case, for example, for the Euler angles.
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Klein matrix and the Rodrigues-Gibbs vector in analogy with equation (203) as
H=Up:+ip - ) —ip: o) (218)

‘For rotations about individual coordinate axes the unitary Cayley-Klein matrices
have the form

A cos(6/2) isin(6/2)
H(1,8) =
(1.6) (i sin(6/2) cos(8/2) ) (2193)
~ [ cos(§/2) sin(6/2)
H2.9) <—sin(0/2) cos(6/2)/’ (219b)
a elo,’l 0
H@3,0) = < 0 e""“)' (219¢)
For the 3-1-3 set of Euler angles the Caylev-Klein parameters are given by
any = " cos(9/2), By =ie"“ " sin(¥/2), (220)
and for the 3-1-2 set of Euler angles,
ay = e'®*(cos ¢ cos & + isin ¢ sin I), (221a)
B3z = e "®*(sin ¢ cos & + i cos ¥ sin 9). (221b)

From the algebra of the Pauli matrices,
3

010m = SimIzx2 + 1 2 Eima 0, (222)
n=|
or equivalently,
w-)(v-o)=Uu -V +iuXy):o. (223)
The rotation matrix 1s related to the unitary Cayley-Klein matrices according to
1
Ru = Y tr(akHa,H') . (224)

which is equivalent to equation (157). Evaluating equation (224) leads to

1 ) 2 2 I 2 bl

S =B -y +8) —o@+ B -y =) —(aB - D)

i 2 2 2 2 1 2 2 2 2 H ’
E(G_B + y- — 8% ?(a + B+ vy + 8°) —i(aB + vd)

—~(ay — B8 i(ay + BO) (ad + By)
(225)

and can be inverted to yield
3

1 3
e | P L

Defining now the 3 X 3 matrices,
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i=io, j=ilo;, Kk=i0o; and 1= I, (227)
the Cayley-Kliein matrix can be written more familiarly as
0 =qii + q2j + q:k + qul, (228)
and these new basis *“vectors” satisfy
i‘=j =K'= -1, (229)
ji=-ij=k, kj=-jk=i  ik=—ki=]j. (230)

Apart from an overali sign in the rightmost members of equations (230), this is
Hamilton's quaternion algebra. The origin of the sign difference is simply the
convention of this work that the quaternion muitiplication is written in the “natu-
ral” order. Equations (229) and (230) hoid equally well, obviously, if we identify i,
j» k, and 1 with the appropriate quaternions ({1,0,0,0],...,[0,0,0,1]") and iden-
tity muitiplication with quaternion muitiplication. It should be noted that equa-
tions (157), (170) and (228) cannot be made consistent with ij = k. Thus, for
instance, Battin [66], who preserves Hamiitons convention for the value of ij but
also writes equations (170) and (228) in the same form as this work, must define
the rotation matrix as a different function of the Euler-Rodrigues symmetric pa-
rameters. Likewise, Junkins and Turner [3], who aiso prefer the naturai order of
quaternion multiplication, note that in order to satisfy Hamilton’s convention for
the vector muitipiication they must aiter the sign of the quaternion components.

In analogy with the antisymmetric 3 X 3 matrices [{u]], the complex 2 X 2 ma-
trices can be defined as

[[u]lax: = wio) + u20, + Uz =u - o. (231)
It follows that
Hifu]lax:H' = [[Ru]}xx, (232)
which corresponds in three dimensions to
Rifulls:R™ = [[Rulsx, (233)

a special case of equation (80).
If the representation of a vector v is written in terms of the basis “vectors” of
equation (227) as

V= i + vaj + wk = i( o= 'VZ), (234)

v, + ivs -v;
then equation (232) becomes
V'= HVH' = HVH", (235)

which is just equation (183) in terms of Cayley-Klein matrices. In this algebra of
Cayley-Klein matrices, scalars are represented as quantities of the form

S=sl, (236)
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where s is a real number if the underlying vector space is real.® The vector product
in this algebra can now be defined in terms of the muitiplication rules of equa-
tions (229) and (230) as

UxVE—-%[UV—VU]. (237)
Likewise, it is evident that the scalar product can be defined as
1
U-VE-—Z-[UV+VU], (238)

which has the value (u - v)1. Apart from the different sign in the quaternion mul-
tiplication rule, equations (228) through (230) and equations (234) through (238)
constitute the quaternionization of vector spaces by Hamilton and others. al-
though Hamilton never accepted equation (235).° In this representation scalars
and vectors exist on an almost equal footing and can be added together to form
new objects, which are the quaternions.

The algebra of the 3 X 3 and 2 X 2 representations of the rotations can be
made more similar by defining antisymmetric 3 X 3 matrices according to

[gk]ij = Eijk» i’j'k = 1y273’ (239)
or,
0 0 0 0 0 -1
&£=10 0 1{={[{], &={0 0 0 |=([2]], (240ab)
0 -1 0 1 0 O
0 10
&E=1-1 0 0} =[3]], (240¢)
0 0O
so that
[[ullsxs = w1é) + U262 + usés =u- §, (241)

which more closely parallels equation (231). If one defines further

Te,  SPmca, k=123, (242)

SEXS

then S and S#*? both satisfy [23]

*Most presentations of quaternion algebra, beginning with Hamilton, never consider the basis
“vectors” as 2 X 2 matrices but simply write § = i + g:j + g3k + g4 and impose the multipli-
cation ruie (generally with Hamilton’s sign convention) upon the orthonormal basis.

*See the historicai note beiow.
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trS, =0, (243)
Si =S5, (244)
SSm — SuS/ = ikile,,..,,sk ) (245)
and finally
R(R,6) = expfi 6A - $}, (246)
H(®R, 6) = expfi 66 - $¥%, (247)
where in each case
S,
S={S,1}, (248)
Ss3

a “column vector” of which every component is a matrix. The scalar product in
these equations shouid be understood in the same sense as in equation (231) or
equation (241). The relationships for the Cayley-Klein parameters can be devel-
oped in the opposite order, beginning with the unitary transformations of com-
plex two-dimensional vectors [67].

The Modified Rodrigues Parameters

Related to the Rodrigues vector is the modified Rodrigues vector {68, 69},
which exists in two forms, the positive form, defined in terms of the Euler-
Rodrigues symmetric parameters as

n

p= T+ 7 (249)
and the negative form, defined by
]
m = . 250
1 - T" ( )

These two formulas represent three-dimensional stereographic projections of the
sphere of Euler-Rodrigues symmetric parameters, the positive form having the
point at infinity correspond to —1 and the negative form vector to 1. The compo-
nents of p or m we can regard as the modified Rodrigues parameters.

If 7 is given by equations (159) and (160) then

p(h, 0) = tan(@/4)R . (251)
For the parameter values (fi, 8 + 27), which must represent the same rotation,
p(R, 0 + 27) = —cot(d/4)n. (252)

Thus,

1
p and ——
P
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represent the same rotation and correspond to 7 and —#. The Euler-Rodrigues
symmetric parameters and the Rodrigues vector can be computed from the modi-
fied Rodrigues vector as

— 1 2p _2p
= 1+|pl2[1—lp|2] T (23)

where the positive sign is consistent with both equations (251) and equa-
tions (159) and (160).
For the negative form with the same conventions,

m(f, 6) = cot(§/4)f, m(A,6 + 2m) = —tan(§/4)f. (254)

Thus, the values of the negative form of the modified Rodrigues vectors are the
negatives of the values of the positive form. The remainder of this survey, there-
fore, will treat only the positive form., since it is the more similar in its conven-
tions to the Rodrigues vector. It is clearly advantageous also for the zero vector to
be an acceptable value.

The Rodrigues vector maps rotations bijectively onto all of space with rotations
through 7 corresponding to points at infinity. Thus, to every rotation whose angle
of rotation is less than  there corresponds a single Rodrigues vector, and to each
finite Rodrigues vectors there corresponds a unique rotation. However, the repre-
sentation is singular and discontinuous at § = 7. The modified Rodrigues vector,
on the other hand, maps rotations bijectively onto either the closed unit sphere
[pl = 1, or the closed exterior of the unit sphere |p| = 1. Thus, if the angle of
rotation is bounded, i.e., for librational motion, and the maximum angle of rota-
tion is less than 2+, the modified Rodrigues vector provides a continuous single-
valued and analytic representation of rotations. (For this to be true for the
Rodrigues vector, the maximum angle of rotation must be no greater than =) If
the angle of rotation is not bounded, however, as in the case of a spinning space-
craft or a very agile aircraft, the singularity or the discontinuity of the modified
Rodrigues vector is unavoidable.

In terms of the modified Rodrigues vector the rotation matrix can be written as

R =1 + 2niinl] + 2([nl) (255a)
PR ik o 17 QT (255b)
a+ptP T \ B
and the Rodrigues vector by
2p
- ) 256

The composition rule for the modified Rodrigues vector is somewhat compli-
cated and reads

. e + (1 — PP — 2§ X p
1+ |p)pl* = 2p - p
which is considerably more burdensome than that for the Rodrigues vector.

; (257)
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Attitude Kinematics

The kinematic relations, i.c., the relations between the temporal derivative of
the attitude representation and the angular velocity, are presented here in the
approximate order in which the representations were introduced in the preced-
ing text.

