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BOUNDS FOR THE GEOMETRIC-ARITHMETIC INDEX OF A
GRAPH
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Abstract. The first geometric-arithmetic index GA1.G/, which was introduced by D. Vukičević
and B. Furtula recently, is a graph-based molecular structure descriptor. The aim of this paper is
to obtain new inequalities involving the geometric-arithmetic index GA1 and other well known
topological indices. In particular, we relate the geometric-arithmetic index of a graph G with its
first Zagreb index M1.G/, its second Zagreb index M2.G/, its modified Zagreb index Z�1.G/
and its Randić index R.G/.
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1. INTRODUCTION

The study of topological indices is a subject of increasing interest, both in pure and
applied mathematics. Topological indices are interesting since they capture some
of the properties of a molecule (or a graph) in a single number(see, e.g., [17, 22]).
Hundreds of topological indices have been introduced and studied, starting with the
seminal work by Wiener [19] in which he used the sum of all shortest-path distances
of a (molecular) graph for modeling physical properties of alkanes. Probably, the
Randić index R.G/ is the best know topological index (see, e.g., [5,9,10,14,15] and
the references cited therein). The Randić index R.G/ is defined in [14] as

RDR.G/D
X

uv2E.G/

1
p
dudv

:

During many years, scientists were trying to improve the predictive power of the
Randić index. This led to the introduction of a large number of new topological
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descriptors resembling the original Randić index. The first geometric-arithmetic in-
dex GA1.G/, defined in [18] as

GA1 DGA1.G/D
X

uv2E.G/

p
dudv

1
2
.duCdv/

;

where uv denotes the edge of the graph G connecting the vertices u and v, and du
is the degree of the vertex u, is one of the successors of the Randić index. Although
GA1 was introduced just five years ago, there are many papers dealing with this
index. There are other geometric-arithmetic indices, likeZp;q (Z0;1DGA1), but the
results in [2] show empirically that the GA1 index gathers the same information on
observed molecules as other Zp;q indices.

Topological indices based on end-vertex degrees of edges have been used over
thirty years. Among them, several indices are recognized to be useful tools in chem-
ical researches. The graph based molecular descriptors called Zagreb indices were
introduced by Gutman and Trinajstić. Since then, several results concerning Zagreb
indices have been communicated in the chemical and mathematical literature (see
[1,4,6,13,21] and the references cited therein). The variable Zagreb index is defined
in [11] as

Z˛ DZ˛.G/D
X

uv2E.G/

.dudv/
˛;

and was used in the structure-boiling point modeling of benzenoid hydrocarbons.
The obtained model is practically identical to the model based on the variable vertex-
connectivity index and this is due to close relationship between the formulas for the
two indices.

The reason for introducing a new index is to gain prediction of some property of
molecules somewhat better than obtained by already presented indices. Therefore, a
test study of predictive power of a new index must be done. As a standard for testing
new topological descriptors, the properties of octanes are commonly used. We can
find 16 physico-chemical properties of octanes at www.moleculardescriptors.eu. The
GA1 index gives better correlation coefficients than Randić index for these properties,
but the differences between them are not significant. However, the predicting ability
of the GA1 index compared with Randić index is reasonably better (see [2, Table 1]).

We begin by stating some notation and terminology. Let G D .V;E/ D

.V .G/;E.G// denotes a (non-oriented) finite simple connected graph of order n D
jV.G/j and sizemD jE.G/jwithE.G/¤¿. We denote two adjacent vertices u and
v by u� v. For a vertex u 2 V we denote N.v/D fu 2 V W u� vg. The degree of a
vertex v 2 V will be denoted by dv D jN.v/j. We denote by ı and � the minimum
and maximum degree of the graph, respectively. We use the classical notation uv for
the edge of a graph joining the vertices u and v. Note that the connectivity of G is
not an important restriction, since if G has connected components G1; : : : ;Gr ; then
GA1.G/DGA1.G1/C�� �CGA1.Gr/.
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2. RESULTS

We start with the following basic results. In [18] (see also [2]) the following in-
equalities appear :

GA1.G/�
2.n�1/3=2

n
:

GA1.G/�
2m

n
:

In [2] we find the bounds

2m
p
�ı

�C ı
�GA1.G/�m:

In [16] the authors obtain a lower bound of GA1.G/, depending just on n and m, for
every graph G.

