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Abstract: In direction-of-arrival (DOA) estimation with sensor arrays, the background noise is usually
modeled to be uncorrelated uniform white noise, such that the related algorithms can be greatly
simplified by making use of the property of the noise covariance matrix being a diagonal matrix
with identical diagonal entries. However, this model can be easily violated by the nonuniformity of
sensor noise and the presence of outliers that may arise from unexpected impulsive noise. To tackle
this problem, we first introduce an exploratory factor analysis (EFA) model for DOA estimation in
nonuniform noise. Then, to deal with the outliers, a generalized extreme Studentized deviate (ESD)
test is applied for outlier detection and trimming. Based on the trimmed data matrix, a modified EFA
model, which belongs to weighted least-squares (WLS) fitting problems, is presented. Furthermore,
a monotonic convergent iterative reweighted least-squares (IRLS) algorithm, called the iterative
majorization approach, is introduced to solve the WLS problem. Simulation results show that the
proposed algorithm offers improved robustness against nonuniform noise and observation outliers
over traditional algorithms.

Keywords: direction-of-arrival (DOA) estimation; nonuniform noise; impulsive noise; exploratory
factor analysis (EFA)

1. Introduction

Usually, in the problem of direction-of-arrival (DOA) estimation, the background
noise is assumed to be uniform white noise, i.e., all sensor noises constitute a zero-mean
Gaussian process with the covariance matrix σ2 I, where σ2 is the noise variance and I
is the identity matrix [1]. with such an assumption, the problem of DOA estimation can
be much simplified. For instance, in subspace-based approaches such as multiple signal
classification (MUSIC) and the estimation of signal parameters via rotational invariant
techniques (ESPRIT), the signal subspace and noise subspace can be simply separated
by the eigenvalue decomposition of the array covariance matrix. In those maximum-
likelihood (ML) algorithms [2–4], one can concentrate the resultant log-likelihood (LL)
function with respect to both signal waveform and noise nuisance parameters. Therefore,
the dimension of unknown parameter space and the associated computational burden can
be significantly reduced.

However, in practical applications, the noise may be time-varying because of tempera-
ture drift, and in some system implementations, the sensor noise variances are not identical
to each other due to the difference between the sensor locations and the associated noise
environment. As a result, the uniform white noise assumption may be violated, and in
general, the classical methods aforementioned cannot provide satisfactory performance in
these situations. As discussed in [1], in some applications, such as sparse array systems,
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the sensor noises are spatially uncorrelated. However, the noise variances of the sensors
may be different from each other. This is probably caused by the nonuniformity of sensor
noise or the imperfection of array calibration. In this case, the noise covariance matrix can
still be modeled as a diagonal matrix, whereas its diagonal elements are no longer identical.
This kind of noise is named nonuniform white noise, and it is one of the main aspects that
we shall study in this paper.

Many efforts have been devoted to the problem of DOA estimation in the presence of
nonuniform noise [1–8]. A series of ML-based algorithms were proposed in [1–6], and de-
terministic/stochastic ML DOA estimators were derived [1,6]. For implementation, the au-
thors gave an iterative procedure, including a stepwise concentration of the LL function
with respect to the signal and noise nuisance parameters. For some specific cases, e.g., where
the number of sensors is no smaller than three times the number of sources, various methods
were proposed for noise covariance matrix estimation, which can be utilized to prewhiten
the observations or removed from the array covariance matrix [7,8]. These methods have
lower computational complexity compared with the ML DOA estimators. In particular,
Liao et al. have made significant contributions on this topic by proposing a series of al-
gorithms for DOA estimation in nonuniform noise, including the iterative ML subspace
estimation (IMLSE) and iterative least-squares subspace estimation (ILSSE) algorithms [9],
the partly calibrated array with nonuniform noise [10], eigendecomposition- and rank
minimization-based approaches [11], the spatial smoothing-based method [12], and the ma-
trix completion-based method [13]. More recently, a sparse reconstruction-based approach
was proposed in [14] and a low-rank matrix recovery-based method was reported in [15].

Besides the nonuniformity of sensor noise, the other aspect that may cause significant
performance degradation of the conventional Gaussian assumption-based array signal
processing methods is the data outliers. Moreover, it is known that in practical systems, one
of the key reasons for the presence of data outliers is the existence of unexpected impulsive
noise. Due to the importance of this problem, a large number of robust methods against
impulsive noise have been developed. In [16], an expectation maximization (EM) algorithm
is proposed to estimate the source locations, signal waveforms, and noise distribution
parameters. In [17], the Shapiro–Wilk goodness-of-fit W test is utilized to suppress im-
pulsive noise by trimming the outliers prior to covariance estimation, so that the impact
of impulsive noise on conventional DOA estimation algorithms can be minimized. It is
shown in [18] that as a powerful robust statistical technique, the M-estimator [19–21] can
be incorporated to the traditional projection approximation subspace tracking (PAST) algo-
rithm [22]. Therefore, the impulse-corrupted data (outliers) can be detected and prevented
from corrupting the subspace estimate, and hence, the subspace-based DOA estimators can
be properly performed.

