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Abstract. The integral assembly map in algebraic K-theory is split injective

for any geometrically finite discrete group with finite asymptotic dimension.

The goal of this paper is to apply the techniques developed by the first author

in [3] to verify the integral Novikov conjecture for groups with finite asymptotic

dimension as defined by M. Gromov [9].

Recall that a finitely generated group Γ can be viewed as a metric space with

the word metric associated to a given presentation.

Definition (Gromov). A family of subsets in a general metric space X is called

d-disjoint if dist(V , V ′) = inf{dist(x,x′)|x ∈ V , x′ ∈ V ′} > d for all V , V ′.
The asymptotic dimension of X is defined as the smallest number n such that

for any d > 0 there is a uniformly bounded cover U of X by n + 1 d-disjoint

families of subsets U =U0 ∪ . . .∪Un.

It is known that asymptotic dimension is a quasi-isometry invariant and so

is an invariant of the finitely generated group, independent of the presentation.

One says Γ has finite asymptotic dimension if it does as the metric space with

a word metric.

Examples from this apparently very large class are the Gromov hyperbolic

groups [9], Coxeter groups [8], various generalized products of these, including

the groups acting on trees with vertex stabilizers of finite asymptotic dimension

[2], and, more generally, fundamental groups of developable complexes of finite

dimensional groups [1]. We proved in [5] that cocompact lattices in connected

Lie groups also have finite asymptotic dimension.

Let K(A) be the nonconnective K-theory spectrum of the ring A. A discrete

group is called geometrically finite if its classifying space has the homotopy

type of a finite complex. Our main result is the following theorem.

Main Theorem. Let Γ be a geometrically finite group with finite asymptotic di-

mension and letR be an arbitrary ring. Then the assembly mapα : h(Γ , K(R))→
K(R[Γ]) from the homology of the group Γ with coefficients in the K-theory spec-

trum K(R) to the K-theory of the group ring R[Γ] is a split injection.

We should mention that the original Novikov conjecture on homotopy invari-

ance of higher signatures has been verified for fundamental groups with finite

asymptotic dimension by G. Yu [10]. Also, Gromov has constructed examples of

geometrically finite groups with infinite asymptotic dimension, cf. [7], footnote

to Problem 8 in section 9.
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First, we summarize in section 2 the conversion of the Novikov conjecture

for assembly maps in algebraic K -theory to the statement that certain con-

trolled assembly maps are weak homotopy equivalences and list the properties

of groups and metric spaces required to prove the latter. In section 3 we verify

that groups with finite asymptotic dimension satisfy those properties.

1. Coarse Locally Finite Homology

In this section, we will modify the definition of bhlf from [3] to produce

a coarse version of it. This theory will have the property that it captures the

homology of a locally compact space “at infinity”, as does bhlf, but does not see

any of the ordinary homology of the space. Locally finite homology as defined

in [3] is equivalent to ordinary homology for compact spaces, while our coarse

version will be identical to its value on a point for all compact spaces. This is

an advantage, since the comparison with bounded K-theory of metric spaces

will be more direct.

Here metric spaces will be understood in the following generalized sense.

Definition 1.1. A metric space is a set X and a function d : X×X → [0,∞)∪{∞}
which is reflexive, symmetric, and satisfies the triangle inequality in the obvious

way. The metric space is proper if it is a countable disjoint union of metric

spaces Xi where im(d|Xi × Xi) ⊂ [0,∞), and all closed metric balls in X are

compact. The metric topology on a metric space is defined as usual.

We recall from [3] that hlf is defined as follows, for any topological space.

S.X is defined to be the usual singular complex simplicial set attached to X,

whose k-simplices are the continuous maps from the standard k-simplex to X.