GA1.G/�
2m
p
n�1

n
:

Moreover, [16] provides a lower bound of GA1.G/ for every graph G with ı � k, for
any fixed k � 2.
.1/ If n� 10, then GA1.G/� nk

2
:

.2/ If n� 11, then GA1.G/�min
n
nk
2
; .kC1/

p
k .n�1/3=2

n�1Ck

o
:

We will denote by M1.G/ and M2.G/ the first and the second Zagreb indices of
the graph G, respectively, defined in [7] as

M1.G/D
X

u2V.G/

d2u ; M2.G/D
X

uv2E.G/

dudv:

These indices have attracted growing interest, see e.g., [20] and [7].
In [3] (see also [2]) we find the bound:

GA1.G/�

p
mM2.G/

ı
:

A similar lower bound is obtained in [16]:

GA1.G/�
2

�C ı

r
ımM2.G/

�
:

Theorem 1 below improves these lower bounds. In order to prove it, we need the
following lemmas (see [16] and [8]).

Lemma 1. Let g be the function g.x;y/D 2
p
xy

xCy
with 0 < a � x;y � b. Then

2
p
ab

aCb
� g.x;y/� 1:
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The equality in the lower bound is attained if and only if either x D a and y D b, or
xD b and y D a, and the equality in the upper bound is attained if and only if xD y.
Besides, g.x;y/D g.x0;y0/ if and only if x=y is equal to either x0=y0 or y0=x0.

Proof. Let f be the function f .t/D 2t
1Ct2

on the interval Œ0;1/. Then f strictly
increases in Œ0;1�, strictly decreases in Œ1;1/, f .t/ D 1 if and only if t D 1 and
f .t/ D f .t0/ if and only if either t D t0 or t D t�10 . The statements follow from

f 0.t/D 2.1�t2/

.1Ct2/2
: Now, taking g.x;y/D f .t/ with t D

q
x
y

, and
q
a
b
� t �

q
b
a

, the
result follows. �

The following result provides a converse of Cauchy-Schwarz inequality.

Lemma 2. If 0 < n1 � aj �N1 and 0 < n2 � bj �N2 for 1� j � k, then� kX
jD1

a2j

�1=2� kX
jD1

b2j

�1=2
�
1

2

 s
N1N2

n1n2
C

r
n1n2

N1N2

!� kX
jD1

aj bj

�
:

Theorem 1. We have for any graph G

2

q
2
p
�ı.�C ı/mM2.G/

�.
p
�C
p
ı /2

�GA1.G/�
M2.G/

ı2
;

and the equality in each inequality is attained if and only if G is a regular graph.

Proof. By Lemma 1, taking aD ı and b D�, we have

2
p
�ı

�C ı
�

p
dudv

1
2
.duCdv/

� 1:

Lemma 2 gives

GA1.G/D
X

uv2E.G/

p
dudv

1
2
.duCdv/

�

�P
uv2E.G/

4dudv

.duCdv/2

�1=2�P
uv2E.G/ 1

�1=2
1
2

�q
�Cı

2
p
�ı
C

q
2
p
�ı

�Cı

�
�
2

q
2
p
�ı.�C ı/m

.
p
�C
p
ı /2

� X
uv2E.G/

1

�2
dudv

�1=2

D
2

q
2
p
�ı.�C ı/mM2.G/

�.
p
�C
p
ı /2

:

Therefore,

2

q
2
p
�ı.�C ı/mM2.G/

�.
p
�C
p
ı /2

�GA1.G/:
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On the other hand,

GA1.G/D
X

uv2E.G/

p
dudv

1
2
.duCdv/

D

X
uv2E.G/

dudv
1
2
.duCdv/

p
dudv

�

X
uv2E.G/

dudv

ı Pı
:

Thus, we have

GA1.G/�
M2.G/

ı2
:

If the graph is regular, then M2.G/D ı
2m, the lower and upper bound are the same,

and they are equal to GA1.G/ D m. If the equality holds in the lower bound, then
4.duCdv/

�2 D��2 for every uv 2 E.G/; hence, du D� for every u 2 V.G/ and
the graph is regular. If the equality is attained in the upper bound, then 1

2
.duCdv/D

ı for every uv 2E.G/ and we conclude du D ı for every u 2 V.G/. �

Theorem 1 improves the previous lower bound, as the following result shows.

Remark 1. For any 0 < ı �� we haveq
2
p
�ı.�C ı/

�.
p
�C
p
ı /2
�

1

�C ı

r
ı

�
:

Proof. First of all, note that the polynomial p.x/D 2x6�x5C2x4�6x3C2x2�
xC2 verifies p.x/� 0 if x � 1, since p.x/D .x�1/2.2x4C3x3C6x2C3xC2/.
Hence,

2x6C2x4C2x2C2� x.x4C6x2C1/; if x � 1;

2
��
ı

�3
C2

��
ı

�2
C2

�

ı
C2�

r
�

ı

���
ı

�2
C6

�

ı
C1

�
;

2�3C2�2ıC2�ı2C2ı3 ��2
p
�ıC6�ı

p
�ıC ı2

p
�ı ;

2.�C ı/3 �
p
�ı
�p
�C
p
ı
�4
;

and this implies the inequality. �

In [2] appears the inequality

GA1.G/�
1

2
M1.G/:

In [16] appears the following result

GA1.G/�
1

2ı
M1.G/:

Our next result improves both inequalities and also gives a lower bound of GA1
involving the first Zagreb index.
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Theorem 2. We have for any graph G

2ıM1.G/

.�C ı/2
�GA1.G/�

r
mM1.G/

2ı
:

Furthermore, the equality in each inequality is attained if and only if G is regular.

Proof. By Lemma 1, taking aD ı and b D�, we have

2
p
�ı

�C ı
�
2
p
dudv

duCdv
� 1:

Hence,

1�
.duCdv/

2

4dudv
�
.�C ı/2

4�ı
;

duCdv

2
p
dudv

�
.�C ı/2

4�ı

2
p
dudv

duCdv
:

Note that
M1.G/D

X
v2V.G/

d2v D
X

uv2E.G/

.duCdv/:

Thus, we have

M1.G/

2�
D

X
uv2E.G/

duCdv

2�
�

X
uv2E.G/

duCdv

2
p
dudv

�
.�C ı/2

4�ı
GA1.G/:

Therefore,
2ıM1.G/

.�C ı/2
�GA1.G/:

Cauchy-Schwarz inequality and 1
duCdv

�
1
2ı

give

GA1.G/D
X

uv2E.G/

2
p
dudv

duCdv
�

X
uv2E.G/

p
duCdv
p
duCdv

�

� X
uv2E.G/

.duCdv/
�1=2� X

uv2E.G/

1

duCdv

�1=2
�

r
mM1.G/

2ı
:

If the graph is regular, thenM1.G/D nı
2D 2mı, the lower and upper bound are the

same, and they are equal to GA1.G/Dm. If the equality holds in the lower bound,
then
p
dudv D � for every uv 2 E.G/; hence, du D � for every u 2 V.G/ and G

is regular. If the equality is attained in the upper bound, then duCdv D 2ı for every
uv 2E.G/ and we conclude du D ı for every u 2 V.G/. �

Note that Theorem 2 improves the upper bound 1
2ı
M1.G/: since 2ım �M1.G/;

we have r
mM1.G/

2ı
�
1

2ı
M1.G/:
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Recall that the variable Zagreb index is defined as Z˛.G/ D
P
uv2E.G/.dudv/

˛:

Note that Z�1=2 is the usual Randić index R.G/, Z1 is the second Zagreb indexM2,
Z�1 is the modified Zagreb index [12], etc.

