Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface
Abstract
:1. Introduction
2. Piezoelectric-Based Smart Interface for Bolted Connection
2.1. Piezoelectric-Based Smart Interface Technique
2.2. Analytical Modeling of Piezoelectric-Based Smart Interface
2.2.1. Impedance Response of Bolted Connection
2.2.2. Impedance Response versus Preload Change
3. Predetermination of Sensitive Frequency Band for Impedance Response
3.1. Finite Element Model of PZT Interface-Bolted Connection
3.1.1. Finite Element Modeling
3.1.2. Simulation of Bolt Preload Change
3.2. Predetermination of Sensitive Frequency Band for Bolted Connection
3.3. Evaluation of Predetermined Frequency Band
4. Experimental Evaluation on Lab-Scaled Bolted Girder Connection
4.1. Experimental Setup
4.1.1. Test-Setup of Bolted Girder Connection
4.1.2. Impedance Measurement System
4.2. Preload Change Monitoring in Bolted Girder Connection
4.2.1. Impedance Measurement via PZT Interface
4.2.2. Detection of Preload Change using Impedance Response
Statistical Quantification Method
Preload Change Detection Results
5. Conclusions
- (1)
- The PZT interface’s sensitive frequency band, predetermined by the numerical simulation, was quite consistent with that measured from the experiment.
- (2)
- The impedance signatures obtained from the PZT interface were sensitive to the minor preload change in the bolted connection. For the tested eight-bolt connection, a 31% torque-loss of a single bolt can be detected using the PZT interface technique.
- (3)
- A single PZT interface was able to monitor multiple loosened bolts in a connection, thus reducing the number of sensing channels for the impedance monitoring of a large bolted connection.
Author Contributions
Funding
Conflicts of Interest
References
- Chaki, S.; Corneloup, G.; Lillamand, I.; Walaszek, H. Combination of Longitudinal and Transverse Ultrasonic Waves for In Situ Control. of the Tightening of Bolts. J. Press. Vessel Technol. 2006, 129, 383–390. [Google Scholar] [CrossRef]
- Kim, N.; Hong, M. Measurement of axial stress using mode-converted ultrasound. NDT E Int. 2009, 42, 164–169. [Google Scholar] [CrossRef]
- Joshi, S.G.; Pathare, R.G. Ultrasonic instrument for measuring bolt stress. Ultrasonics 1984, 22, 261–269. [Google Scholar] [CrossRef]
- Wang, T.; Song, G.; Wang, Z.; Li, Y. Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method. Smart Mater. Struct. 2013, 22, 087001. [Google Scholar] [CrossRef]
- Doyle, D.; Zagrai, A.; Arritt, B.; Çakan, H. Damage Detection in Bolted Space Structures. J. Intell. Mater. Syst. Struct. 2010, 21, 251–264. [Google Scholar] [CrossRef]
- Kong, Q.; Zhu, J.; Ho, S.C.M.; Song, G. Tapping and listening: A new approach to bolt looseness monitoring. Smart Mater. Struct. 2018, 27, 07LT02. [Google Scholar] [CrossRef]
- Park, G.; Sohn, H.; Farrar, C.R.; Inman, D.J. Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib. Dig. 2003, 35, 451–464. [Google Scholar] [CrossRef]
- Mascarenas, D.L.; Todd, M.D.; Park, G.; Farrar, C.R. Development of an impedance-based wireless sensor node for structural health monitoring. Smart Mater. Struct. 2007, 16, 2137. [Google Scholar] [CrossRef]
- Chaudhry, Z.A.; Joseph, T.; Sun, F.P.; Rogers, C.A. Local-area health monitoring of aircraft via piezoelectric actuator/sensor patches. Proc. SPIE 1995, 2443. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Kim, J.-T. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage. Smart Mater. Struct. 2017, 26, 125004. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Soh, C.K. Towards more accurate numerical modeling of impedance based high frequency harmonic vibration. Smart Mater. Struct. 2014, 23, 035017. [Google Scholar] [CrossRef]