In this paper, we develop a more practical and general DOA estimator, which takes
both the nonuniform noise and data outliers into account. More precisely, the background
noise is assumed to be nonuniform white noise with an unknown covariance matrix.
Furthermore, the collected observation data are corrupted by outliers. In order to handle
these two aspects simultaneously in the problem of direction finding, a novel robust
exploratory factor analysis (EFA)-based DOA estimator is introduced. Firstly, an approach
to DOA estimation in the presence of nonuniform noise is derived based on the EFA
model [23–27]. Next, with the help of generalized extreme Studentized deviate (ESD)
test [28], a modified EFA model is proposed to combat the hostile effect of outliers. We
show that the modified EFA model can be deemed a weighted least-squares (WLS) fitting
problem. In order to solve this problem, a monotonic convergent iterative reweighted
least-squares (IRLS) algorithm [29] is employed. After the subspace is robustly estimated
through the above procedure, conventional algorithms such as MUSIC for DOA estimation
can be applied directly. Simulation results demonstrate that the proposed method performs
well in the presence of nonuniform noise and offers improved robustness against outliers
over traditional algorithms.
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The remainder of this paper is organized as follows. The EFA-based subspace and
DOA estimation algorithms are first introduced in Section 2. The proposed methods
for DOA estimation in the presence of nonuniform noise and observation outliers are
presented in Sections 3 and 4. Numerical examples are conducted in Section 5 to evaluate
the performance of the proposed method. Finally, Section 6 concludes the paper.

2. Signal Model

Consider an array of M sensors receiving L uncorrelated narrowband source signals.
The observation vector can be written as

x(i) = As(i) + n(i), (1)

where A = [a(θ1, ϕ1), · · · , a(θL, ϕL)] denotes the steering matrix with a(θ, ϕ) being the
steering vector, and s(i) = [s1(i), · · · , sL(i)]T and n(i) = [n1(i), · · · , nM(i)]T are the signal
waveform vector and additive noise measurement vector, respectively. More specifically,
the steering vector can be written as

a(θ, ϕ) = [ejwτ1(θ,ϕ), · · · , ejwτM(θ,ϕ)]T , (2)

where w = 2π f , f is the carrier frequency, and τm(θ, ϕ) = aT pm
/

c, with c being the
propagation velocity. e and pm, respectively, are the unite vector and mth sensor position:

e =

 sin θ cos φ
sin θ sin φ

cos φ

, pm =

 pxm

pym

pzm

. (3)

The source signals are assumed to be temporally uncorrelated zero-mean Gaussian
processes with E{s(i)} = 0 and E{s(i)sH(i)} = P, where E{·} denotes statistical expecta-
tion. Moreover, the covariance matrix P is diagonal, and its diagonal entries represent the
signal powers. For the nonuniform white noise considered in this paper, we have

E{n(i)nH(i)} = Q = diag{σ2
1 , σ2

2 , · · · , σ2
M}, (4)

where σ2
m denotes the noise power in the mth sensor. It can be seen that if σ2

1 = σ2
2 = · · · =

σ2
M , the above model is reduced to that of uniform white noise. For the convenience of the

following derivation, we rewrite the noise vector as follows:

n(i) = Φu(i), (5)

where Φ = Q1/2 = diag{σ1, σ2, · · · , σM} is a diagonal matrix representing the standard
deviation of each sensor noise, and u(t) is a spatially and temporally uncorrelated standard
normal distribution such that E{u(i)} = 0 and E{u(i)uH(i)} = IM, where IM is an M × M
identity matrix. According to (1) and (5), we have

x(i) = As(i) + Φu(i). (6)

Assuming that N snapshots are collected, the observation data matrix can be written
compactly as

X = SAH + N = SAH + UΦH , (7)

where X = [x(1), · · · , x(N)]H ∈ CN×M, S = [s(1), · · · , s(N)]H ∈ CN×L, N = [n(1), · · · ,
n(N)]H ∈ CN×M, and U = [u(1), · · · , u(N)]H ∈ CN×M. Given a sufficiently large N,
we have

1
N

SHS = P,
1
N

NNH = Q, and
1
N

UUH = IN . (8)
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Making use of the above identities, Equation (7) can be further reformulated as

X = So AH
o + UoΦH

o , (9)

where So = N−1/2SP−1/2 , Ao = N1/2 AP1/2 , Uo = N−1/2U , and Φo = N1/2Φ. Moreover,
we have

SH
o So = IL, UH

o Uo = IM. (10)

It is assumed that the source signals and noise are uncorrelated, so that we have
UHS = 0M×L, and hence

UH
o So = 0M×L. (11)

In this paper, we focus on the problem of DOA estimation based on the subspace,
which spans the same space as the steering vector matrix A. Once such a subspace estimate
is available, the conventional subspace-based DOA estimation algorithms can be applied.
Moreover, from the identity Ao = N1/2 AP1/2, it is known that the Ao spans the same space
as A .