Next, we obtain new inequalities relating the geometric-arithmetic index with the
modified Zagreb index. We will need also the following lemmas.

Lemma 3. We have for any graph G and every uv 2E.G/

ı �
2dudv

duCdv
��;

and the lower (or upper) bound is attained for every uv 2E.G/ if and only if G is a
regular graph.

Proof. We know that

du.dv� ı/Cdv.du� ı/� 0; dudvCdvdu � duıCdvı:

Therefore,

ı �
2dudv

duCdv
:

On the other hand, using the fact that the geometric mean is at most the arithmetic
mean, we obtain

2dudv

duCdv
�
.duCdv/

2

2.duCdv/
D
duCdv

2
��:

If G is a regular graph, then it is clear that both inequalities are attained for every
uv 2 E.G/. Assume that the lower bound is attained for every uv 2 E.G/. Then
dv � ı D du� ı D 0 for every uv 2 E.G/, and dv D ı for every v 2 V.G/. Hence,
G is a regular graph. If the upper bound is attained for every uv 2 E.G/, then
4dudv D .duCdv/

2 for every uv 2 E.G/, du D dv for every uv 2 E.G/, and we
conclude that G is regular since it is connected. �

In order to prove our next result we need the following particular case of Jensen’s
inequality.

Lemma 4. If f is a convex function in RC and x1; : : : ;xm > 0, then

f
�x1C�� �Cxm

m

�
�
1

m

�
f .x1/C�� �Cf .xm/

�
:

Theorem 3. We have for any graph Gs
m3

�2Z�1.G/
�GA1.G/��

2Z�1.G/:

Furthermore, the equality in each inequality is attained if and only if G is regular.
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Proof. Using Lemma 3, we have

ı �
2dudv

duCdv
��;

ı

dudv
�

2

duCdv
�

�

dudv
:

Moreover,X
uv2E.G/

2
p
dudv

duCdv
��

X
uv2E.G/

2

duCdv
��

X
uv2E.G/

�

dudv
D�2Z�1.G/:

Since f .x/D 1=x2 is a convex function in RC, Lemma 4 gives

m2�P
uv2E.G/

2
p
dudv

duCdv

�2 � 1

m

X
uv2E.G/

.duCdv/
2

4dudv
�
�2

m

X
uv2E.G/

1

dudv
;

m2

.GA1.G//2
�
�2

m
Z�1.G/:

If the graph is regular, then Z�1.G/ D m��2, the lower and upper bound are the
same, and they are equal to GA1.G/Dm. If the equality holds in the upper bound,
then
p
dudv D� for every uv 2 E.G/; hence, du D� for every u 2 V.G/ and the

graph is regular. If the equality is attained in the lower bound, then .duCdv/2D 4�2

for every uv 2E.G/ and we conclude du D� for every u 2 V.G/. �

The following result gives a lower and upper bounds forGA1 involving the Zagreb
indices M2.G/ and Z�1.G/.

Theorem 4. We have for any graph G

2ı2
p
M2.G/Z�1.G/

�2C ı2
�GA1.G/�

p
M2.G/Z�1.G/;

and the equality in each inequality is attained if and only if G is a regular graph.