The Rotation Matrix

If the attitude is changing with time, then R(¢z + At), the rotation matrix repre-
senting the attitude at time ¢ + At¢, will differ from R(z), the rotation matrix at
time 1. Thus,

R@t + A1) = @@t + AL, 1)R(1), (258)

where ®(+ + At,t) must also be a rotation matrix. and for At sufficiently small
the rotation ®(¢) must also be small. Hence, from equation (109)

Pt + A1) = 1 + [[AEO)]] + O(IAEM), (259)

where A£(1) is some small three-vector which tends to zero as At tends to zero, and

S(RG + A0 = R() = TBEOIRE) + O(AED).  (260)

Taking the limit as A¢ tends to zero leads to

£R() = [OIRO), 261)

where w(t), the body-referenced angular velocity, or simply angular velocity, is de-
fined as
Y- {0))

w(t) = H_rr.xo Tar (262)
The anguiar velocity appearing in equation (261) is necessarily referred to body
axes, because (¢ + Ar,¢) is the small rotation which carries representations of
vectors with respect to the body axes at time ¢ into the representations of these
same vectors with respect to the body axes at time ¢t + At. (For emphasis, the
body-referenced angular velocity will sometimes be denoted in this work by ,.)
Thus, £(¢) is the rotation vector of that small rotation, referred to body axes
(at either time ¢ or time ¢t + Af).

The space-referenced angular velocity can also be defined. This is given by

o™ = R'w, (263)

1.e., the representation of the angular velocity with respect to the space (or iner-
tial) axes. In order that equations involving the space-referenced angular velocity
not become overly cumbersome, this quantity will be denoted sometimes by w,.
Then,

ZR®) = RO (264
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The space-referenced angular velocity receives considerably less use than the
body-referenced angular velocity, due largely to the fact that for a rigid body the
space-referenced inertia tensor is time-varying, while the body-referenced inertia
tensor is constant in time. When no subscript or superscript indicates which
angular-velocity is intended, the body-referenced vector will always be meant.

Likewise, the angular velocity can be reconstructed from the rate of change of
the rotation matrix. From equations (261) and (264)

[l@]] = RR",  [[&™*]] = R'R, (265)
or in component form
1332 . 13 3,2 .
wi==2 > zeiikleRkh WP =3 > X &R R, (266)
2 =1 k=l fel 2 j=1 ke (=]

where the raised dot indicates the temporal derivative. Note aiso

|w®e|? = j® = o = % tr(RR"). (267)
If R = R'R’ is a composite rotation and
1R’ = [{[«'}]R’, and 1R” = [[@"]]R", (268)
dt dt
then the angular velocities combine according to the rule
o=+ Rao'. (269)

The Axis and Angle of Rotation

The kinematic relations for the axis and angle of rotation are {2, 70, 71]

Eo=n-w, (270)
d, 1., R R
En = E[n X @ — cot(§/2)n X (A X w)]. . (271

In terms of the rates of change of the angle and the axis of rotation, the angular
velocity becomes

w=0f +sin@f — (1 —cos O)A X A. (272)

Expressed in terms of the space-referenced angular velocity these become

d .
Z0=h (273)
d ~ 1 [ A A
= —?[n X @, + cot(@/2)n X (A X w,)]. (274)
and
w, = 0f + sin 6A + (1 — cos B) A X f. (275)
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The Rotation Vector

Similarly, the kinematic relations for the rotation vector are [2,71-77]

d 1 1
Eo =w+ ?0 X @+ ?(1 - (6/2) cot(6/2))0 X (0 X w), (276)
de 1-coso de 6 — sin 0 do
= — — —_— X —— D ——— -— 1.
w=_ ( o7 >0 i ( PR >0x (OX dt) (277)
Expressed in terms of the space-referenced angular velocity these become
1 1
%0 =w - 30 X @ + ?(1 — (6/2) cot(6/2))0 X (0 X w,), (278)
de 1 —cos @ de 6 — sin @ de
w,—z+<T>OXI+<T—>OX(OXI>. (279)
The Euler Angles

The kinematic relationships for the Euler angles are more complicated. The
angular velocity in terms of the Euler angle rates and the corresponding instanta-
neous intermediate axes of rotation is given by

0 = p(f)e- + 3(A3)e + P(A])e-. (280)

The representation of the Euler axis vectors is now with respect to £™ for all
three vectors, since we desire a representation of w with respect to £”. However,
the representation of the Euler axes is simple only with respect to the inter-
mediate bases (except for (fi5).~, which is equal to (A7).). Thus, the simple rep-
resentations of the Euler axes with respect to the intermediate bases must be
transformed to representations with respect to €”. Carrying out the necessary
transformations equation (280) becomes

® = § () + IR ¥) (A3 + GR((AD)e, WR((A3)e, ) (1),  (281)

or, simply remembering the basis conventions for the body-referenced Euler axes,

w = ¢} + IR(AS, )R + ¢R(AS, Y)R(A}, A, . (282)
Equation (282) is, in fact, a consequence of equation (269). It follows that
ol = @ + §* + §* + 264 (RTTR(PS, D)), (283)
and
¢ ¢
w = R, 0)S@1, A%,85 9)| & | = M@, 90| 5[, (284)
Y U/
with S(f;, A}, A]; &) represented in terms of column vectors as
S(A,, 3,05 9) = [R(A35, )R, | A | AT). (285)
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n! An

For the case of a 3-1-3 set of Euler angles, the matrix, S(fi;, i3, A3; 9), is given
by [78]

0 1 0
Sas(fy, A5,A5;9) =] sind 0 0}, (286)
cosd 0 1
whence,
sindsinyg cosy O
Myi(e, 9, ¢) = sindcosy —siny 0], (287)
cos ¢ 0 1
and
W, ¢sinﬂsin¢+1§cos¢
w, | =|@sindcosy — Isiny |, (288)
wa pcosd + ¢
which is the familiar relation. For the case of a 3-1-2 set of Euler angles,
W) —¢cosﬂsin¢+1§cos¢
w, | = ésind + ¢ . (289)
w3 ¢cosﬁcos¢+1§sindf

The equations for the matrix M(¢p, 3, ¢) for the twelve sets of (body-referenced)
Euler angles is given in (3, 6].
Relative to the space axes the angular velocity vector can be written

WP = w, = ¢f, + FIRT(Ay, @)A: + YRRy, 9)RT(R, B)RT,  (290)

where the column vectors representing the rotation axes are also chosen from the
set {1, 2, 3}), but correspond, obviously, to different abstract vectors than the col-
umn vectors in equation (282). The superscript space does not indicate the space-
referenced Euler angles in the present context.' Thus,

@ @
@™ = M (o, 9, ¢) | & | = RT(A1, 0)S™(A,, 73,05 3)| |, (291)
¥ v
with
S*P=(fiy, i3, AY; 9) = ffi, | A5 | RT(A1, 9AT]. (292)
For the case of a 3—1-3 set of Euler angles, equation (290) or (291) becomes
o | | dcose + gsindsing
w> = | & sin ¢ — ¢ sin 9 cos el (293)
w3 gcosd + ¢

"For the 3-1-3 space-referenced Euler angles, the expressions for the body-referenced and space-
referenced angular velocities would be identical to equations (288) and (293) but with the inter-
change of ¢ and ¢, and ¢ and ¢, respectively, and with the axes of rotation being understood to
be represented with respect to space axes.
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To obtain the Euler angle rates from the angular velocity, equation (284) can
be inverted to give

¢
3| =M, % ¢, (294)
"
and from equations (284) and (285)
Mg, 3, ¢) = $7'(n,, 03, A% 9)RT(AS, ¥), (295)
with
. [hs x A5)7
$7U(h, 05 AL D) = [AY X R(A}, 9)A, )7
R(nz,?ny) - (n3 X nj A A X
(R(n3,3)ny) - ( 1) [(RGA3, B)A,) X A3
(296)

The right member of equation (296) can be reduced to

i
cos 3(f, - (fiz X A7) — sin §(A, - /F)

[A; x A%}
X | [cos 9(fA3 + fA,) — sin 3(A, X A3) X A3]7 297
fcos 31, X A} — sin 9A,)
For the symmetric sequences of Euler angles this formula reduces further to
1 (A, X A3)7
$7Y(ny,h3,0T; 8) = — sin 9 A3 ,  (298a)

sin 9| . ,. - R
sin A7 — cos ¥(n, X A3)7

and for the asymmetric sequence the formuia reduces to
ot

cos 9 n3’ . (298b)
cos 4757 — sin 9(A; X Q)7

1
-lAvA’vA,;a
ST, 0, 055 9) cos U

For the case of the 3—-1-3 Euler angles
1 0 1 0
Sys(9) = perurt KL LS 0o |, (299)
0 —cos & sind

and



-

sin ¢ cos ¢ 0
sindcosy —sin & sin ¢ 0 (300)
—cos ¢ siny —cos & cos ¢ sinv |

1
Al'l = —
313(‘p7 197 L’I) sin 19

Recursive implementations of these equations are also possible [79]. The equation
for the matrix M ~(¢, 9, ) for the twelve sets of (body-referenced) Euler angles
is given in (2,3, 6].