3. EFA-Based DOA Estimation

In this section, we shall focus on estimating Ao by taking advantage of the EFA model.
More precisely, according to (9)–(11), the EFA model can be described as

X = So AH
o + UoΦH

o ,

s.t. SH
o So = IL, UH

o Uo = IM,

UH
o So = 0M×L, and Φo is diagonal.

(12)

Consequently, based on the LS goodness-of-fit criterion, the corresponding problem
for subspace (or say Ao) estimation is given by

min
∥∥∥X − So AH

o − UoΦH
o

∥∥∥2

F

s.t. SH
o So = IL, UH

o Uo = IM, UH
o So = 0M×L

Φo is diagonal.

(13)

In order to transform the complex-valued problem (13) into a real-valued one, the fol-
lowing proposition will be applied:

Proposition 1. Let B be a complex-valued matrix and the corresponding real-valued matrix B̄ be
defined as

B̄ =

[
Re{B} Im{B}
−Im{B} Re{B}

]
; (14)

then, we have

∥B∥2
F =

1
2
∥B̄∥2

F. (15)

Further, given another complex-valued matrix C, and letting G = BCH , we have

Ḡ = B̄C̄T (16)

where C̄ and Ḡ are real-valued matrices defined according to (14).

Proof. See Appendix A.

Following the above proposition, the objective function in (13) can be rewritten as∥∥∥X − So AH
o − UoΦH

o

∥∥∥2

F
=

1
2

∥∥∥X̄ − S̄o ĀT
o − ŪoΦ̄T

o

∥∥∥2

F
, (17)
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where S̄o, Āo, Ūo, and Φ̄o are similarly defined as (14). Moreover, the constraints in (13) can
be equivalently represented as

SH
o So = IL ⇔ S̄T

o S̄o = I2L, (18a)

UH
o Uo = IM ⇔ ŪT

o Ūo = I2M, (18b)

UH
o So = 0M×L ⇔ ŪT

o S̄o = 02M×2L. (18c)

Consequently, the problem in (13) can be equivalently transformed to the following
real-value optimization problem:

min
∥∥∥X̄ − S̄o ĀT

o − ŪoΦ̄T
o

∥∥∥2

F

s.t. S̄T
o S̄o = I2L, ŪT

o Ūo = I2M, ŪT
o S̄o = 02M×2L

Φ̄o is diagonal.

(19)

Now, an iterative method will be introduced to solve the above problem. Firstly, we
define two matrices Ē and F̄, respectively, as

Ē = [S̄o Ūo] ∈ R2N×(2L+2M), (20a)

F̄ = [Āo Φ̄o] ∈ R2M×(2L+2M). (20b)

Then, the problem in (19) can be rewritten as

min
∥∥∥X̄ − Ē F̄T

∥∥∥2

F

s.t. ĒT Ē = I2(M+L).
(21)

It can be noted that for a given F̄ , the problem in (21) is an orthogonal Procrustes
problem, and its solution is given by [30]

Ē = MNT , (22)

where M and N are obtained from the economy SVD of the matrix X̄ F̄ as

X̄ F̄
SVD
= MDNT , (23)

where D is a diagonal matrix composed of the singular values.
According to (20a), once Ē has been obtained, S̄o and Ūo can be respectively determined

from the first 2L and the last 2M columns of Ē, i.e., S̄o = Ē(:, 1 : 2L),
Ūo = Ē(:, 2L + 1 : 2L + 2M). In addition, taking advantage of the properties of S̄o and
Ūo as shown in (18a), (18b) and (18c), one obtains

S̄T
o X̄ = S̄T

o (S̄o ĀT
o + ŪoΦ̄T

o ) = ĀT
o , (24a)

ŪT
o X̄ = ŪT

o (S̄o ĀT
o + ŪoΦ̄T

o ) = Φ̄T
o . (24b)

This indicates that Āo and Φ̄o can be respectively updated as

Āo = X̄T S̄o, Φ̄o = X̄TŪo. (25)

Meanwhile, the matrix F̄ = [Āo Φ̄o] can be further updated. It can be seen that
Ē and F̄ are estimated iteratively, and the procedure should be stopped after a certain
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convergence criterion is met, such as the difference between two consecutive fLSs (where
fLS = ∥X̄ − ĒF̄T∥2

F) being less than the prescribed threshold or the maximal iterations
being reached. Finally, Ao can be extracted from Āo as

Ao = Āo(1 : M, 1 : L) + jĀo(1 : M, L + 1 : 2L), (26)

and it is then applied to the conventional high-resolution direction-finding algorithms.
In this paper, the MUSIC algorithm is employed, and hence, the DOAs can be estimated
from the following spectrum:

G(θ, ϕ) =
1

|aH(θ, ϕ)(IM − Ão ÃH
o )a(θ, ϕ)|

, (27)

where Ão is an orthonormal matrix of Ao. In summary, the main steps of the proposed
EFA-based method for DOA estimation are listed in Algorithm 1.