We say that a subset A ⊆ SkX is locally finite if for every point x ∈ X, there is

a neighborhood U of x so that U ∩ im(σ) is non-empty for only finitely many

σ ∈ A. It is clear that if A is locally finite, then so are diA = {diσ | σ ∈

A} and siA = {siσ | σ ∈ A}, and that di|A and si|A are proper maps of

sets. Recall that a map of sets is proper if the inverse images of finite sets of

points are finite. We let LkX denote the partially ordered set of locally finite

subsets of SkX, where the partial ordering is via inclusions of sets. The face

and degeneracy maps di and si induce maps of partially ordered sets Ldi and

Lsi. For a spectrum S, we define Ik(X, S) to be the colimit

colim
−−−−→
A∈LkX

hlf(A;S)

The locally finite homology hlf is defined on the category of sets and proper

maps as in [3], section II. Now hlf(X, S) is defined to be the total spectrum

|I.(X, S)|. When X is a proper metric space, we restrict ourselves to sets A

of singular simplices of uniformly bounded diameter (i.e. the sets im(σ) as σ
varies overA have diameter bounded by some fixed numberN), and obtain the

related theory bhlf(X, S). This is the theory which was used to prove the results

in [3] where it was possible to define an assembly map from bhlf(X,K(R)) to

K(X,R).
The observation we now make that once one has made the restriction to

families of singular simplices of uniformly bounded diameter, one can con-

struct a locally finite homology and corresponding assembly map which does
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not require that the singular simplices be continuous maps. So, we will let AC

denote a collection of (possibly non-continuous) maps from ∆k to X of uni-

formly bounded diameter. The local finiteness criterion still makes sense as

stated, and we may construct a spectrum Chlf(X, S) as in [3]. Moreover, when

one examines the construction of the assembly map, it is easily observed that

continuity of σ is never used, only the uniform boundedness of the diameters

of the sets im(σ). Thus, we obtain an assembly map

A : Chlf(X,K(R)) -→ K(X,R).

It is now easy to check the following two properties of the theory Chlf(X, S).

Proposition 1.2. Suppose that a metric space X is a disjoint union of subsets Xα,

and that for any xα ∈ Xα and xβ ∈ Xβ, with α ≠ β, we have d(xα, xβ) = +∞.

Suppose further that each of the subsets Xα has diameter uniformly bounded

by a fixed number N ≥ 0. Then Chlf(X, S) �
∏
α S, and the assembly map is an

equivalence for X.

We recall that the theory hlf is excisive for locally finite coverings of locally

compact spaces. This means that for any locally finite covering {Uα}α∈A of X,

we construct the simplicial spectrum which in level k is the space

hlf


 ∐

{α0,α1,...,αk}∈Ak

Uα0 ∩Uα1 ∩ . . .∩Uαk




and that the evident map from this simplicial spectrum to the constant simpli-

cial spectrum with value hlf(X, S) is an equivalence of spectra. The analogous

result for Chlf is as follows.

Proposition 1.3. Given a locally finite covering of a metric space X as above,

and a parameter d, we construct the simplicial metric space which in level k is

given by

Chlf


 ∐

{α0,α1,...,αk}∈Ak

NdUα0 ∩NdUα1 ∩ . . .∩NdUαk


 ,

where Nd denotes the d-neighborhood of the set in question. Note that the co-

product means that distances between points in different coproduct factors are

always infinite. There is an evident map from this simplicial spectrum to the con-

stant simplicial spectrum with value Chlf(X, S), and this map becomes a weak

equivalence of spectra after passage to colimits over d.

This proof is similar to the corresponding result in [3], Proposition II.20.

Whenever X is a proper metric space with a group action by isometries,

the spectrum Chlf(X, S) is equivariant. Recall that the fixed point spectrum

of a Γ -spectrum R can be defined as RΓ = MapΓ (S
0, R+). The homotopy fixed

point spectrum can be defined similarly as RhΓ = MapΓ (X+, R+). The collapse

ρ : X+ → S0 induces the canonical maps ρ∗ : RΓ → RhΓ .

Proposition 1.4. Let X be a locally finite simplicial complex with a free action

by a torsion-free group Γ . We assume that there is a contractible finite dimen-

sional complex with a free action of Γ . Then the canonical map ρ∗ : hlf(X, S)Γ →
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hlf(X, S)hΓ is an equivalence. If X is equipped with a metric so that all sim-

plices of X have uniformly bounded diameter, then the map ρ∗ : Chlf(X, S)Γ →
Chlf(X, S)hΓ is an equivalence.

The first statement is proved in [3]. The second follows similarly by observ-

ing that comparison with the auxiliary simplicial theory Chlf(X, S) again does

not require continuity of singular simplices.