The Euler-Rodrigues Symmetric Paramerers

The relation for the Euler-Rodrigues symmetric parameters is very similar to
that for the rotation matrix. Note that

n(t + A = &7(1) ® 7(t)

= {om()hen(e), (301)
where, since 67(¢) describes a small rotation,
ﬁm=[“?n]+mmmw» (302)
It follows that
1
{60t = Luxa + EQL(A&I)) + O(|a&()?) , (303)
where
0 Vs —V2 V)
- V3 0 Vi Vs _q=
Q,(v) = — 0 vl {v}.. (304)
-V =v; =v3 0

Carrying out the same steps to calculate the time derivative of the Euler-
Rodrigues symmetric parameters as for the rotation matrix leads directly to
d_ 1 - 1 _ _ _
21" Q. (w)7 = > o®7, (305)
where @ is to be understood in the sense of equation (182). Equation (305) can
also be written as [63]

d_ 1_._
o 2 E(Mo, (306)
where
Mde —M3 m
o T mhn—ﬂﬂq
=2(F) = = , 307
)] -, m e [ - (307)
=M "M TN

is a submatrix of {f}z,
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e = [E@ (7). (308)

Mayo [80] has developed an alternate form for equations (304) and (305) which
are better suited to cases when the Euler-Rodrigues symmetric parameters repre-
sent a rotation relative to a non-inertial frame. A similar form must be used also
in the propagation of the attitude error quaternion in the Kaiman fiiter [81].

For the Euler-Rodrigues symmetric parameters, equation (305) can be inverted
readily to yield

__|e|_ 4y __,
o-[5]-gor
Likewise, équa[ion (306) leads readily to [82, 83]

w = 2E"(H)7 (310

N+ MM = MM T M
=2 —mMm + MM+ MM — MM (311)

MM~ M T NNy — MM
=2(nem — M — M X 1), (312)
w® =437, (313)

In similar fashion. the kinematic equation for the Euler-Rodrigues symmetric
parameters may be expresessed in terms of the space-referenced angular veloc-
ity. Thus, :

‘%ﬁ - 27® @ = 2 Qnw)), (314)
where now
0 —-vi va v
Qe(v) = "z f" —B‘ :] = {V}s. (315)
—vi —vy —vy; O
Writing
{mh = (Y@ (7], (316)
or

_ -m M m Ned3xy + [[n]]]
¥ = = , 317
) M M 4 l: -7 G1D
=T TN M
it follows that
d_ 1. _
I" =3 Y(Mw, . (318)
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Inverting equation (314) leads directly to

@, = [‘g’] =25 ‘Z—:’, (319)
or
w, = 2¥'(7H)7 (320
N — M2 + M3 — MM
=2| mm + N2 — MM — MmN (321)
—mm t MM+ N M
=2~ mun + X 1), (322)
Wl = 4775, (323)
Note aiso
Lam = - 2R @B = — 0@ = — VG e, (320)
d

1
= )T = =BG e (329)

Three-Vector of Euler-Rodrigues Symmetric Parameters

For the vector components of the column matrix of the Euler -Rodrigues sym-
metric parameters, the kinematic relations when |n| < 1 (if |5j = 1, the expres-
sions may not be defined) are:

d 1 —
‘Tt"l = '2—( 1 = 9L - [(9)e, (326)
w=2VI—fn + =1 - 7 X 7). (327)

V1= nf
Likewise, in terms of the space-referenced angular velocity (provided |n| < 1)
d 1
" = '2‘( V1 — 9l + [[n])w:, (328)
. n-7 .

=2(V1 — [} + —=——=7m+ 1 X 7). 329
w, ( [0l \/r"l_ﬂlzﬂ n X 7) (329)

The Rodrigues Parameters

The kinematic relation for the Rodrigues vector follows from that for the Euler-
Rodrigues symmetric parameters and is {63]

Lp=Zlw-wxp+ (@ ppl, (330)

which may be written equivalently as
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Z1lell = (I ~ [(pID ]l 7 = [l

Inverting this equation leads to [83]

2
1+ |p|
In terms of the space-referenced angular velocity these become

d 1
ZP"?[‘UI +w, X p+ (w 'p)p]v

w =2 = {[pll + pp")"'p =

and

1+ |p|

w, =2(I + [[p]] + pp")7'p =

The Cayley-Klein Parameters

2~ p X p).

b+ p X p).

(331)

(332)

(333a)

(333b)

In analogy with the Euler-Rodrigues symmetric parameters. the kinematic

equation for the unitary Cayley-Klein matrix is given by

d j j
d—t'H = -Z—I“(w)H =3 HI'(w)),
where
MNw) = [ @3 @ Iwz] =w- 0.
wy) t lw) —w3

The matrix I is Hermitian, i.e.,
rr=r.
Using equation (222)

dH dH
—-i g~ = —j —_— 1
w |tr(H0' t)’ w, |tr< to’H).

The Modified Rodrigues Parameters
For the modified Rodrigues vector

dp 1
d_': = 10 - Ip)w — 20 x p + 2w p)pl,

from which

4

dp dp dp
= —— _ 2 ot 4 [ihed 4
w =) [(1 ip| )dt 2p X ~ + 2<p = P

These may be recast as

(334)

(335)

(336)

33D

(338)

(339)



dp _ 1+ 1pl*(1 —Ilpl]
de 4 (1 + upn)“” (340)
and
4 (1 +pll\dp
N Ipl’<l - [[p]]) dt’ (341)
In terms of the space-referenced angular velocity these become
%—’«1‘M5“+2“XP+%w:mﬂ (342a)
L lel? (1 + (]
4 (1 ~ I 11) (342b)
- la-pn® d o,
“r "(1-+|pp)z[(1 o), +2p X -+ 2<p dl)p] (343a)
__ 4 [(I—Ipll\ap
1+ |p|‘(1 + [[p]]) dt (343b)

Attitude Dynamics

Related to these results is the rate of change of matrix representations in rotat-
ing coordinate systems. Let v,(¢) denote the representation of a vector with re-
spect to the space reference system, which is assumed to be inertial, and let v,(¢)
denote the representation of this same vector with respect to the reference system
fixed in the vehicle body, which is assumed to be rotating. Thus,

va(£) = A(OVi(1), (344)

where the direction-cosine matrix is denoted by 4. The possibility is allowed that
v, is not a constant column vector. Differentiating with respect to the time yields

20,0 = [@Ova0) + AD L0, (345)

the first term representing the rate of change due to the rotation of the coordinate
system, the second due to intrinsic changes in v,(t).

Similar to the definition of the abstract axis of rotation of equation (100) we
can define an abstract angular velocity vector according to

w = i wil;i ) (346)

where @ is the body-referenced angular velocity and the body-fixed basis has
been written as B = {b,,bz,b3} Then

z& =wxb, i=123. (347)

Since the representation of the body coordinate axes do not change in the body
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coordinate system,
d »
E(bi('))’ =0, i=12,3. (348)

It follows as a consequence of equation (345) that the inertial representations of
the body axes satisfy

d - R
ZB) = @ x (B), =123 (349)
Writing the inertial basis as 1 = {i,,,,i;} we have correspondingly
i 3
o= 2 (w)i;, (350a)
{m
d, 4
-, =0, i =1.2,3, (350b)
dr
26y, =0 i=1,2,3 ' 350
d'( l)l L3 g by ’ ( c)
d .
S0 = —e X (s =123, (350d)

Note the different signs in the right members of equations (349) and (350d). Note
also that the direction of w is the instantaneous axis of rotation, which is not the
same as the axis of rotation characterizing a finite rotation.

Likewise, the angular momentum of a rigid body, in the inertial frame is

L, = jr, X v,dm = |, w,, (351)
where |, is the inertia tensor (in inertial coordinates) defined as
I, = j[(r, cr) — rrelldm. (352)
If in the inertial reference frame
d
d_tL’ =N,, (353)
where N, is the torque in inertial coordinates, in body coordinates this becomes
d d
—L,=[{ws]]Ls + N5, Oor —L; + @y XLy =N,, (354)
dt dt
which is Euler’s Equation, and
N, = AN, . (355)

For a rigid body
Ly, = lw,, (356)



where 1,, the inertia tensor in the body-fixed representation, is given by
by =A1,47 = f[(r, ‘1) = r,k3)dm, (357)

and (for a rigid body) is constant in time. Thus, for a rigid body equation (354)
becomes

d
l,Ew, + wy X (lw,) = N,. (358)

Properties of Quaternion Transformations

The quaternion composition operators {7}, and {7}x aiso have interesting alge-
braic and kinematic properties {81,84). If 5 is an arbitrary quaternion. and

§"=3d4p, (359)
it follows that
§"=1{7®ghp=1{3"}Aq}p. (360)
Hence,
{7’ ®gqh = {g'}{q}e - (361)

and {g}, has the same group properties as g, with the operation being matrix
muitiplication and the identity element and inverses being given by

{1 = lixe, and {G)}' = {37} = (@797} . (362)
Similarly, v
{7’ ® g}r = {g}2{7'}», (363)
with identity element and inverses given by
{T}r = Lixe. and {gh' = {37}z = (@) (). (364)
Note that
§" ={g'}.q implies {3"}. = {q'}.{qh, (365a)
g" = {g}sq'" implies {3"}z = {3}r{q'}x, (365b)
and §'g' = 0 implies
{g'Mg = ~{g}g", and {3'}kg = —{g}iq". (365¢)
From the associativity of quaternion multiplication, it follows that
{gr{p}r = {P}r{ghe (366)

for arbitrary quaternions g and p.