Algorithm 1 Proposed EFA-based Method for DOA Estimation in Nonuniform Noise

1: Initialization: Set S̄o, Ūo, Āo = X̄T S̄o, Ē = [S̄o Ūo], Φ̄o = diag(X̄TŪo), and F̄ =
[Āo Φ̄o], f ′ = ∥X̄∥2

F, fLS = ∥X̄ − Ē F̄T∥2
F

2: while | f ′ − f | > ε or max iteration number unreached do

3: X̄ F̄
SVD
= MDNT (economy SVD)

4: Ē = MNT

5: S̄o = Ē(:, 1 : 2L)
6: Ūo = Ē(:, 2L + 1 : 2L + 2M)
7: Āo = X̄T S̄o, Φ̄o = X̄ HŪo
8: Ē = [S̄o Ūo], F̄ = [Āo Φ̄o]

9: f ′ = f , f =
∥∥X̄ − ĒF̄T

∥∥2
F

10: end while
11: Ao = Āo(1 : M, 1 : L) + jĀo(1 : M, L + 1 : 2L)
12: Orthonormalize Ao to obtain Ão

13: Spectrum G(θ,ϕ)=
1

|aH(θ, ϕ)(IM−Ão ÃH
o )a(θ, ϕ)|

14: Output: DOA estimates.

4. Robust EFA-Based DOA Estimation against Outliers

In the above section, we show that the subspace—and hence, DOAs—can be estimated
in cases where the background noise is nonuniform white. However, it is worth noting that
the above approach does not take the data outliers into account. Unfortunately, the standard
LS problem (21) is not robust against—and is unstable to—the data outliers. Outlying data
usually result in an effect so strong in the minimization that the parameters and estimates
are distorted. In this paper, to combat the hostile effect of data outliers, a simple robust
statistical technique is used to detect the outliers. Then, the detected outliers with extremely
large values are treated as missing data, which are then replaced by some mild values.
Moreover, relatively small weights are attached to these data points in order to indicate
their importance, and hence, a WLS problem is formulated. The resulting approach is
thus named the robust EFA-based method, which extends the EFA-based method to the
scenarios with both nonuniform noise and data outliers.

4.1. Outlier Detection

Many methods have been developed in the past several decades to detect data outliers;
the interested reader is referred to [28,31–34] and related references therein. In this paper,
a method called the generalized ESD test is employed [28]. The main reason for choosing
this approach is that it is unnecessary to exactly specify the number of outliers. Instead,
only an upper bound on the suspected number of outliers is required, and hence, it is
the recommended test when the exact number of outliers is not known. As a result,
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the generalized ESD test is performed both on the real and imaginary parts of the samples
of each array channel.

Let xr
m(i) denote the real part of the ith observation of the mth sensor, and

xm = [xr
m(1), xr

m(2), · · · , xr
m(N)]. (28)

To detect whether there are outliers in the sample set xm, the hypothesis is defined as{
H0: No outliers in xm,
H1: Up to K outliers in xm,

(29)

where K denotes the upper bound of the number of the outliers, and it is assumed to be
known. The statistics R1, R2,. . . , RK, i.e., extreme Studentized deviates, are computed
according to the following rule:

R1 =
max{|xr

m(1)− x̄r
m|, · · · , |xr

m(N)− x̄r
m|}

s
, (30)

where x̄r
m and s are the sample mean and sample standard deviation, respectively, of xm,

i.e.,

x̄r
m =

1
N

N

∑
i=1

xr
m(i), (31a)

s =

√√√√ 1
N − 1

N

∑
i=1

(xr
m(i)− x̄r

m)
2. (31b)

Then, the ith sample xr
m(i) associated with R1 is removed from the sample set xm. This

yields to a reduced set x′m with N − 1 samples, and R2 is calculated similarly as R1 from
x′m. The above process is repeated until Rk is computed. Next, critical values of the test are
determined as

λk =
(N − k)tp,N−k−1√

(N − k − 1 + t2
p,N−k−1)(N − k + 1)