2. Controlled Assembly Maps and the Novikov Conjecture

Given a discrete group Γ and a ring R, one may view an element γ ∈ Γ as an

isomorphism of the trivial R[Γ]-module with the inverse γ−1. Following Loday,

to each isomorphism f of finitely generated R-modules there corresponds an

isomorphism γ ⊗ f of finitely generated R[Γ]-modules. This functor induces

the assembly map α : BΓ+ ∧ K(R) → K(R[Γ]) from the Main Theorem. Here BΓ
is the compact universal space of Γ and BΓ+ ∧K(R) is the homology spectrum

of the group Γ with coefficients in the nonconnective K-theory spectrum of R.

The target is the nonconnective K-theory spectrum of the group ring R[Γ]. The

integral Novikov conjecture predicts that this map is a split injection for any

ring R and any group Γ with BΓ a finite CW-complex.

The method here is to interpretα as the fixed point mapAΓ of an equivariant

assembly map of spectra

A : Chlf(X,K(R)) -→ K(X,R)

where X is the universal cover of BΓ , Chlf is the coarse locally finite homology

theory from section 1, and K(X,R) is the nonconnective bounded K-theory of

geometric R-modules on X. The latter construction requires a proper metric on

X which can be chosen to be the lifting of any bounded metric on the compact

classifying space BΓ .
Given a proper metric space X and a ring R, recall that the category of geo-

metric modules B(X,R) associated to X has objects triples (F, B,φ) where F is

a free R-module on the basis B, andφ : B → X is the labelling function such that

φ−1(S) is finite for a bounded S ⊂ X. A morphism f : (F, B,φ)→ (F ′, B′,φ′) in

B(X,R) is an R-linear homomorphism f : F → F ′ with associated numberD ≥ 0

such that for any b ∈ B, its image f(b) is generated by those elements b′ in

B′ with the property d(φ(b),φ(b′)) ≤ D. The category B(X,R) is clearly addi-

tive. Its nonconnective algebraic K-theory spectrum K(X,R) is usually called

the bounded K-theory of geometric R-modules over X.

Definition 2.1. A map between metric spaces φ : (M1, d1) → (M2, d2) is even-

tually continuous if there is a real function g such that

d2(φ(x),φ(y)) ≤ g(d1(x,y))

for all pairs of points x, y in M1. The map φ is proper if for any bounded

subset S ⊂ M2, the preimage φ−1(S) is bounded in M1.

It is easy to see that proper eventually continuous maps induce maps of

K-theory spectra φ∗ : K(M1, R)→ K(M2, R).
If X is a proper metric space with a free action of Γ by isometries so that the

quotient X/Γ is compact, then K(X,R) is a Γ -equivariant spectrum. A differ-

ent weakly equivalent spectrum KΓ ,0(X,R) defined in [3] has good equivariant
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properties but we will suppress the distinction in this paper always assuming

the latter construction.

The following is a sketch of the approach to the integral Novikov conjecture.

The assembly map α is related to the map induced by A on the Γ -fixed point

spectra via the commutative diagram

BΓ+ ∧K(R)
α

----------------------------------------------------------------------------------------------------------------------------→ K(R[Γ])

'

y '

y
Chlf(X,K(R))Γ

AΓ
----------------------------------------------------------------------------------------------------------------------------→ K(X,R)Γ

where the vertical arrows are both weak equivalences. Further, there is a com-

mutative square
Chlf(X,K(R))Γ

AΓ
----------------------------------------------------------------------------------------------------------------------------→ K(X,R)Γ

ρ∗
y

y
Chlf(X,K(R))hΓ

AhΓ
----------------------------------------------------------------------------------------------------------------------------→ K(X,R)hΓ

By Proposition 1.4, the left-hand vertical map ρ∗ is an equivalence whenever

the group Γ is torsion-free. As soon as the lower fixed-point map AhΓ is an

equivalence, the two combined commutative squares show that α induces a

split injection. The second equivalence would follow from the observation that

A : Chlf(X,K(R)) -→ K(X,R)

is a nonequivariant equivalence and the general fact that in this case

AhΓ : Chlf(X,K(R))hΓ -→ K(X,R)hΓ

is always a weak equivalence. For example, this was verified in [3] for torsion-

free discrete cocompact subgroups of a connected Lie group. In this paper, we

show that A is a weak equivalence for groups of finite asymptotic dimension.