For the special case of the Euler-Rodrigues symmetric parameters, {7}, and
{m}r are orthogonal as well. It is interesting to note that the set of all {§}. and the
set of all {n}r are also representations of the rotation group. In fact, they are sub-
groups of a larger group of 4 X 4 matrices which contains the Lorentz transfor-
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mations (see, for example, [1]). The group of Lorentz transformations can be
described by Cayley-Klein matrices [1, 17, 85} or quaternions provided these are
allowed to be complex {86-88]. Ebert [89] has shown that any 4 X 4 proper or-
thogonal matrix O can be written in the form

0 = {z}.{B}x, (367)

where & and B are unit 4-vectors, which are unique within a common sign. A spe-
cial case of this resuit is equation (179). This is a reflection of the fact (well-
known to theoretical physicists {90]) that the group SO(4) is homomorphic to the
group SO(3) ® SO(3).

For the Euler-Rodrigues symmetric parameters, it follows immediately from
equations (361) and (362) that these satisfy the kinematic relations

LN = 3 () FON (368)
and. recalling equation (314),

SOk = 30k 0u(w(0). (369)

Likewise, from equations (363) and (364)
L0} = 5 Ok Qa(@(0) (370)
= > Qe () B} G1)

Note also the relations

@0 G = QUREV), (1)
{n7'}12 Q2R (V) T}z = Qr(R@)V), (372b)

which are the four-dimensional counterparts of equations (232) and (233).
The matrix =(7) has interesting representational and kinematic properties.
From the definitions, equation (307) or equation (308), it follows that

ET@E®) = Ina, and EME'R) = Lixe — 77, (373)
and
E'@n=0, (374)
E@v = Qu(v)7. (375)
From equations (304), (308), and (373) it follows that
E@M VI - QLWE®) = 7v". (376)

The matrix =(3j) satisfies several kinematic relations. From the definition of
E(7) it follows trivially that
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d .. _ —r
SEG) = 3 Qa(w)E). (377)
On the other hand, it foliows from equation (179) that
I3y
H M E@R®@) = [o’s] , (378)
whence
d . _ 1 —_ —
ZE@) = > 0u@E@ - ZG@)[w] (379)
- =25 - ZE@(w])- (379b)

The three matrices, {7}., =(7) and R(%), satisfy other relationships. which
may be derived from equation (378). If 7 and & are any two column vectors of
Euler-Rodrigues svmmetric parameters, then [81]

H®eh = EMRE® EHEE) + 78, (380)
n ®&}LEE) = EMRE® T, (381)
EmmE®E . = RGO ETENE), (382)
E@mmH®ENWEE) = RGO ET). (383)

Similarly to equation (373), the matrix ¥(5), defined by equation (316) or
equation (317), satisfies

YI@GEY@) = I, and Y@YW (R) = Low — 77" (384)
Note also
Yi@mn =0, (385)
p(MV = Qr(V)7, (386)
ET@)¥) = R(). (387)
In analogy with equation (376), we have
Qe(V)¥(@) + ¥@) (V] = —FV". (388)

The matrix ¥(7) also satisfies several kinematic relations. From the definition of
¥(7) it follows triviaily that

d_. _ 1 =
= ¥E) = S (¥ (). (389)
Likewise, from equation (179) it follows that

@R ¥@R™E) = [’;’;’], (3%0)
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whence

d
EU@) = -2 Qalw)¥@) — ¥V ([w] (391a)

- 370l - Y@ [0 (3920)

In analogy to equations (380) through (383)

m®& 't =Y@REG ' QEWY(E) + 7, (392)
7 ®E}Y(E) = YHRGE ™ @ E), (393)
YHn®e 'l =RE{ ' Q¥ (E), (394)
¥(7H) {7 ® &7 '1Y(E) = RG™ ® 8). (395)

Attitude Errors

Since there are many different parameterizations of the attitude. there are
equally many different parameterizations of attitude errors. However. in the same
way that there is one particularly natural way to express the time derivative of the
attitude, namely, the body-referenced angular velocity, there is a corresponding
natural representation for attitude probabilities, the (body-referenced) attitude
error vector.

Suppose that 4* is some measurement or estimate of the attitude matrix, i.e.,
a random attitude matrix, and A is its true value. It is assumed that with very
large probability 4* is close to A. Thus, in general, 4%*47 is expected to Le a small
rotation.

In analogy to equations (258) and (259)

A" = (BA)A, (396)
with
84 = [ + {[A€]] + O(lAg?), (397

where A€ is some small three-vector, which is a measure of the attitude error. We
call A£ the attitude error vector. The random attitude matrix can be written for-
mally as

At = lddliq (398)

and A is, therefore, the rotation vector characterizing the random infinitesimal
rotation. Like the angular velocity in equation (261), the attitude error vector is
referred to the body axes.

In most practical situations one expects that

E{Ag =0, (399)

though this need not be the case if the attitude measurements are subject to sys-
tematic errors (as from uncompensated sensor biases or misalignments). The atti-
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tude covariance matrix is defined in terms of the attitude error vector as

Py = CoviA£} = E(ASAET} — E{ASIE(AET). (400)
The error in the elements of the attitude matrix is given, therefore, by
A4 = A — A = [[Ag]]4, (401)

which has an anaiytical form similar to the corresponding kinematic relation,
equation (261), the only difference being whether A£ expresses random error or
actuai motion. This permits the error relations for the other representations to be
written by inspection from the corresponding kinematic reiation.

It is sometimes useful to work in terms of

P = E{AAAAT} — E{AA}E{AAT}. (402)
Then

1
Pia= (tr Pg)l — Py, and Py = -z—(tr Pl — Py (403)

The errors in the Euler-Rodrigues symmetric parameters can be written in
terms of the attitude error vector in the same way that the rate of change of the
quaternion was written in terms of the angular veiocity. Thus,

7* = (&%) ® 7 = {7}a67, (404)
and
_ [ag?]
57 = [ 21 + ogagy. (405)
It foliows that
R .Y 7
A =7 - 7 = {n}s f)/ ] + O(|agh), (406)
whence, in anaiogy with equation (306)
N Q. =T\ A=
an = —EM@AE and Af= 2E7(7)AR. (407)
Defining
P = Cov{AT}, (408)
it foliows that to lowest order
1 o, =7=
P, =—EMPE'(M), (409)

e
and, because of the constraint on the Euier-Rodrigues symmetric parameters,

Pmii=10. (410)



A Survey of Attitude Representations 493

In the same way, if the relation between the angular velocity and the Euler
angle rates is written as in equation (284), then the corresponding relationship
for the attitude error is

S¢
AE = M(p, %, ¢)| 69 |, (411)
oy
whence,
. 50
8% | = MY, 9, Y)AE, (412)
oy

Denoting the column vector of Euler angles by ¢, the covariance matrix of the
errors in the Euler angles is then given by

Poy = M Pe(M™. (413)

Since M is a singular matrix for certain values of the Euler angles, the covariance
matrix of the Euler angle errors may be infinite, even though the attitude errors
are small.

The attitude error vector has an interpretation in terms of Euler angles. If we
parameterize the infinitesimal rotation matrix exp{[[A£]]} in terms of an asym-
metric sequence of Euler angles, then the Euler angle about the i-axis is just Aé.
Hence, these attitude error parameters are also called attitude error angles or
Cartesian error angles, because they are referred to the three Cartesian coordi-
nate axes of the body frame, rather than being differences of Euler angles.

Likewise, the errors in the remaining representations are obtained straight-
forwardly. These are for the Rodrigues vector:

1
Ap = >[I = [[pl] + pPT]AS, (414)
the rotation angle:
A9 = ATAE, (415)
the rotation axis:
af = — - [[A] + cor@2) [IAFIAE, (16)

and the rotation vector:

A0 = [1 = (001} + 5(1 ~ (@) co(@2) nenz]m;. (a17)

From these the related covariance matrices are readily constructed. Note that AR
and A@ are correlated.
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The attitude and the attitude covariance matrix can be combined into a single
representation. a 3 X 3 matrix given by

B = f(Pe)A. (418)

where f(P) is any invertible real-symmetric 3 X 3 matrix function of the covari-
ance matrix. The attitude matrix can then be recovered by any of a number of
methods which factor an arbitrary real matrix into a real-symmetric matrix and
a matrix which is orthogonal (the polar decomposition [91]), and the covariance
matrix extracted by inverting f. This property has been exploited in attitude
estimation [92]. Ebert [89] has developed a careful treatment of probabilities de-
fined on the Euler-Rodrigues symmetric parameters which take rigorously correct
account of the group properties of the representation. These become important
when the standard deviations of the attitude become large.