, (32)

where k = 1, · · · , K, tp,v represents the percentile of a t distribution with v degrees of
freedom, and p is given by

p = 1 − α

2(N − k + 1)
, (33)

where α is the prescribed significance level, which is typically selected to be 0.05.
with the statistics R1, R2, · · · , RK and critical values λ1, λ2, · · · , λK, one can then

verify the outliers in the sample set xm. If Rk ≤ λk for ∀k ∈ {1, · · · , K}; then, one can
declare that there are no outliers in xm, i.e., H0 is chosen. Otherwise, if Rk > λk, then
the sample in xm associated with Ri is flagged as an outlier, and hence, H1 is chosen. It
is worth noting that we do not focus on outlier detection. Instead, further processing of
these outliers should be performed to guarantee that the future estimation problem can
be carried out properly. Thus, one needs to consider how to deal with outliers. Much
attention has been dedicated to the problem of what to do with identified outliers [31].
In this paper, a common method is employed, i.e., the outlying data points are removed
and then replaced by some mild values, such as the median of the data set. Therefore,
the observation data matrix X̄ is replaced by a trimmed data matrix X̄ ′, where the outlying
data points have been preprocessed.
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4.2. Robust EFA-Based Subspace Estimation

In this section, the problem of robust subspace estimation using the trimmed data
matrix X̄ ′ is presented. Firstly, we reconsider the objective function in the standard LS
problem (21), and obtain

fLS =
∥∥∥X̄ − Ē F̄T

∥∥∥2

F
=

N

∑
i=1

M

∑
j=1

|eij|2, (34)

where eij denotes the (i, j)th entry of the residual matrix X̄ − Ē F̄T . However, when there
are outliers in the data matrix X̄, the corresponding residuals will tend to be abnormal.
In this case, minimizing fLS will lead to an unsatisfactory solution. with the modified data
matrix X̄ ′, the corresponding standard LS problem is readily given by

f ′LS =
∥∥∥X̄ ′ − Ē F̄T

∥∥∥2

F
=

N

∑
i=1

M

∑
j=1

|e′ ij|2, (35)

if the trimmed data points in X̄ ′ are treated equally as others. On the other hand, a more
natural way is that relatively small weights are attached to those trimmed data points to
indicate the importance of them. Consequently, a WLS problem is formulated as

fWLS =
∥∥∥(X̄ ′ − Ē F̄T) ◦ W

∥∥∥2

F
=

N

∑
i=1

M

∑
j=1

|wije′ ij|2, (36)

where W denotes the weight matrix, with wij being a non-negative weight value associated
with the residual e′ij; and ◦ denotes the Hadamard product (matrix element-wise product).
Generally, the weight value wij can be given as

wij =

{
γ, X̄′

i,j is a trimmed value,
1, otherwise,

(37)

where 0 < γ < 1. Therefore, according to (21), the resultant problem is

min
∥∥∥(X̄ ′ − Ē F̄T) ◦ W

∥∥∥2

F

s.t. ĒT Ē = I2(M+L).
(38)

Similar to the normal case as described in Section 3, once the above problem is solved,
the matrix Ao standing for the subspace can be obtained.

4.3. Solution of the WLS Problem

In this subsection, a monotonic convergent IRLS algorithm, i.e., the so-called iterative
majorization approach [29], is utilized to solve the optimization problem in (38). In this
approach, one can minimize a majoring function instead of minimizing the original compli-
cated objective function directly. Let Z be the parameter matrix lying in a certain domain Ω

and Zc be the current estimate of Z (called the supporting point): the majorizing function
maj(Z|Zc) and the original objective function f (Z) must satisfy

maj(Z|Zc) ≥ f (Z), ∀Z ∈ Ω, (39a)

maj(Zc|Zc) = f (Zc). (39b)
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Hence, given the supporting point Zc, the corresponding problem for updating the
estimate can be formulated as

Zu = arg min maj(Z|Zc). (40)

According to (39a), (39b) and (40), it can be found that f (Zu) ≤ maj(Zu|Zc) ≤
maj(Zc|Zc) = f (Zc). This implies that by iteratively minimizing the majorizing function
maj(Z|Zc), a sequence of monotonically decreasing loss function values of f (Z) can be
obtained. For the function bounded below, such an iterative procedure terminates when no
significant gains are obtained.

In the considered problem, we aim to minimize the function fWLS(Ē, F̄). Thus, if the
corresponding majorizing function maj(Ē, F̄|Ēc, F̄c) is available, the iterative majorization
approach can be used. As shown in [29], a majorizing function of fWLS(Ē, F̄) is given by

maj(Ē, F̄|Ēc, F̄c) = w2
max

∥∥∥ ˜̄X ′ − ĒF̄T
∥∥∥2

F
+ constant, (41)

where wmax is the maximum element of the weight matrix W ; in this paper, we have
wmax = 1, as shown in (37), and ˜̄X ′ is given by

˜̄X ′ = Ēc F̄cT + w−2
max

(
W ◦ W ◦

(
X̄ ′ − Ēc F̄cT

))
. (42)

It can be seen from (41) that the minimization of maj(Ē, F̄|Ēc, F̄c) is equivalent to
minimizing ∥ ˜̄X ′ − ĒF̄T∥2