Proof. Lemma 3 gives

ı �
2dudv

duCdv
��:

It is easy to see that
1

�
�

1
p
dudv

�
1

ı
:
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Thus Lemma 2 gives

GA1.G/D
X

uv2E.G/

p
dudv

1
2
.duCdv/

D

X
uv2E.G/

2dudv

duCdv

1
p
dudv

�

�P
uv2E.G/

4.dudv/
2

.duCdv/2

�1=2�P
uv2E.G/

1
dudv

�1=2
1
2

�
�
ı
C

ı
�

�
�
2�ı

p
Z�1.G/

�2C ı2

� X
uv2E.G/

4.dudv/
2

.duCdv/2

�1=2
�
2�ı

p
Z�1.G/

�2C ı2
2ı

2�

� X
uv2E.G/

dudv

�1=2
D
2ı2

p
M2.G/Z�1.G/

�2C ı2
:

Since
4dudv � .duCdv/

2;

Cauchy-Schwarz inequality gives

GA1.G/D
X

uv2E.G/

2
p
dudv

duCdv
�

� X
uv2E.G/

dudv

�1=2� X
uv2E.G/

4

.duCdv/2

�1=2
�

� X
uv2E.G/

dudv

�1=2� X
uv2E.G/

1

dudv

�1=2
D
p
M2.G/Z�1.G/:

If the graph is regular, then the lower and upper bound are the same, and they are
equal to GA1.G/. If the equality holds in the lower bound, then dudv D ı2 for every
uv 2E.G/; hence, duD ı for every u2 V.G/ and the graph is regular. If the equality
is attained in the upper bound, then 4dudv D .duCdv/2 for every uv 2E.G/, du D
dv for every uv 2E.G/, and we conclude that G is regular since it is connected. �

Next, we obtain inequalities relating the geometric-arithmetic index with the Zagreb
indicesM1.G/,M2.G/ andZ�1.G/. Recall that a .�;ı/-biregular graph is a bipart-
ite graph for which any vertex in one side of the given bipartition has degree � and
any vertex in the other side of the bipartition has degree ı.

Theorem 5. For any graph G, �ı
p
.nM1.G/C4M2.G/�4m2/Z�1.G/

�2Cı2 � GA1.G/ �
p
.nM1.G/C4M2.G/�4m2/Z�1.G/

2
: The equality in the lower bound is attained if and

only if G is either regular or .�;ı/-biregular; the equality in the upper bound is
attained if and only if G is regular.
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Proof. We have by Lemma 1

4�ı

.�C ı/2
�

4dudv

.duCdv/2
� 1:

Hence,

2
p
dudv

duCdv
�
duCdv

2
p
dudv

(2.1)

and

2
p
dudv

duCdv
�

4�ı

.�C ı/2
duCdv

2
p
dudv

: (2.2)

We have by (2.1)

GA1.G/D
X

uv2E.G/

2
p
dudv

duCdv
�

X
uv2E.G/

duCdv

2
p
dudv

:

Moreover, X
uv2E.G/

.duCdv/
2
D

X
uv2E.G/

d2u C2
X

uv2E.G/

dudvC
X

uv2E.G/

d2v

D

X
uv2E.G/

.d2u Cd
2
v /C2

X
uv2E.G/

dudv

D

X
uv2E.G/

.d2u Cd
2
v /C2M2.G/:

Since X
uv2E.G/

.d2u Cd
2
v /D

X
v2V.G/

dv �d
2
v D

X
v2V.G/

d3v ;

we have X
uv2E.G/

.duCdv/
2
D

X
v2V.G/

d3v C2M2.G/: (2.3)

Using Cauchy-Schwarz inequality and the formulaX
v2V.G/

d3v D nM1.G/C2M2.G/�4m
2 (2.4)
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(see, e.g., [21]), we obtainX
uv2E.G/

duCdv

2
p
dudv

�

� X
uv2E.G/

.duCdv/
2

4

�1=2� X
uv2E.G/

1

dudv

�1=2
D
1

2

� X
v2V.G/

d3v C2M2.G/
�1=2p

Z�1.G/

D

p
.nM1.G/C4M2.G/�4m2/Z�1.G/

2
:

Let us prove the lower bound. We have by (2.2)

GA1.G/�
4ı�

.ıC�/2

X
uv2E.G/

duCdv

2
p
dudv

:

Since

ı �
duCdv

2
��;

1

�
�

1
p
dudv

�
1

ı
;

Lemma 2, (2.3) and (2.4) give

X
uv2E.G/

duCdv

2
p
dudv

�

�P
uv2E.G/

.duCdv/
2

4

�1=2�P
uv2E.G/

1
dudv

�1=2
1
2

�
�
ı
C

ı
�

�
�

�ı
q�P

v2V.G/d
3
v C2M2.G/

�
Z�1.G/

�2C ı2

D
�ı
p
.nM1.G/C4M2.G/�4m2/Z�1.G/

�2C ı2
:

If the graph is regular, then the lower and upper bound are the same, and they are
equal to GA1.G/.
If the equality in the lower bound is attained, then (2.2) holds for every uv 2 E.G/;
by Lemma 1 we have either du D� and dv D ı, or viceversa, for each uv 2 E.G/.
This happens if and only if G is a regular graph if �D ı or a .�;ı/-biregular graph
otherwise.
If the equality in the upper bound is attained, then (2.1) holds for every uv 2 E.G/;
by Lemma 1 we have du D dv for each uv 2E.G/, and G is a regular graph. �

In [16] we find the bound

GA1.G/��R.G/; (2.5)

where R.G/ is the Randić index. We recall that R.G/ is the best know topological
index.
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The following result provides lower and upper bounds ofGA1 involving the Randić
index. Furthermore, it improves (2.5).

Theorem 6. We have for any graph G

ıR.G/�GA1.G/�
p
�mR.G/;

and the equality in each inequality holds if and only if G is regular.

Proof. Since f .x/D x2 is a convex function in RC, Lemma 4 gives

1

m2
GA1.G/

2
D

1

m2

� X
uv2E.G/

2
p
dudv

duCdv

�2
�
1

m

X
uv2E.G/

4dudv

.duCdv/2
:

Lemma 3 gives

2dudv

duCdv
��;

2dudv.2
p
dudv/

.duCdv/2
�
2dudv.duCdv/

.duCdv/2
D

2dudv

duCdv
��;

4dudv

.duCdv/2
�

�
p
dudv

;

1

m2
GA1.G/

2
�
1

m

X
uv2E.G/

4dudv

.duCdv/2
�
�

m

X
uv2E.G/

1
p
dudv

:

Hence,
GA1.G/�

p
�mR.G/:

In order to prove the lower bound, notice that Lemma 3 gives

ı �
2dudv

duCdv
D
2
p
dudv

p
dudv

duCdv
:

Hence, X
uv2E.G/

ı
p
dudv

�

X
uv2E.G/

p
dudv

1
2
.duCdv/

;

ıR.G/�GA1.G/:

If the graph is regular, then R.G/D m
ı

, the lower and upper bound are the same, and
they are equal to GA1.G/Dm.
If the equality in the lower bound is attained, then

ı D
2dudv

duCdv

for every uv 2E.G/. By Lemma 3, the graph G is regular.
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If the equality in the upper bound is attained, then

�D
2dudv

duCdv

for every uv 2E.G/, and G is regular by Lemma 3. �

Note that Theorem 6 improves the upper bound GA1.G/ � �R.G/: since m
�
�

R.G/; we have p
�mR.G/��R.G/:
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[10] X. Li and Y. Shi, “A survey on the randić index,” MATCH Commun. Math. Comput. Chem., vol. 59,
pp. 127–156, 2008.
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[14] M. Randić, “On characterization of molecular branching,” J. Am. Chem. Soc., vol. 97, pp. 6609–
6615, 1975.

[15] J. A. Rodrı́guez and J. M. Sigarreta, “On the randić index and condicional parameters of a graph,”
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