Alias and Alibi

Two descriptions are in use for the transformation of coordinates: the passive
(known also as the alias description. from the Latin word for “otherwise” but in
the common sense of “otherwise known as”) and the active (or alibi from the
Latin word for “elsewhere”). In spacecraft attitude work the passive description
has been more common. The works of Goldstein [1], Hughes [2], Junkins and
Turner [3], Wertz [5], this author [7], Thomson [93], Kaplan [94], Rimrott [95],
and this survey have chosen the passive description. Kane, Likins and Levinson
[6], and Wiesel [96], to cite only the most recent examples, have chosen the active
description. The two descriptions are equivalent, although they express a some-
what different point of view and lead to formulas which are different in detail.

Recall that the definition of the rotation matrix in the passive description led
to the result

@) = RP™=(3,0) (&), =123, (419)

as the equation for the transformation for the representations (of basis vectors or
otherwise) from one frame to another. Thus. in the passive description one gener-
ally represents the same vector with respect to more than one frame of reference
(the observer passively adjusts his frame while the vector remains immutable).
For emphasis, we have written passive explicitly in equation (419). This survey up
to now has treated rotations only in the passsive description.

In the active description, on the other hand. one takes the point of view that the
observer is fixed (usually inertial as well) and examines vectors whose direction
changes in the observer’s frame of reference. If, for example, the changing vectors
are the coordinate axes of a rotating vehicular frame €' then the rotation matrix
in the active description is defined so that

(@) = R*"™(A,0) (&), i=1,2,3. (420)

Thus, in the active description, the rotation matrix actively changes the vector. It
follows that

Ru:liv: = (RP"“")T, (421)
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or

Ry =8/ -8, (422)
the transpose of equation (67). This seemingly minor difference in the definition
of the rotation matrix leads to numerous subtle differences in sign between equa-
tions expressed in the passive and the active descriptions.

The choice of whether to use the active or the passive description of rotations is
largely one of taste. There are obvious advantages to using the passive description
for remote-sensing applications such as attitude determination, where the rotation
matrix representing spacecraft attitude must be reconstructed from observations
of the same vectors made from the ground and from the spacecraft. On the other
hand, for purely dynamical studies it is often more natural to present dynamics
and control studies from the point of view of the active description. For example,
in the active description the abstract linear operator which transforms inertial
basis vectors into body basis vectors has the rotation matrix (rather than the
transpose) as its matrix representation. Likewise, in Quantum Mechanics. where
for obvious reasons, the universe is never described from the point of view of
an observer seated on an electron or on a photon, the active representation has
always been used. For this reason, physicists engaged in spacecraft attitude deter-
mination (such as the author of this survey) often have needed some retooling in
this area.

The author with some amusement hastens to point out that this survey and the
other works which prefer the passive description have not escaped totally a deeply
rooted inclination toward the point of view of an external observer. This is seen
most clearly in the definition of the body-referenced Euler angles. Here, the body
reference frames were distinguished at different states (€, £’, and £"), while the
space axes were always regarded as remaining the same. A truly passive treatment
might have followed a very different path and have considered the space axes as
changing at each stage of the Euler rotations. Such a choice, however. would have
entailed other inconveniences, since there are obvious advantages to regarding the
inertial axes as fixed.

The most recognizable change in the formulas using the active and the passive
rotations is that the angle of rotation and the Euler angles, which generally have
the same physical definitions in both descriptions, enter the rotation matrix with
different signs because of equation (421). The Euler-Rodrigues symmetric pa-
rameters and the rotation vector, however, generally have the same definition
in terms of the axis and angle of rotation in both descriptions. Therefore, the
expression for the rotation matrix in terms of the Euler-Rodrigues symmetric
parameters usually differs by a matrix transpose in the two descriptions. There
is some danger, ciearly, in transposing reiations from this work into the active
description without great care.

Historical Note

A spate of recent publications [97-99] on the origin of the various attitude rep-
resentations and their composition rules has shown that many of the commonly
held beliefs about the origins of the attitude representations are not totally cor-
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rect. Of these publications Altmann [97, 98], whose interest centered on quater-
nions, focused his attention on the division of priorities between Sir William
Rowan Hamiiton and Olinde Rodrigues. Cheng and Gupta [99] investigated in
addition the correct attribution of results associated with the name of Leonard
Euler. Additional information can be found in the recent article of Bar-Itzhack
and Markley {100] and in the books of Boyer {101], Van der Waerden [102], and
Crowe [103]. We report here with extreme brevity the principal historical facts as
they are currently known.

The first notions of representing rotations by complex numbers begins with the
identification of complex numbers with the plane (the Argand diagram, which
was not known by that name until 1806) and Euler’s famous formuia [104]

(cos x + isin x)" = cos nx + i sin nx. (423)

It requires little imagination to see in this formula a precursor to Euler’s formuia
for rotations. According to Van der Waerden (102], however. Euler does not seem
ever to have regarded compiex numbers as vectors but only as points in a piane.
The iater connection with two-dimensional vector spaces Van der Waerden cred-
its to Wessel (1797), Argand (1806), Warren (1828), and Gauss (1831). The ex-
pression “compiex number” is apparently also due to Gauss. It would seem that
Euler’s theorem on the motion of a rigid body is indeed due first to Euler [20] in
1775, as was Euler’s formuia [18). Euler’s theorem had, in fact been preceded by a
much earlier work [105], which showed that any differentiai movement of a rigid
body could be expressed as the sum of a transiation and a rotation about an axis.
The supposed first publication (20] of the Euler angles in 1775 (as cited in
Whittaker (21] and which citation has been repeated by numerous iater authors)
would seem to be falsely attributed as shown by Cheng and Gupta [99], who point
out that the first publication of the derivation of the Euler angies was post-
humous (22], though the actuai work cannot date later than 1783, the year in
which Euler died. Euler’s formula for the rotation, given in terms of the angles
characterizing the spin axis and the angle of rotation does. however. first appear
in [18].
The earliest vector notation for this formula, of the type

vV=cosfv+ (1l —cos)(@ v)i +sinfn Xv, (424)

seems to originate with Gibbs [61] in or before 1901 (who, however, expressed
this relation in terms of dyadics). Euler, although he showed that the combina-
tion of two successive rotations must be another rotation, never proposed an algo-
rithm for determining this combined rotation. Thus, he did not appreciate the
matrix as any more than as a table. The matrix as a mathematical object came
much later as a resuit of the improved understanding of vectors from the work of
Grassman [106, 107}, Gibbs [62], and Heaviside [108]. (For the history of matrices
and matrix algebra see McDuffee [109].)

The first publication on the Euler-Rodrigues symmetric parameters is now
generally credited to Rodrigues in 1840 [35]. Rodrigues, a successful banker and
celebrated social reformer, in almost his only mathematical publication (he is
known also for a recursion relation for the Legendre polynomials) invented the
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Euler-Rodrigues symmetric parameters, the three Rodrigues parameters (more
commonly called the Gibbs vector after their popularizer —Gibbs preferred to
call them the semi-tangent of version [62]), the rules for their composition. and
a geometrical construction for combining two rotations. Rodrigues’ paper was
seldom cited in later years (it was known to Cayley and Klein though Hamiiton
never acknowiedged it). Not long ago, it was the subject of a detailed appraisal by
Gray [110], who gives the impression of its having fallen into deep obscurity and
only recentiy been rediscovered (despite its being cited in Whittaker [21]). With
the 1840 publication Rodrigues is, in fact, the first person to show how to com-
bine the representations of two rotations in any form in order to obtain the repre-
sentation of the combined rotation.

The discovery of the quaternion by Hamilton came only a few years iater [111].
Hamilton’s original interest was directed not towards rotations but to generalizing
the complex numbers. and he hit upon the quaternions only after unsuccessful at-
tempts to construct a three-dimensionai system with two compiex numbers [112].
Hamiiton used i, j, and k as his three “imaginaries,” a generalization of the use of
i for the imaginary in two dimensions. Their usage as designators for unit basis
vectors originates with Hamilton in the context of the quaternion. Van der
Waerden [102] gives a succinct account of the discovery as does Aitmann {97, 98].
The connection with rotations came through the analogy with the geometry of
the complex piane, where the multiplication of a number by : results in its rota-
tion by m/2. We know now, however, that the quaternioni ={1 0 0 0] is as-
sociated not with a rotation through /2 but through 7, which forces upon us a
somewhat different understanding. It would appear, however, that Hamilton
never understood (or never wanted to understand) the true nature of the quater-
nion as it is related to rotations, and. aithough he himself had shown that the
transformation of a vector by a quaternion was in general a bilinear operation {111},
throughout his career he insisted that the rotation of a vector is accomplished by
the multiplication of the vector by a single quaternion, and this credo appears also
in Hamilton's magnum opus on the subject [113] published shortly after his death.

The first publication in the Engiish language to correctiy present the rotation of
vectors by means of quaternions is due to Cayley in 1845 [37], who acknowiedged
the priority of Rodrigues and that Hamiiton had aiso known this resuit. It wouid
appear that equations (203), (306), and (330) (or (332)) were first introduced by
Cayley {63] during this same period. The first publication in English on the com-
bination of two rotations is by Silvester [114], who duplicated Rodrigues’ geomet-
ric construction with no mention of Rodrigues. Gibb’s work {61] on the Rodrigues
parameters, which led to the association with his name, dates from 1884. The
development of the Cayley-Klein parameters {64, 65] was pubiished individually
by those authors in 1874 and 1879, respectively. It seems also that the quaternion
as an algebraic object and as a representation of rotations had been discovered
in 1819 by Gauss [115], who never thought to publish his discovery, and that
Grassman also knew of them [116].