F. As a result, given the current estimate (Ēc, F̄c), in each iteration,
the updated estimate (Ēu, F̄u) can be obtained from the following problem:

min
∥∥∥ ˜̄X ′ − ĒF̄T

∥∥∥2

F
s.t. ĒT Ē = I2(M+L),

(43)

which is similar to the original one (21), except that the data matrix X̄ is replaced by ˜̄X ′.
Again, the iterative algorithm can be employed to solve the above problem. In brief, given
a certain estimate F̄, The solution of (43) is given by

Ē = M̃ÑT , (44)

where M̃ and Ñ are obtained from the economy SVD of the matrix ˜̄X ′ F̄ as

˜̄X ′ F̄
SVD
= M̃D̃ÑT , (45)

where D̃ is a diagonal matrix composed of the singular values.
Similarly to the EFA algorithm, the above iterative procedure stops when the differ-

ence between two consecutive fWLS’s is negligible or the maximal iterations are reached.
Therefore, Ao can be estimated from F̄ according to (20a), (20b) and (26), and the DOA can
be estimated from the MUSIC spectrum as (27). Finally, the proposed robust EFA algorithm
for DOA estimation against outliers is summarized in Algorithm 2.

4.4. Complexities of the Proposed Methods

In the EFA-based approach for subspace estimation, the main complexity comes from
the SVD of the matrix X̄ F̄ with dimensions 2N × (2M + 2L) in each iteration. Since N is
commonly larger than M + L, the complexity is O(N(M + L)2). Similarly, the complexity
of the robust EFA-based approach is O(N(M + L)2), due to the SVD of the matrix ˜̄X ′ F̄ with
dimensions 2N × (2M + 2L) in (45). The complexity is comparable to the conventional
ILSSE algorithm with complexity O(M3), Moreover, it is computationally more efficient
than the nonuniform ML methods, which require a multidimensional parameter search.
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Note that to determine the DOAs based on the subspace, a spectrum search is required if
the MUSIC algorithm is used.

Algorithm 2 Proposed Robust EFA-based DOA Estimation Against Outliers

1: Use the generalized ESD test for outlier detection.
2: Initialization: Ēc, F̄c, f ′ =

∥∥X̄ ′ − Ēc F̄cT
∥∥2

F, fWLS =
∥∥(X̄ ′ − Ēc F̄cT) ◦ W

∥∥2
F

3: while | f ′ − fWLS| > ε or max iteration number unreached do
4: Calculate ˜̄X ′ = Ēc F̄cT + w−2

max
(
W ◦ W ◦

(
X̄ ′ − Ēc F̄cT))

5: Solve the problem min ∥ ˜̄X ′ − ĒF̄T∥2
F s.t. ĒT Ē = I2(M+L)

6: Obtain the solution Ēu = [S̄u
o Ūu

o ]

7: Update Āu
o = ˜̄X ′T

S̄u
o , Φ̄u

o = diag( ˜̄X ′T
Ūu

o )
8: Update F̄u = [Āu

o Φ̄u
o ]

9: F̄c = F̄u and Ēc = Ēu

10: f ′ = fWLS, fWLS =
∥∥(X̄ ′ − Ēc F̄cT) ◦ W

∥∥2
F

11: end while
12: Ao = Āo(1 : M, 1 : L) + jĀo(1 : M, L + 1 : 2L)
13: Orthonormalize Ao to obtain Ão

14: Spectrum G(θ,ϕ)=
1

|aH(θ, ϕ)(IM−Ão ÃH
o )a(θ, ϕ)|

15: Output: DOA estimates.

5. Simulation Results

To evaluate the performance of the proposed method, in this section, we consider
the problem of 2D DOA estimation using a 4 × 3 rectangular planar array, and hence,
M = 12. The sensors are spaced by half-wavelength. For illustrative purposes, we assume
that the source signal impinges on θ ∈ [−90◦, 90◦], φ ∈ [0◦, 90◦]. More precisely, three
uncorrelated narrowband signals with identical power impinge on the array from the
far field. The DOAs of them are assumed to be (25◦, 65◦), (50◦, 65◦), and (−30◦, 30◦),
respectively. Unless otherwise specified, the covariance matrix of the nonuniform noise is
assumed to be

Q = diag{0.5, 30, 2, 2.5, 1, 8, 1.5, 10, 0.8, 1, 0.5, 1}. (46)

Accordingly, the signal-to-noise ratio (SNR) is defined as follows [9]: SNR = σ2
s

M ∑M
m=1

1
σ2

m
,

where σ2
s denotes the signal power. For the special case of uniform white noise, we set

σ2
1 = σ2

2 · · · = σ2
M = σ2

noise, so that SNR = σ2
s
/

σ2
noise, which is the traditional definition.

Except for the last example in Section 5.2, the number of snapshots is 100. Moreover,
if outliers are considered, we assume that they occur at the (55, 1)th, (75, 1)th, (60, 10)th,
and (100, 8)th entries of the data matrix X. In the simulations, random values produced
from normal distribution with large variance are added to those entries to simulate outliers.