One of the basic results in bounded K-theory is the controlled excision the-

orem for finite coverings of a proper metric space X. For a subset S ⊂ X, let

S[D] stand for the metric D-enlargement {x ∈ X | dist(x, S) ≤ D} ⊂ X. Now

suppose X is a union of subspaces Y and Z and let B(Y ,Z ;R) stand for the

full additive subcategory of B(X,R) on objects (F, B,φ) such that there are

numbers DY , DZ ≥ 0 with im(φ) ⊂ Y[DY ]∩ Z[DZ].

Theorem 2.2 (IV.1 [3]). The commutative diagram

K(Y ,Z ;R) ----------------------------------------------------------------------------------------------------------------------------→ K(Y ,R)
y

y

K(Z,R) ----------------------------------------------------------------------------------------------------------------------------→ K(X,R)

is a homotopy pushout.

We also need a controlled excision result for certain infinite one-dimensional

coverings of X. Instead of proving an excision theorem for a single covering of

X, one is forced to look at a directed system of coverings.

Definition 2.3. Let U = {Uα}, α ∈ A, be a covering of a metric space X. It is

locally finite if it has the following two properties:

(1) for any α ∈ A, the set {α′ ∈ A | Uα′ ∩Uα 6= ∅} is finite,
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(2) for any bounded subset U ⊂ X, the set {α ∈ A | U ∩Uα 6= ∅} is finite.

Associated to a locally finite covering, one has a simplicial metric space N.U
where

NkU =
∐

(α0,...,αk)∈Ak+1

k⋂

i=0

Uαi ,

the face mapsdi|Uα0∩. . .∩Uαk are the inclusions onto the disjoint union factors

corresponding to (α0, . . . , α̂i, . . . , αk), and the degeneracy maps si|Uα0∩. . .∩Uαk
are the identity maps onto the factors corresponding to (α0, . . . , αi, αi, . . . , αk).
It is easy to see that the face and degeneracy maps are proper and eventually

continuous with respect to the induced generalized proper metrics in the sense

of Definition 1.1.

A map of coverings Θ : U → U′ is a function of the indexing sets θ : A → B
such that Uα ⊂ Uθ(α). Such maps induce maps of simplicial spectra

K(N.Θ, R) : K(N.U, R) -→ K(N.U′, R).

The inclusions of the multiple intersections Uα0 ∩ . . .∩ Uαk in X induce the

assembly map

A(U) : |K(N.U, R)| -→ K(X,R)

associated to the covering U. If V is a covering, then the covering by the

d-enlargements of the elements of V is denoted by V [d]. For a family of

coveringsU(`) parametrized by integers ` with mapsU(`)→U(`′) for ` ≤ `′,
the associated family U(`)[d] determines the canonical assembly

hocolim
−−−−→
`,d

A(U(`)[d]) : hocolim
−−−−→
`,d

|K(N.U(`)[d],R)| -→ K(X,R).

Our goal is to find conditions on the coverings U(`) so that on one hand this

assembly map may be identified with the controlled assembly A and on the

other is a weak equivalence. This was done for coverings parametrized by the

integers Z in [3]. In order for the result to apply to metric spaces of finite

asymptotic dimension, we need to generalize to parametrizations by vertices

in a locally finite tree T .

Suppose we are given a locally finite covering where the parameter set is

viewed as vertices of a locally finite tree T with the property Uα ∩ Uα′ 6= ∅ if

and only if {α,α′} is an edge in T , which makes the nerve N.U a subcomplex

of a simplicial tree. References to the natural order on Zmust be replaced with

the references to the partial order on vertices in a tree induced by choosing

and fixing a vertex α0 ∈ T .

Definition 2.4. If [t, t′] stands for the unique geodesic segment connecting t
to t′ in T then the relation α ≤ α′ on vertices corresponds to α ∈ [α0, α′]. An

adjacent pair of vertices consists of two vertices α and α′ in T connected by

an edge. When the adjacent vertices are related as in α ≤ α′, we denote this

relationship by the ordered pair 〈α,α′〉.

A simplicial complex is called C-1 if it is a subcomplex of a locally finite

simplicial tree.

Theorem 2.5. If U(`) is a sequence of locally finite coverings of X indexed by

` ≥ 0 together with maps of coverings U(`)→U(` + 1) and the properties:
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(1) for any index ` the nerve N.U(`) is C-1,

(2) for any number d ≥ 0 there is an index ` so that N.U(`)[d] is C-1,

then the assembly map hocolimA(U(`)[d]) is a weak equivalence.