Why, then have these parameters been known for so long as the Euler symmet-
ric parameters? According to Altmann [97,98], who cites many authors in his
support, Euler never knew of the Euler-Rodrigues symmetric parameters nor ever
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treated rotations in terms of half-angles at any time in his career. Roberson [82],
however, citing a different work of Euler [36] has claimed otherwise, and the
same work of Euler was cited in a posthumous paper of Jacobi [117] in which
the priority for the Rodrigues’ expression for the rotation matrix in terms of the
Euler-Rodrigues symmetric parameters is explicitly and even adamantly given to
Euler. Examination of reference [36] shows that Euler had indeed developed the
four symmetric parameters for an orthogonal transformation (although without
the use of half angles). However, closer inspection of Euler’s equivaient of equa-
tion (158) discloses some unexpected aberrations in the signs—Euler, apparently,
had developed the symmetric parameters for an improper orthogonal matrix!
(In later works (e.g., [22]), when Euler had become interested in rotations, he, of
course, pays greater attention to proper orthogonal matrices, and we may presume
that he had the “Euler symmetric parameters” within his grasp for this case also.)
In [36] Euler presented also the equivalent of equation (367), and. thus. he ap-
pears to have nearly stumbied upon quaternion multiplication. He had, in fact.
had an earlier brush with quaternions in a study of the “four-squares theorem” of
Fermat. Here, he showed [118] that for all «, B, v, 6, a', 8/, v, and &,

(a2 + B+ P + &) (@ + B2 + y1 + 8
= (aa' ~ BB ~ 7 — 68)' + (af’ + B’ + 78 ~ &Y)
+ (ay + va' + 88 —~ B&) + (ab + 8’ + By — y8'), (425)
which we recognize as being essentially
@@ =G®7)G®7). (426)
This same relationship is recapitulated in [36]. Apparently, Euler’s researches
reported in [36] were without any physical motivation whatsoever but only to de-

velop a diophantine'' algorithm for orthogonal matrices of dimension 2, 3, 4, and
5, that is, to generate these matrices with rational elements!

Applications

Having now presented twelve'? different representations of the attitude, a word
should be said about their domains of application. The literature in attitude dy-
namics, control, and estimation is vast, and, therefore, this survey can only pre-
sent the applications very superficially. Many more examples can be found among
the references, especially [2, 3,5, 6].

Of ali the representations of rotations, the most “natural” is the direction-
cosine matrix. However, apart from analytical studies and for transforming vec-
tors, this representation sees littie use owing largely to its high dimension. For
this reason, early dynamical studies of rotations in the eighteenth and nineteenth
centuries had generally used only the first two columns or rows as the attitude

"Diophantus of Alexandria (third century C. E.) developed an algorithm for generating all the
integral Pythagorean triads (e.g., 3° + 4° = 5%).

Yor thirty-six, depending on how the Euler angles and modificd Rodrigues parameters are
counted, or cven forty-one if we consider that there are really six possible ways to define the
axis-azimuth representation.
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representation, as pointed out by Roberson [82]. This still leads to a represen-
tation of dimension six. Thus, the direction-cosine matrix is expensive to store
and in computer simulations difficult to maintain orthogonal. Nonetheless, for
expressing attitude relationships, say, in defining transformations between coor-
dinate systems as alignment matrices or attitude matrices, and for deriving
mathematical identities it has obvious advantages.

The axis and angle of rotation, despite their obvious geometric appeal, do not
seem to have received much use except as an intermediate quantity for defining
or calculating other representations.

The vector of Euler-Rodrigues symmetric parameters or the quaternion of ro-
tation, on the other hand, is the ideal representation for simulation, since its kine-
matic equation, equation (305) or (306) or related equations are linear. Thus,
either of these equations coupled with an equation like equation (358) for the
dynamics finds frequent use, especially as the preferred representation for the
prediction step of the Kalman filter {81). The Euler-Rodrigues symmetric pa-
rameters have four components instead of the minimal three. and thus impose a
slight extra cost in terms of storage requirements. At the same time they possess
none of the analytical headaches of representations of smaller dimension which
lead to inaccuracies in certain geometries. They are, therefore, the preferred
parameterization for spacecraft attitude control systems and have received consid-
erable use in this area [119-122]. Modern attitude dynamics and control studies
become quite elegant when expressed in terms of the Euler-Rodrigues symmetric
parameters [123-127]. Deprit and Elipe [128] have used the Euler-Rodrigues
symmetric parameters to regularize Androyer variables in a very elegant study of
the Poinsot problem.

The Euler-Rodrigues symmetric parameters provide the easiest path for re-
storing the orthogonality of a rotation matrix, which has been lost, say, due to
accumulated numerical round-off error. In this case one computes the Euler-
Rodrigues symmetric parameters from the rotation matrix in the standard way,
ignoring the lack of orthogonality. If the rotation matrix has deviated slightly
from orthogonality, the computed Euler-Rodrigues symmetric parameters will
deviate slightly from a column vector with unit norm. In this event, one simply
normalizes the column vector and recomputes the rotation matrix. The result is
necessarily orthogonal. In some extreme cases, the nonorthogonality of the ap-
proximate rotation matrix may yield a complex quaternion. A more general means
of orthogonalizing a matrix is to caiculate the orthogonal matrix A which maxi-
mizes tr{B"A), where B is the nearly orthogonal matrix. This is equivalent to find-
ing the proper orthogonal matrix which is ciosest to B in the sense of minimizing
the Schurr norm,

3 3
18 — Al = tr(B ~ AT(B - ) = X X(B - 4% (427)
il j=
Reference [129] presents an efficient algorithm for accomplishing this which ex-
ploits the quaternion and the Rodrigues vector.
The Euler-Rodrigues symmetric parameters, because they are defined over the
entire unit sphere in four dimensions, can always be made continuous. Thus, if



one is given two sets of parameters, 7(#) and %(t4.1), at two instants adjacent in
time, the two quaternion differences,

) — ntas) and  7[(4) + Nteer)

can be computed and their magnitudes tested. If the two instants are very close in
time, generally one value will be very small (on the order of |wAt|) while the other
will have a magnitude close to 2. This makes choosing the sign which makes the
quaternion continuous (say for interpolation or smoothing) a simple matter. The
situation for the three-dimensional representations is much more complicated or
even impossible.

The Euler angles. because of their minimum dimension and long history of
application in theoretical physics have enjoyed continued popularity. In formal
dynamical studies they are still important. However, their popularity in formal
studies has often led to their overuse in data processing applications. when better
behaved representations. particularly the Euler-Rodrigues symmetric parameters,
are a more logical choice. For certain applications, such as gimballed gyros where
each Euler angle corresponds to a physical gimbal angle, or for rapidly spinning
spacecraft where two of the angles, which are chosen so as to represent the spin
axis, remain nearly constant, while the third undergoes nearly uniform motion.
the Euler angles have obvious advantages. Gimballed gyros still have important
applications in seacraft but increasingly less use in spacecraft and aircraft. Euler
angles are useful also in formulating spacecraft attitude maneuvers as a sequence
of single-axis slews. In this application, after determining the rotation matrix
characterizing the slew, one examines the values of the Euler angles characteriz-
ing this rotation matrix for each of the twelve sets. The set in which the absolute
sum of the Euler angles is smaliest often gives the preferred sequence of single-
axis slews.

Until the end of the 1970s, however, Euler angles saw a great deal of use, both
for the archival recording of attitude and for solving least-square problems, where
unobservable variables and constraints provided disincentives to using the quater-
nion or rotation matrix. At the same time, because of the large number of trigo-
nometric computations, these approaches generally lacked speed. Increasingly
nowadays, the Euler angles find less use.

The axis-azimuth representation has been used primarily for the description of
spinning spacecraft {130, 131]. It has the advantage that it can often be computed
directly from the measurements without the need for computationally expensive
parameter searches but the disadvantage that the computation of the rotation
matrix from this representation is very cumbersome. It sees little use now.

The Rodrigues or Gibbs vector also finds little use except as an intermediate
step in dealing with the Euler-Rodrigues symmetric parameters, when the extra
_element becomes a nuisance. For an example of this see [129]. The Rodrigues
vector is also useful when an approximation has yielded the infinitesimal rotation
vector and it is desired to increment the attitude using this. The easiest method
is to interpret this quantity as twice the Rodrigues vector and then compute the
incremental quaternion according to equation (201) or the incremental attitude
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matrix according to equation (202). This provides a means of maintaining the
norm of the quaternion or the orthogonality of the attitude matrix easily.

The rotation vector receives considerable use when it is known to be small. The
kinematic equation (equation (276)) can be expanded to yield

d 0= L L % 0—20 X (0 X + 428

7 —w+—2--0><w+1—2 (0><w)+720 ( w) + ..., (428)
Thus, the terms of higher than linear in @ can be neglected when |6 is very smail.
(Generally, the term in 8 X w is known as the “coning” correction, the terms
proportional to @ X (# X w) have been called the “sculiling terms” [75].) Terms
above quadratic are surely negligible for small angles of rotation. This property is
exploited in strap-down gyro systems. Generally, the gyro data is accumulated at
a very high rate with exceedingly small intervals, on the order of a millisecond.
Thus. if the rotation vector is initiallvy zero, the linear approximation (or, better,
quadratic approximation) of equation (428) can be used. At larger intervals. sav
1 second. the rotation angle may have grown to a degree in magnitude. The
higher order terms might amount to a few arc seconds. At this point the incre-
mental rotation vector is converted to an incremental quaternion of rotation and
combined with the previously accumulated quaternion of rotation. The incremen-
tal rotation vector is reset to zero and the fast loop is executed again [132, 133].