5.1. Uniform White Noise without Outliers

As a special case of nonuniform white noise, uniform white noise is considered in
this example. Firstly, we assume that no outliers exist. The SNR is 10 dB. Figure 1 shows
the resultant spectra and their contour plots of the MUSIC- and EFA-based approaches.
It should be mentioned that in all simulations, the MUSIC algorithm is carried out by
obtaining the subspace through the eigenvalue decomposition of the covariance matrix
estimate, R̂ = N−1X HX. From Figure 1, we notice that in such an ideal case, i.e., in uniform
white noise and in the absence of data outliers, the two methods perform very well; the
elevation as well as azimuth angles of the sources can be correctly estimated.
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Figure 1. Spectra and their contour plots of different methods in uniform white noise without outliers.
Crosses denote the true DOAs. (a) left column: MUSIC; (b) right column: EFA.

5.2. Uniform White Noise with Outliers

In this subsection, we assume that the data are corrupted by outliers. Figure 2a,b
show the spectra and their contour plots of MUSIC and EFA in such a situation. It can
be found that the data outliers can significantly deteriorate the performance of these
nonrobust methods. Specifically, the spectra do not form proper peaks at the true DOAs.
On the contrary, it can be seen from Figure 3a that the hostile effect of data outliers can
be effectively suppressed by the proposed robust EFA method and hence, the DOAs can
be still correctly estimated from the spectra. In the robust EFA method, the weight for the
trimmed data point is set to γ = 0.8. For comparison, the performance of the conventional
robust PAST algorithm [18], where the forgetting factor is set to 0.95, is also tested and the
corresponding result is shown in Figure 3b. We notice that the robust PAST algorithm also
provide satisfactory performance in this case.

To further examine the performance of the robust EFA algorithm, the root-mean-square
error (RMSE) of DOA estimation is compared with those of other methods (MUSIC and
robust PAST) in Figure 4. The results are obtained from 100 independent runs. The per-
formance of EFA without outliers is also shown as benchmark. It can be seen that the
nonrobust MUSIC algorithm performs poorly in this scenario. Moreover, the proposed
robust EFA algorithm generally outperforms the robust PAST algorithm. One reason is
that the robust PAST algorithm does not update the subspace when the data are corrupted
by outliers. In other words, the corrupted data are completely excluded for subspace
estimation, and the number of effective snapshots in the robust PAST algorithm is less
than that in the proposed method. In addition, it is found that the robust EFA algorithm is
capable of achieving similar performance as the ideal case without outliers.
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Figure 4. RMSE of angle estimation in the uniform white noise with outliers (a) Azimuth angle; (b)
Elevation angle.
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Figure 4. RMSE of angle estimation in the uniform white noise with outliers (a) Azimuth angle;
(b) Elevation angle.

It is also worth noting the robust PAST algorithm requires several snapshots to con-
verge [18]. Hence, compared with the robust EFA algorithm, it may be further affected
when the sample number is relatively small, or outliers exist in the first few snapshots.
For illustration, we reduce the number of snapshots to 50, and the outliers occur at the
(11, 1)th, (12, 3)th, (20, 8)th, and (30, 6)th entries of the data matrix. The resulting spectra of
the robust PAST and robust EFA algorithms are shown in Figure 5. It is seen that the robust
PAST algorithm does not perform well in this case, whereas the robust EFA algorithm still
offer good performance.
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Figure 5. Comparison of the spectra of robust EFA and robust PAST algorithms in the uniform white
noise with outliers. The number of snapshots is 50.

5.3. Nonuniform White Noise without Outliers

In this subsection, the noise is assumed to be nonuniform white. Firstly, we assume
that there are no outliers in the data matrix X. The SNR is 10 dB according to (46). Figure 6
shows the resultant contour plots of the spectra of various methods including EFA, robust
EFA, ILSSE [9], reduced covariance matrix (RCM) [11], robust PAST [18], and MUSIC.
Obviously, we can notice from Figure 6e,f that two peaks of the MUSIC spectrum and
robust PAST spectrum are merged together. This is because in the nonuniform white
noise environment, the subspace cannot be well estimated by these approaches. On the
contrary, the EFA-based approaches (EFA and robust EFA), ILSSE, and RCM take the noise
nonuniformity into account, so that the subspaces and DOAs can be properly determined.
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Figure 6. Contour plots of the spectra of various methods in nonuniform white noise without data
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In Figure 7, the RMSEs of DOA estimation of different methods are compared. Since
outliers are not considered in this example, the robust EFA and robust PAST are excluded,
and we focus on comparing the performance of the proposed EFA-based method with
the RCM and ILSSE algorithms. It is observed that when only nonuniform noise exists,
the DOA estimation accuracy of these methods is similar, and the performance gap among
these methods is small.