- Huynh, T.C.; Dang, N.L.; Kim, J.T. Advances and challenges in impedance-based structural health monitoring. Struct. Monit. Maint. 2017, 4, 301–329. [Google Scholar]
- Huynh, T.C.; Kim, J.T. RBFN-based temperature compensation method for impedance monitoring in prestressed tendon anchorage. Struct. Control Health Monit. 2018, 25, e2173. [Google Scholar] [CrossRef]
- Wang, T.; Song, G.; Liu, S.; Li, Y.; Xiao, H. Review of Bolted Connection Monitoring. Int. J. Distrib. Sens. Netw. 2013, 9, 871213. [Google Scholar] [CrossRef]
- Park, G.; Cudney, H.H.; Inman, D.J. Feasibility of using impedance-based damage assessment for pipeline structures. Earthq. Eng. Struct. Dyn. 2001, 30, 1463–1474. [Google Scholar] [CrossRef]
- Hong, D.-S.; Nguyen, K.-D.; Lee, I.-C.; Kim, J.-T. Temperature-Compensated Damage Monitoring by Using Wireless Acceleration-Impedance Sensor Nodes in Steel Girder Connection. Int. J. Distrib. Sens. Netw. 2012, 8, 167120. [Google Scholar] [CrossRef]
- Ritdumrongkul, S.; Abe, M.; Fujino, Y.; Miyashita, T. Quantitative health monitoring of bolted joints using a piezoceramic actuator–sensor. Smart Mater. Struct. 2004, 13, 20. [Google Scholar] [CrossRef]
- Min, J.; Park, S.; Yun, C.-B. Impedance-based structural health monitoring using neural networks for autonomous frequency range selection. Smart Mater. Struct. 2010, 19, 125011. [Google Scholar] [CrossRef]
- Nguyen, T.-C.; Huynh, T.-C.; Yi, J.-H.; Kim, J.-T. Hybrid. bolt-loosening detection in wind turbine tower structures by vibration and impedance responses. Wind Struct. 2017, 24, 385–403. [Google Scholar] [CrossRef]
- Wang, B.; Huo, L.; Chen, D.; Li, W.; Song, G. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer—A Feasibility Study. Sensors 2017, 17, 250. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-T.; Nguyen, K.-D.; Park, J.-H. Wireless impedance sensor node and interface washer for damage monitoring in structural connections. Adv. Struct. Eng. 2012, 15, 871–885. [Google Scholar] [CrossRef]
- Nguyen, K.-D.; Lee, S.-Y.; Lee, P.-Y.; Kim, J.-T. Wireless SHM for bolted connections via multiple PZT-interfaces and Imote2-platformed impedance sensor node. In Proceedings of the 6th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST2011), Dalian, China, 25–26 July 2011; pp. 25–26. [Google Scholar]
- Huynh, T.-C.; Kim, J.-T. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique. Math. Probl. Eng. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Lee, K.-S.; Kim, J.-T. Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation. Smart Mater. Struct. 2015, 15, 375–393. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Kim, J.-T. Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders. Smart Mater. Struct. 2016, 17, 881–901. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Park, Y.-H.; Park, J.-H.; Kim, J.-T. Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage. Shock Vib. 2015, 2015, 11. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, J.-T.; Hong, D.-S.; Mascarenas, D.; Lynch, J.P. Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements. Smart Mater. Struct. 2010, 6, 711–730. [Google Scholar] [CrossRef]
- Perera, R.; Pérez, A.; García-Diéguez, M.; Zapico-Valle, J. Active Wireless System for Structural Health Monitoring Applications. Sensors 2017, 17, 2880. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Huynh, T.-C.; Kim, J.-T. Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique. Smart Mater. Struct. 2017, 20, 181–195. [Google Scholar]