Likewise, the infinitesimal rotation vector in the guise of the attitude error
vector is the ideal quantity to use as a differential corrector. Attitude measure-
ments generally have the form

= (W) + v, (429)

where W is the representation of a vector in the vehicular frame, and v is measure-
ment noise. Without loss of generality for the discussion which follows, z may be
taken to be a scalar. We write

W = AV = (54)A4.V = (AW, , (430)

where V is the corresponding column-vector representation in the inertial or other
primary reference system. A4, is an approximate (usually, a priori) vaiue of the at-
titude, and 8A4 is the correction to this approximate attitude, which can be written
to first order as

84 = I1xy + [[A€]], (431)

and we have written A€ for the attitude error vector rather than A@ to be consis-
tent with equation (397) and to avoid confusion with the difference of two arbi-
trary rotation vectors. Substituting equations (430) and (431) into equation (429)
leads to {134]

z = f(W,) — [W, X VF(W,)]"AE + v, (432)

where Vf is the gradient of f. Since the infinitesimal rotation vector is the natural
representation for describing a smail attitude change, this is also the preferred
representation for the update step of a Kalman fiiter [81]. The use of the quater-
nion difference, A% (rather than the quotient §%) as a differential corrector has
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also been explored [59, 81]. It should be noted that for infinitesimal rotations the
rotation vector is indistinguishable (apart for a factor of 2) from the Gibbs vector
or the vector portion of the Euler-Rodrigues symmetric parameters.

The great disadvantage of three-dimensional representations, be they the Euler
angles, Rodrigues parameters, or rotation vector, is the nonlinear nature of their
composition rule, which leads also to a nonlinear kinematic equation. This is a
property of all three-dimensional representations as has been demonstrated by
Stuelpnagel [73]. Thus, the Euler-Rodrigues symmetric parameters provide the
representation of smallest dimension which has a bilinear composition rule and,
consequently, a linear kinematic equation.

The Cayiey-Klein parameters are valuable for elucidating the properties of the
Euler-Rodrigues symmetric parameters. However, they provide no computational
advantage on modern computers over the Euler-Rodrigues symmetric parameters,
and, because of the required complex arithmetic, they have not received frequent
use in aerospace work. They do provide a significant simplification in symbolic
operations involving the Euler angles. For that reason. in the mammoth work by
Klein and Sommerfeld on the theory of tops [135], written in the era before auto-
matic computers, the Cayley-Klein parameters received frequent use.

The matrix-valued vectors, S, of equation (242) have their most important ap-
plications in the quantum theory of angular momentum, where they are associ-
ated with the intrinsic “spin” of elementary particles. The Quantum Theory of
Angular Momentum is the subject of a rich literature [136-141], but of little prac-
tical value for aerospace engineering.

The modified Rodrigues vector has been applied to the case of a librating
spacecraft [69].

The Euler-angles, the axis-azimuth representation, the Rodrigues/Gibbs vector,
the rotation vector, the vectoriai components of the quaternion, or the modified
Rodrigues vector, while of minimum dimension are each beset with problems of
singularity or discontinuity. The Euler-Rodrigues symmetric parameters (or,
equivalently, the Cayley-Kiein parameter:) are both continuous and nonsingufar
representations of the rotations. However. the dimension of the Euler-Rodrigues
symmetric parameters is four (hence not minimal), and there correspond two sets
of Euler-Rodrigues symmetric parameters for every rotation. It has been shown
by Hopf [142], as cited in Stuelpnagel {73], that no representation of dimension
three or four can be topologically equivalent to the group of rotation matrices,
and that the dimension of the smallest representation of the rotation group which
can be mapped bijectively and continuously onto the group of rotation matrices is
five. Stuelpnagel {73] has shown how to construct such a representation of dimen-
sion five from two columns of the rotation matrix by stereographic projection.
The composition rule of this representation is nonlinear. Hence, it is not very
useful for practical calculations.

Interestingly enough, the attitude representations can also be applied to the de-
scription of spacecraft orbits. Since the unit vector in the direction of the space-
craft position (the zenith vector), the orbit normal, and their vector product form
a right-handed orthonormal basis, their orientation (read attitude) together with
the parameters of the elliptical orbit specifies the particle position [143-146].
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The resulting “gyroscopic” equations which describe the orbit are very similar to
Euler’s equations for a rigid body.
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Appendix A: Dyadics

Just as 3 X 1 column vectors are the representation of abstract vectors. 3 X

3 matrices are the representations of abstract linear operators. An abstract /inear

operator L is an operator mapping ¥ into 4 which when acting on an abstract vec-
tor space satisfies

L:(vy+avy) =L vy +allv,). (Al)

Linear operators may be written in terms of dyadics. If  and v are two abstract
vectors, then the dyadic, defined in terms of the ordered pair of vectors and writ-
ten as uv, satisfies

(uv)-w=(v-wu and w:(uwv)=(w-u)v, (A2)

where w is any other abstract vector. Thus. the scalar product of an abstract lin-

ear operator and an abstract vector is another abstract vector. (Likewise. the

scalar product of two abstract linear operators is another linear operator.)
Because space is three-dimensional, any linear operator £ may be written as

3 3
L= Z za,-iv,-v,- f (A3)
jm) je]

where {v,, v, v3} is any basis for the vector space 9, and the a;,i,j = 1,2,3, are
nine uniquely determined scalars. In particular, if the basis is an orthonormal ba-
sis, £ = {&,,€,, €}, then from the abstract relation

u=Mv, (Ad)
it follows in terms of matrices that
u=Mv, (AS5)
where
M;=¢é - -M-¢, (A6)
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or equivalently,

3 3
M= 2Meée,. (A7a)
i je]
If a second abstract linear operator is written similarly in terms of the orthonor-
mal basis as
3 3

N=3 SNeé,, (A7b)

i=i jml

it follows that the product of the two linear operators is given by

M- =2 2 (MN)éé,, (A8)

iml =1

where the impiied operation of M and N in the right member is matrix multiplica-
tion. Note in particular that the dyvadic uv has the matrix representation uv".
Thus. the matrix representation or equation (A3 is

Le=3 3 a,(v)e(v)l, (A9)
=1 jm=]

and we have indicated the basis explicitly as a subscript on the matrix in the same
way as the inertia tensor represented in inertial and body coordinates was indi-
cated as I, and I,. respectively.

If £ is a right-handed orthonormal basis. then, for exampie, the antisymmetric
matrix [[u]] corresponds to the linear operator,

3 3 3
[[u]] = z Z Z elrkukéié/ ) \10)
i=) jel k=)

where u,, K = 1,2, 3, are the components of u with respect to the orthonormal
basis £. The operator {[u]] generates abstract vector products in the same way as
[[u]} generates the vector products of column vectors. This may be written as

([]]=u-2=4 - u. (All)
where A is the totally antisymmetric “triadic,”
a=22 2 enbidil. (A12)
Equations (A11) and (A12) have the advantage of being coordinate independent.
We can define the vector products of dyadics and vectors according to
(ab) Xe =a(bXe) and ¢ X (@ab) = (c X a)b. (A13)

(Note, however, (ab) X (cd) does not produce either a dyadic or a vector.)
By definition. the identity operator satisfies

lv=v-1=v and I (uv)= (w)- 1= (uv). (Al4)

In terms of an orthonormal basis £ we may write the identity dyadic I as
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1=3¢és8, (A15)

from which equation (A10) or (All) may be rewritten as

[ll=ux1. (A16)
The attitude matrix also has a corresponding abstract operator. From equa-
tion (420)
]
CT =2 (&/)(8)1, (Al7a)
1=]
or
3
C =2 (&):(8)z, (A17b)
1=]
Hence. noting equation (A7a)
3 3 3 303
C=2ée! =2 2Cee; =2 2Celé . (A18)
t=} {=] je=1 jw] fomi
It follows that
e ) é:’ = éi ) (Alg)

so that the abstract attitude operator transforms the orthonormal basis of the
final system into the orthonormal basis of the initial system. The fact that
the transformation in the dyadic description occurs in the opposite direction
to what one might expect naively is due to the fact that dyadics are inherently
“active” objects.

Following Gibbs [62] we may write the dyadic description of Euler’s formuia as

C=cos81 + (1 —cos@)Ain + sinfna X 1 (A20a)
=] +sin6i X1+ (1 —-cosf) (R x 1) (A20b)

Dyadic descriptions of abstract linear operators,'’ although cumbersome, have
the advantage that they are independent of the choice of basis. Data. of course,
must always be represented as matrices.