In order to examine the influence of the degree of the noise nonuniformity on DOA
estimation, we change the maximum noise power, i.e., σ2

2 in (46), from 25 to 75, and keep
σ2

min = 0.5. Therefore, the worst noise power ratio (WNPR), σ2
max/σ2

min is varied from 50
to 150. For each WNPR, the SNR remains to be 10dB. It is seen from Figure 8 that the
performance of all the tested methods degrades with the increase of WNPR. In general,
the proposed EFA-based method achieves better performance than the other two methods.
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In order to examine the influence of the degree of the noise nonuniformity on DOA 348

estimation, we change the maximum noise power, i.e., σ2
2 in (46), from 30 to 100. Therefore, 349
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Figure 8. Comparison of the RMSEs versus WNPR in the nonuniform white noise without outliers.
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5.4. Nonuniform White Noise with Outliers

Following the previous setup, both noise nonuniformity and data outliers are consid-
ered. The resultant contour plots of the spectra of the proposed robust EFA algorithm and
various conventional robust and nonrobust methods are shown in Figure 9. Obviously,
it can be seen that the proposed robust EFA method can clearly identify the three source
signals. As expected, the nonrobust methods, e.g., MUSIC, EFA, EFA, ILSSE, and RCM,
are greatly affected by the outliers and they cannot provide satisfactory performance in
this case. Furthermore, though the conventional robust PAST algorithm performs well in
uniform noise with outliers, it does not offer satisfactory performance in nonuniform white
noise. On the contrary, the issues of nonuniformity and data outliers can be simultaneously
handled by the robust EFA method.

To further show the ability of the robust EFA against outliers, the RMSEs of azimuth
and elevation estimation using this method are compared to various methods, including
ILSSE, RCM, robust PAST, and the benchmark method (EFA without outliers) in Figure 10.
We notice that the hostile effects of outliers can be successfully suppressed in all SNR
levels tested, and the performance is quite closed to the case without outliers. Moreover,
although the robust PAST algorithm is robust against outliers, it cannot suppress the
nonuniform noise effectively, and hence, it is outperformed by the proposed method.
For the ILSSE and RCM algorithms, although they can perform well in nonuniform noise,
they cannot provide robustness against outliers and perform even worse than the robust
PAST algorithm.
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Figure 10. RMSE of angle estimation in the nonuniform white noise with outliers (a) Azimuth angle;
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6. Conclusions 367

In this paper, we investigate the problem of DOA estimation in the presence of nonuni- 368

form noise as well as data outliers. Different from many traditional DOA estimation 369

Figure 10. Comparison of the RMSEs of angle estimation versus SNR in nonuniform white noise
with outliers: (a) azimuth angle; (b) elevation angle.

6. Conclusions

In this paper, we investigate the problem of DOA estimation in the presence of nonuni-
form noise as well as data outliers. Differently to many traditional DOA estimation algo-
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rithms, which use a uniform white noise mode, it is assumed that the noise is nonuniform
white noise, and the noise covariance matrix is diagonal but the diagonal elements are
not identical. In order to estimate the subspace, and hence, DOAs, in this case, a new
algorithm based on the EDA model is developed. Next, the data outliers are also con-
sidered. A simple method, i.e., the ESD test, is employed for outlier detection. Based on
this detection, a trimmed data matrix can be obtained. According to the trimmed data
matrix, a WLS problem is formulated to determine the subspace. Moreover, an iterative
majorization approach, which is monotonic convergent, is introduced to solve the WLS
problem. Simulation results show that the proposed robust DOA estimator outperforms
traditional algorithms in the presence of nonuniform noise and outliers.
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Appendix A

According to the definition of the real-valued matrix B̄ in (14), it can be readily
calculated that

∥B̄∥2
F = 2∥Re{B}∥2

F + 2∥Im{B}∥2
F

= 2∥Re{B}+ jIm{B}∥2
F

= 2∥B∥2
F.

(A1)

Therefore, we have ∥B∥2
F = 1

2∥B̄∥2
F. This completes the proof of (15).

Since G = BCH , we have

Re{G} = Re{BCH}
= Re{(Re{B}+ jIm{B})(Re{C}T − jIm{C}T)}
= Re{B}Re{C}T + Im{B}Im{C}T

(A2)

and

Im{G} = Im{BCH}
= Im{(Re{B}+ jIm{B})(Re{C}T − jIm{C}T)}
= −Re{B}Im{C}T + Im{B}Re{C}T .

(A3)
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As a result, the real-valued matrix M̄ is given by

Ḡ =

[
Re{BCH} Im{BCH}
−Im{BCH} Re{BCH}

]
=

[
Re{B}Re{C}T + Im{B}Im{C}T −Re{B}Im{C}T + Im{B}Re{C}T

Re{B}Im{C}T − Im{B}Re{C}T Re{B}Re{C}T + Im{B}Im{C}T

]
=

[
Re{B} Im{B}
−Im{B} Re{B}

]
×

[
Re{C}T −Im{C}T

Im{C}T Re{C}T

]
= B̄C̄T .

(A4)

This completes the proof of (16).
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