Proof. The proof of Theorem IV.19 that occupies most of section IV in [3] can

be repeated with necessary modifications in terminology and notations. Recall

that there is a partial order on vertices in the tree determined by the fixed vertex

v0. The pairs of adjacent vertices replace the sets of adjacent integers in the

proof. Thus in the definition of disjoint unions on page 82 of [3], one defines

the union Y` =
∐
γ Uα ∩ Uα′ where the sets U∗ are members of U(`) and γ

ranges over the set of all adjacent pairs of vertices 〈α,α′〉. The terminology

‘even’ and ‘odd’ is adapted to mean vertices whose distance to v0 is even or

odd respectively. 5

3. Proof of the Main Theorem

We will apply Theorem 2.5 to spaces that asymptotically embed in products

of trees. The trees we consider are the contractible one-dimensional simplicial

complexes which are locally finite in the sense that the star of any vertex is finite.

Our interest in locally finite trees is justified by the following characterization

of asymptotic dimension.

Definition 3.1. A map between metric spaces φ : (M1, d1) → (M2, d2) is a uni-

form embedding if there are two real functions f and g with limx→∞ f(x) = ∞
and limx→∞ g(x) = ∞ such that

f(d1(x,y)) ≤ d2(φ(x),φ(y)) ≤ g(d1(x,y))

for all pairs of points x, y in M1.

Theorem 3.2 (Dranishnikov [6, 7]). The asymptotic dimension of a metric space

M is finite if and only if there is a uniform embedding ofM in a finite product of

locally finite simplicial trees.

First observe that we may assume that Γ or the space X is a metric subspace

of a product of trees Π.

Proposition 3.3. A surjective map φ : M1 → M2 is a uniform embedding if and

only if it is eventually continuous and there is an eventually continuous map

ψ : M2 → M1 which is an asymptotic inverse, in the sense that the compositions

ψφ andφψ are bounded. In other words, there are real functions g and g such

that d2(φ(x),φ(y)) ≤ g(d1(x,y)) and d1(ψ(t),ψ(s)) ≤ g(d2(t, s)) for all

pairs of points x, y in M1 and t, s in M2.

Proof. If φ is a uniform embedding, we may choose g for g and define

g(z) = sup{z′ | f(z′) ≤ z}.

If ψ : M2 → M1 is any function such that φψ(x) = φ(x) for all x ∈ M1, then

since f(d1(ψ(t),ψ(s))) ≤ d2(t, s),

d1(ψ(t),ψ(s)) ≤ sup{z′ | f(z′) ≤ d2(t, s)} = g(d2(t, s)).

Notice that φψ = id. Let D > sup{r | f(r) = 0}, then for any pair of points

x, y ∈ M1 with φ(x) = φ(y) we have d1(x,y) < D. This shows that ψφ is

bounded by D.
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To see that φ with an asymptotic inverse is a uniform embedding, we may

again choose g for one of the bounding functions and define

f(z) = inf{z′ | z ≤ g(z′)+ 2D},

where D is a bound for ψφ. Then

f(d1(x,y)) = inf{z′ | d1(x,y) ≤ g(z
′)+ 2D} ≤ d2(φ(x),φ(y))

since

d1(x,y)) ≤ g(d2(φ(x),φ(y)))+ 2D.

We have limz→∞ f(z) = ∞ because X is not compact. 5

Corollary 3.4. If φ : M1 → M2 is a surjective uniform embedding then the in-

duced map of spectra K(M1, R)→ K(M2, R) is an equivalence.

Proof. Both φ and ψ induce maps of the K-theory spectra since both are even-

tually continuous and clearly proper. Since bounded endomorphisms induce

equivalences on the bounded K-theory, the induced maps are equivalences. 5

Proposition 3.5. If φ : M1 → M2 is a metric embedding onto a commensurable

subspace, in the sense that there is a number D such that im(φ)[D] = M2, then

the induced map of spectra K(M1, R)→ K(M2, R) is an equivalence.

Proof. This follows from Corollary 3.4 since any functionM2 → im(φ) which is

identity on the subspace im(φ) and is bounded by D is a uniform embedding

of M2 in M1. 5

Corollary 3.6. If there is a uniform embedding of proper metric spaces X in M
then there is an open subset V of M such that the assembly A(X) is an equiva-

lence if and only if A(M) is an equivalence.