- Liang, C.; Sun, F.P.; Rogers, C.A. Coupled Electro.-Mechanical Analysis of Adaptive Material Systems-Determination of the Actuator Power Consumption and System Energy Transfer. J. Intell. Mater. Syst. Struct. 1994, 5, 12–20. [Google Scholar] [CrossRef]
- Gresil, M.; Yu, L.; Giurgiutiu, V.; Sutton, M. Predictive modeling of electromechanical impedance spectroscopy for composite materials. Struct. Health Monit. 2012, 11, 671–683. [Google Scholar] [CrossRef]
- Ong, C.W.; Yang, Y.; Wong, Y.T.; Bhalla, S.; Lu, Y.; Soh, C.K. Effects of adhesive on the electromechanical response of a piezoceramic-transducer-coupled smart system. Proc. SPIE 2003, 5062. [Google Scholar] [CrossRef]
- Kim, J.-T.; Huynh, T.-C.; Lee, S.-Y. Wireless structural health monitoring of stay cables under two consecutive typhoons. Struct. Monit. Maint. 2014, 1, 47–67. [Google Scholar] [CrossRef]
- Kim, J.-T.; Nguyen, K.-D.; Huynh, T.-C. Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique. Smart Struct. Syst. 2013, 12, 381–397. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Park, J.-H.; Kim, J.-T. Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring. Measurement 2016, 88, 385–401. [Google Scholar] [CrossRef]
- Kim, J.-T.; Park, J.-H.; Hong, D.-S.; Ho, D.-D. Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections. Smart Struct. Syst. 2011, 7, 393–416. [Google Scholar] [CrossRef]
Parameters | PZT Interface | Splice Plate | Bonding Layer |
---|---|---|---|
Young’s modulus, E (GPa) | 70 | 200 | 6 |
Poisson’s ratio, υ | 0.33 | 0.3 | 0.38 |
Mass density, ρ (kg/m3) | 2700 | 7850 | 1700 |
Damping loss factor, η | 0.02 | 0.02 | 0.02 |
Parameters | Value |
---|---|
Elastic compliance, (m2/N) | |
Dielectric coupling constant, (C/N) | |
Permittivity, (Farad/m) | |
Mass density, ρ (kg/m3) | 7750 |
Damping loss factor, η | 0.0125 |
Dielectric loss factor, δ | 0.015 |
Damage Case | Description | Value of Contact Stiffness (N/m2/m) | |
---|---|---|---|
kx = ky | kz | ||
Intact | 0% contact stiffness-loss | 2.0 × 1011 | 4.0 × 1011 |
D1 | 12.5% contact stiffness-loss | 1.75 × 1011 | 3.5 × 1011 |
D2 | 25% contact stiffness-loss | 1.5 × 1011 | 3.0 × 1011 |
D3 | 37.5% contact stiffness-loss | 1.25 × 1011 | 2.5 × 1011 |
D4 | 50% contact stiffness-loss | 1.0 × 1011 | 2.0 × 1011 |
Damage Case | Peak Frequency (kHz) | |||
---|---|---|---|---|
f1 | Δf1 (%) | f2 | Δf2 (%) | |
Intact | 18.05 | 0 | 34.05 | 0 |
D1 | 17.80 | −1.39 | 34.00 | −0.15 |
D2 | 17.50 | −3.05 | 33.95 | −0.29 |
D3 | 17.20 | −4.71 | 33.90 | −0.44 |
D4 | 16.80 | −6.93 | 33.85 | −0.59 |
Loosened Bolt | Variation of Torque Level (Nm) |
---|---|
Bolt 1 | Bolt 1: 160 → 110 (−31%) → 60 (−62%) → 0 (−100%); all others: 160 |
Bolt 2 | Bolt 2: 160 → 110 (−31%) → 60 (−62%) → 0 (−100%); all others: 160 |
Bolt 3 | Bolt 3: 160 → 110 (−31%) → 60 (−62%) → 0 (−100%); all others: 160 |
Bolt 4 | Bolt 4: 160 → 110 (−31%) → 60 (−62%) → 0 (−100%); all others: 160 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, T.-C.; Dang, N.-L.; Kim, J.-T. Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface. Sensors 2018, 18, 2766. https://doi.org/10.3390/s18092766
Huynh T-C, Dang N-L, Kim J-T. Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface. Sensors. 2018; 18(9):2766. https://doi.org/10.3390/s18092766
Chicago/Turabian StyleHuynh, Thanh-Canh, Ngoc-Loi Dang, and Jeong-Tae Kim. 2018. "Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface" Sensors 18, no. 9: 2766. https://doi.org/10.3390/s18092766
APA StyleHuynh, T. -C., Dang, N. -L., & Kim, J. -T. (2018). Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface. Sensors, 18(9), 2766. https://doi.org/10.3390/s18092766