Appendix B: Vectrices

Many of the resuits connecting abstract vectors with column vectors, abstract
linear operators with matrices, and the attitude itseif can be neatly summarized
in terms of vectrices [2,147, 148]. If we consider the basis, € = {é,,€é,,¢é3}, then
the vectrix of the basis ¥, is defined by

®>

2 |, (B1)

3

L.}

Fe=

3}

*We write “dyadic description” rather than “dyadic representation.” because in the conventions of
this survey dyadics are also abstract objects.
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that is, by a colunm vector whose elements are abstract vectors. The transpose of
a vectrix, ¥ 1, is defined as

Fr=1[é é; és}, (B2)

so that the matrix is transposed but no action is taken on the abstract vectors
which fill the matrix. Clearly,

Fe-Fi=1, and FiF. =1, (B3)
0 é, -é
Fe X Fr=1|—é5 0 €, = [[F]], (B4)
é, —é, 0
and
Fe X Fi-F. =0, (B5)

where, like the dyadics. the scalar and vector product operators act between adja-
cent abstract vectors.

Abstract vectors may be related to vector representations by means of vectrices
according to

v=Fiv=vq, (B6)
V=% v=0"%F¢. (B7)
vVi=gi-v=v-%]. (B8)

Equations (B6-B8) together with equations (B3) and (B4) lead to the usual re-
lations between the scalar and vector products of abstract vectors and column
vectors.

Equations (A6) and (A7) relating abstract linear operators and 3 X 3 matrices
take the following form in terms of vectrices:

M=FIMF:, (B9)
and
M=F-M F;. (B10)
The antisymmetric matrix [[u]] has the vectrix description
U] =u FeXFe=F: X Fi u. (B11)
The vectrix
G = (F: X Fiu, (B12)

on the other hand, is a somewhat more curious beast which satisfies
G-v=uXyV, (B13)
but
G'v=-uxv. (B14)
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In analogy with equation (A18) the attitude can be described by means of vec-
trices belonging to different bases. If two bases, £ and £’ are related as in equa-
tions (66), then their respective vectrices, ¥ and ¥, are related by

Fe=CF: and Fr=C* Fr, (B15)
whence

C="%r Fi, and C=FiFc. (B16)
Appendix C: Attitude Representations in Higher Dimensions

Many of -the results presented here are applicable to the representation of
proper orthogonal transformations in higher dimensions. In n dimensions the ro-
tation vector is replaced by an n X n antisymmetric matrix ©. In terms of this
quantitv the n X n rotation matrix. R. can be written as

R =-exp{6}. (Ch)

Likewise. we define an n X n generalization of the Rodrigues-Gibbs vector G.
[100. 149-151], so that

R=(/+G)( - G)™" (C2)

The n X n Rodrigues-Gibbs matrix G is related to the n X n rotation-angle ma-
trix © by

G = tanh(6/2), C3)
and to the n X n rotation matrix R by
G=R-IHR+ I\ (C4)

The kinematic equations have straightforward generalizations. Equation (233)
generalizes to

d
770 = QR (C5)

where {1(¢) is an n X n antisymmetric matrix (which no longer has a correspond-
ing n-dimensionai vector associated with it).

The kinematic equation for the Rodrigues-Gibbs matrix in n dimensions, which
follows directly from equations (C4) and (CS5), is

£a@) = 0 =GN U - GO, (c6)

which is the higher-dimensional analogue of equation (331).

The n X n attitude matrix possesses n° elements which are subject to n(n + 1)/2
constraints. The n(n — 1)/2 upper-triangular elements of the Rodrigues-Gibbs
matrix, on the other hand, provide an unconstrained representation for the de-
scription of the attitude. For n = 3, these reduce (within a sign in the second-
component) to the usuai Rodrigues-Gibbs vector,
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The quaternion, apparently, does not have a generalization in higher dimen-
sions. In fact, it was shown by Hurwitz [152] that hypercompltex numbers (includ-
ing the complex numbers) can only have dimension 2 (the complex numbers),
dimension 4 (the quaternion), or dimension 8 (the octonion or Cayiey numbers.
apparently discovered independently by Graves [153] and Cayley [154]). It is well
known that quaternion multiplication is not commutative. Octonion multiplica-
tion is not even associative. Hexadeconians and beyond do not even preserve the
norm under multiplication. Reference [155] contains a complete discussion of
this subject. A modern treatment of octonions can be found in Chevalley [156].
The use of complex quaternions to model rotations in four dimensions, which has
found applications in special relatively [86-88], also has precursors in the work of
Cayley {157).

Euier angles can be generalized to higher dimensions. and an example was pro-
vided by Euier [36. 117], but the number of different possible sets quickiy becomes
astronomical as the dimension increases. In four dimensions. for example. if it is
noted that the group SO(4) is isomorphic to the group SO(3) ® SO(3), it can be
shown from very simple arguments that there must be at least 2880 different pos-
sible sets. In five dimensions there must be many times more than 30 million!

The problem of determining the attitude in higher dimensions from the mea-
surement of unit vectors offers interesting insights into an algorithm used fre-
quently in three dimensions {158]. The attitude representations in spaces of
dimension less than three have attracted much less attention for obvious reasons.
Nonetheiess, instructive single-axis resuits can be obtained {159, 160].

Appendix D: The Lorentz Transformation

Of particular interest in higher dimensions is the application of Cayley-Kiein
parameters and quaternions to the Special Theory of Relativity [1, 17.85-88]. Al-
though quanternions cannot be generalized to have more than four components.
with only four components they are able to parameterize a class of rotations in
four dimenstons. namely. the Lorentz transtormations.

In the relativistic description of the universe the position column vector X is
generalized to x. a Minkowski four-vector [17],

X1
_ X _ |X2
X= ict = X3 ’ (Dl)
X4 '

where c is the velocity of light, and i = V=1. The Lorentz transformation,
X' = AX, (D2)
leaves the quadratic form
xTx=x:x—-c, (D3)
invariant. Thus, A satisfies
ATA = [ixa. (D4)
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The Loreniz quaternion Aisa complex 4 X 1 matrix, A= [A.,Az,A3,/\4]T, satis-
fying
ATA=Al+ A3+ At +Al=1, (D5)

but, since the A;,i = 1, 2,3, 4, are complex, the individual terms in the sum above
are neither positive nor necessariiy even real, nor are the |A;|,i = 1,2, 3, 4, neces-
sarily bounded above by unity.

Equation (179) generalizes to

A(j\) = {X}L{l_\t}k, (D6)
where A%, the_conjugate Lorentz quaternion, is defined as
- - ~A*
At = (A7) = [ . ] (D7)
As

where again the asterisk denotes complex conjugation. Since A(A) is independent
of the phase of A, A, can always be chosen to be real (or positive).

As an example, consider a pure Lorentz transformation, or boost, that is, a
Lorentz transformation in which the two frames are moving with respect to one
another but the coordinate axes are not rotated. The Lorentz quaternion is

3= [i \ /l’—%—lﬁ’ \ /lg—l]r, (D8)

¢’ YEVio B

and v is the relative velocity between the two frames. The corresponding Lorentz
transformation is

where

B= (D9)

+(y - PR i
A= [”"’ (v~ BB "’B]. (D10)
—ivB Y
It is generally true that any Lorentz transformation may be decomposed as
A = ArAs, or A= AjAr, (D11)

where Az and Az are pure rotations, and A and A 5 are pure boosts. Van Wijk [161]
has shown how to compute this decomposition for A when it arises from the
composition of two pure boosts.

In analogy to the angle of rotation in three dimensions one can define an
equivalent “angle” for the Lorentz formation which is generally complex (and for
a boost is pure imaginary),

cos 6 =y, sin 8 = iy|B|. (D12)

It is often more convenient to work in terms of a real parameter ¢ (not to be con-
fused with the Euler angle) for a pure boost, such as

cosh ¢ = v, sinh ¢ = v|8|, (D13)
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so that the Lorentz transformation for a rotation about the z-axis takes the form

1 0 0 0 1 0 0 0
01 0 0 0 1 0 0

A — = 4
0 0 cosf siné 0 0 coshy isinhyl’ (D14)

0 0 -sinf@ cosé 0 0 -isinhy coshy

This formalism generalizes straightforwardly to the Cayley-Klein parameters.
One now defines instead of V the “vector”

fvea+ vy vy — iv:)- (D15)

VEV;i+V2j+V3k+V41=|< .
Vi +1Vy vy — v,y

The Cayley-Klein matrix for a pure boost is simply

1 -1 -
,/—7—:—1— 1/72 (- B), (Di6a)

cosh(y/2)1 — sinh(¥/2) (o - B), (D16b)

in complete analogy with the similar expressions for pure rotations. One must
insist, however, that A, be real. Otherwise the Cayley-Klein matrix for a general
Lorentz transformation will not be unimodular. Note that L in this case, while
unimodular, is no longer unitary. The larger group of restricted orthochronous
Lorentz transformations'* and spatial rotations in the guise of unimodular Cayley-
Klein matrix is generally denoted by SL(2,C), the group of special linear trans-
formations in two dimensions over the complex numbers {162, 163]. The group
SU(2) is thus a subgroup of SL(2,C). Note also that just as the real quaternions
or unimodular Cayley-Klein matrices generate only the proper orthogonal matri-
ces and not the improper orthogonal matrices also, so also the complex quater-
nions or unimodular Cavley-Klein matrices generate only the restricted Lorentz
transformations.

L
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