Proof. If φ : X → M is the uniform embedding then the subset V can be taken

to be the interior of im(φ)[D] for some D > 0. 5

The proof of the Main Theorem will require a family of coverings of trees

with specific properties.

Proposition 3.7. There is a family of coverings {U(`)} of a locally finite tree T
by uniformly bounded subsets that satisfies the hypotheses of Theorem 2.5.

Proof. Fix a vertex v0 in the geometric realization of the tree T . Given another

vertex v ∈ T , we define its shadow as the subset

Sh(v) = {t ∈ T |v ∈ [v0, t)}.

Let B(v,d) stand for the open metric ball of radius d centered at v and S(v,d)
stand for its boundary sphere. If l ≥ 0 then also define

Sh(v, l) = Sh(v)∩ B(v, l)

and

Sh(v ; l1, l2) = Sh(v, l2)− B(v, l1)− S(v, l1)

for l2 > l1 > 0.

For a number d > 1, consider the collection of open subsets of T consisting

of the ball B(v0,2d) and the differences Sh(v ;d − 1,3d) where the vertices v
vary over S(v0, (2n−1)d) for arbitrary natural numbers n ∈ N. It is easy to see

that this collection is a covering of T . Its nerve is a locally finite tree where the
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vertices are v0 and the vertices v ∈ S(v0, (2n − 1)d), the edges are the pairs

(v,v′) where v′ ∈ Sh(v,2(n+ 1)d). The diameter of each set in the covering

is bounded by 6d.

Fix a number D > 1. We define coverings U(`), ` ≥ 0, by applying the

construction with d = 2`D. To see thatU(`) is subordinate toU(`+1), notice

that

U`+1(v) = Sh(v ; 2`+1D − 1,2`+1(3D))

in U(` + 1) is the union of elements from U(`). Indeed, if

v ∈ S(v0, (2n− 1)2`+1D)

then the corresponding subset is the union of

U`(v
′) = Sh(v′; 2`D − 1,2`(3D))

for all vertices v′ in S(v0,2`(4n−1)D)∩Sh(v) or in S(v0,2`(4n+1)D)∩Sh(v).
To check property (2), one only needs to choose ` > log2 d/D + 2. 5

Notation 3.8. In addition to the notation

U`(v) = Sh(v ; 2`D − 1,2`(3D))

introduced in Proposition 3.7 for elements of U(`), we will use U`(v,v
′) for

the nonempty pairwise intersections U`(v)∩U`(v
′).

Explicitly, if v ∈ S(v0, (2n − 1)d) and v′ ∈ S(v0, (2n + 1)d) so that v ∈
[v0, v′], then

U`(v,v
′) = Sh(v′; 2`D − 1,2`D).

Let Π =
∏n
i=1 Ti be a product of n locally finite trees. Let Z be a countable

discrete metric space, in the sense that the metric function d takes only values

0 and ∞.

Theorem 3.9. If there is a uniform embedding of X in a product of the form

Π× Z then the canonical assembly map A(X) is a weak equivalence.

We are interested in this theorem when Z is a single point, but the setup for

the following inductive proof requires this general statement.

Proof. The proof proceeds by induction on asdim(X). Suppose asdim(X) = n,

then X has a uniform embedding φ in a product Π × Z =
∏n
i=1 Ti × Z . By

Corollary 3.6, we may assume that X is an open metric subspace of Π×Z , and

φ is the embedding. Let π : Π → T1 be the first coordinate projection. Using

the coveringsU(`) of T1 from Theorem 2.5, construct the associated coverings

U′(`) = {U ′ = π−1(U) | U ∈ U(`)} of Π. Now there are product coverings

U×Z ,U(`)×Z , andU(`)[d]×Z of Π×Z defined as {U ′×Z}, {U ′(`)×Z}, and

{U ′(`)[d] × Z} for U ′ ∈ U′. There are also associated coverings UX , UX(`),
andUX(`)[d] ofX defined as {X∩U×Z}, {X∩U(`)×Z}, and {X∩U(`)[d]×Z}.
These coverings of X satisfy the conditions of Proposition 3.7.

The coverings UX(`) satisfy the conditions of Theorem 2.5, so the induced

assembly map

hocolimA(UX(`)[d]) : hocolim
−−−−→
`,d

|K(N.UX(`)[d],R)| -→ K(X,R)

is an equivalence. For the identification of hocolimA(UX(`)[d]) with

A(X) : Chlf(X,K(R)) -→ K(X,R),
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one observes that by Proposition 1.3 the coverings UX(`)[d] are excisive, in

addition to the properties in Theorem 2.5. So there is an equivalence

hocolim
−−−−→
`,d

| Chlf(N.UX(`)[d],K(R))| -→
Chlf(X,K(R)).

Now the vertical maps in the commutative diagram

hocolim
−−−−→
`,d

| Chlf(N.UX(`)[d],K(R))| ----------------------------------------------------------------------------------------------------------------------------→ hocolim
−−−−→
`,d

|K(N.UX(`)[d],R)|

y
yhocolimA(UX(`)[d])

Chlf(X,K(R))
A(X)
----------------------------------------------------------------------------------------------------------------------------→ K(X,R)

are weak equivalences. It remains to show that the assembly map

hocolim
−−−−→
`,d

| Chlf(N.UX(`)[d],K(R))| -→ hocolim
−−−−→
`,d

|K(N.UX(`)[d],R)|

is also an equivalence. It will suffice to prove that levelwise

Chlf(NkUX(`)[d],K(R)) -→ K(NkUX(`)[d],R)

is an equivalence for all k. This can be shown for a cofinite family of pairs

(`,d). We take the family to be the pairs such that N.U(`)[d] is C-1.

Let P = P(`,D) be the set of all pairs (n,v) with v ∈ S(v0, (2n − 1)2`D).
In this case the metric space NkUX(`)[d] is a finite disjoint union of metric

spaces which are either

(1)
∐

P

X ∩
(
π−1U`(v)[d]× Z

)
,

where v ∈ S(v0, (2n− 1)2`D), or of the form

(2)
∐

P

X ∩
(
π−1U`(v

′′, v)[d]× Z
)
,

where v′′ ∈ [v0, v] is uniquely determined by v . Here each space of type (2)

corresponds to a choice of an integer 1 ≤m ≤ 2k+1. For a given m, written in

base 2, the subsets U`(v
′′, v) involved in the expression (2) should be viewed

as the k + 1-fold intersections of the kind U`(v
′′) ∩ . . . ∩ U`(v) where the

occurrences of U`(v
′′) correspond to zeros inm and the occurrences of U`(v)

correspond to ones in m.

Let f be a function from P to vertices in T1 such that f(n,v) ∈ U`(v
′′, v).

The image of f , which we denote by F , is a countable discrete metric space.

There are inclusions of metric spaces

π−1F × Z ⊂
∐

P

π−1U`(v)[d]× Z,

and

π−1F × Z ⊂
∐

P

π−1U`(v
′′, v)[d]× Z.

Let F ′X be either of the metric disjoint unions (1) or (2), then the orthogonal

projection

p : F ′X -→ π−1F × Z = Πni=2Ti × F × Z
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is a bounded map with image FX . We have a commutative diagram

Chlf(F ′X , K(R)) ----------------------------------------------------------------------------------------------------------------------------→ K(F ′X , R)yp∗
yp∗

Chlf(FX , K(R)) ----------------------------------------------------------------------------------------------------------------------------→ K(FX , R)

It can be shown that the left hand vertical arrow is an equivalence, cf. V.7 in [3].

Since FX is commensurable to F ′X , the map p : F ′X → FX is a coarse equivalence,

so the right hand vertical arrow is also an equivalence. Now to show that the

upper horizontal arrow is an equivalence, it suffices to show that the lower one

is an equivalence. But FX is a subspace of Πni=2Ti × F × Z , where Πni=2Ti is the

product of n− 1 locally finite trees, and F × Z is a countable discrete space.

We may conclude by induction on n that

Chlf(F ′X , K(R)) -→ K(F
′
X , R)

is an equivalence if this is true for n = 0. In this case X is a disjoint union of

possibly infinitely many uniformly bounded components. Therefore, the cate-

gory of geometric modules on X and bounded homomorphisms is equivalent

to an infinite product, parametrized by the components, of copies of the cate-

gory of finitely generated projective modules over the coefficient ring R. It now

follows from [4] that the K-theory is equivalent to the infinite product of copies

of the spectrum K(R). The same is true for the homology theory Chlf(X,K(R))
by Proposition 1.2. This completes the proof of Theorem 3.9 and the Main

Theorem. 5
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