Vitamin D Is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Measurement of vitamin D or measurement of 1,25 (OH)2 vitamin D.
- Having data on lipid parameters such as HDL, LDL, and total cholesterol, which were analyzed in a time window of 4 weeks before or after the blood sample was taken for vitamin D determination.
- Having additional clinical laboratory parameters on mineral bone metabolism such as calcium, phosphate, and iPTH, which were analyzed in a time window of 4 weeks before or after the blood sample was taken for vitamin D determination.
- Having additional clinical laboratory data on hemoglobin, white blood cell count, and CrP.
2.2. Clinical and Laboratory Parameters
2.3. Statistical Analyses
3. Results
Parameters | Reference Range | N | Mean ± SD |
---|---|---|---|
Gender | - | 47,778 Males: 22,161 (46.4%) Females: 25,617 (53.6%) | - |
Age (years) | - | 47,778 | 59.00 ± 19.51 |
25(OH)D (ng/mL) | 30.00–100.00 | 47,778 | 29.60 ± 13.13 |
1,25(OH)2D (pg/mL) | 19.90–79.30 | 1927 | 51.60 ± 25.62 |
LDL (mg/dL) | <115.00 | 32,074 | 116.42 ± 40.20 |
HDL (mg/dL) | >45.00 | 31,311 | 55.23 ± 17.73 |
Total Cholesterol (mg/dL) | <200.00 | 30,844 | 187.99 ± 45.52 |
Calcium (mmol/L) | 1.90–2.75 | 47,778 | 2.35 ± 0.11 |
Phosphate (mmol/L) | 0.81–2.42 | 47,778 | 1.09 ± 0.22 |
iPTH (pg/mL) | 15.00–65.00 | 28,116 | 58.16 ± 32.77 |
Creatinine (mg/dL) | 0.16–1.95 | 40,496 | 1.18 ± 0.62 |
Hemoglobin (g/dL) | 12.00–17.00 | 38,889 | 13.47 ± 1.57 |
White blood cells (Gpt/L) | 3.60–28.20 | 38,896 | 7.04 ± 2.33 |
C-reactive protein (mg/L) | <5.00 | 35,681 | 4.25 ± 1.07 |
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holick, M.F. The vitamin D epidemic and its health consequences. J. Nutr. 2005, 135, 2739S–2748S. [Google Scholar] [CrossRef]
- Ito, F.; Ito, T. High-density lipoprotein (HDL) triglyceride and oxidized HDL: New lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease. Antioxidants 2020, 9, 362. [Google Scholar] [CrossRef]
- Zeng, S.; Chu, C.; Doebis, C.; von Baehr, V.; Hocher, B. Reference values for free 25-hydroxy-vitamin D based on established total 25-hydroxy-vitamin D reference values. J. Steroid Biochem. Mol. Biol. 2021, 210, 105877. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hocher, J.-G.; Chen, H.; Hu, L.; Zhang, X.; Cai, S.; Tang, S.; Gong, F.; Krämer, B.K.; Lin, G. The degree of prepregnancy vitamin D deficiency is not associated with gestational diabetes in women undergoing ART. J. Endocr. Soc. 2023, 7, bvad140. [Google Scholar] [CrossRef] [PubMed]
- Tsuprykov, O.; Chen, X.; Hocher, C.-F.; Skoblo, R.; Yin, L.; Hocher, B. Why should we measure free 25 (OH) vitamin D? J. Steroid Biochem. Mol. Biol. 2018, 180, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Berliner, J.A.; Heinecke, J.W. The role of oxidized lipoproteins in atherogenesis. Free Radic. Biol. Med. 1996, 20, 707–727. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Pownall, H.J.; Rosales, C.; Gillard, B.K.; Gotto, A.M., Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. 2021, 18, 712–723. [Google Scholar] [CrossRef]
- Krysiak, R.; Gilowska, M.; Okopień, B. Different cardiometabolic effects of atorvastatin in men with normal vitamin D status and vitamin D insufficiency. Clin. Cardiol. 2016, 39, 715–720. [Google Scholar] [CrossRef]
- Bhattarai, A.; Likos, E.M.; Weyman, C.M.; Shukla, G.C. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 2021, 173, 108878. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; You, Y.; Swier, V.; Tang, L.; Radwan, M.M.; Pandya, A.N.; Agrawal, D.K. Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xia, N.; Yang, Y.; Peng, D.-Q. Influence of vitamin D supplementation on plasma lipid profiles: A meta-analysis of randomized controlled trials. Lipids Health Dis. 2012, 11, 42. [Google Scholar] [CrossRef]
- Zittermann, A.; Frisch, S.; Berthold, H.K.; Götting, C.; Kuhn, J.; Kleesiek, K.; Stehle, P.; Koertke, H.; Koerfer, R. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am. J. Clin. Nutr. 2009, 89, 1321–1327. [Google Scholar] [CrossRef]
- Lu, L.; Yu, Z.; Pan, A.; Hu, F.B.; Franco, O.H.; Li, H.; Li, X.; Yang, X.; Chen, Y.; Lin, X. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes Care 2009, 32, 1278–1283. [Google Scholar] [CrossRef]
- Sollid, S.T.; Hutchinson, M.Y.; Fuskevåg, O.M.; Figenschau, Y.; Joakimsen, R.M.; Schirmer, H.; Njølstad, I.; Svartberg, J.; Kamycheva, E.; Jorde, R. No effect of high-dose vitamin D supplementation on glycemic status or cardiovascular risk factors in subjects with prediabetes. Diabetes Care 2014, 37, 2123–2131. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Chen, X.; Reichetzeder, C.; Elitok, S.; Krämer, B.K.; Hocher, B. Target Values for 25-Hydroxy and 1, 25-Dihydroxy Vitamin D Based on Their Associations with Inflammation and Calcium-Phosphate Metabolism. Nutrients 2024, 16, 2679. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- De Matteis, C.; Crudele, L.; Cariello, M.; Battaglia, S.; Piazzolla, G.; Suppressa, P.; Sabbà, C.; Piccinin, E.; Moschetta, A. Monocyte-to-HDL Ratio (MHR) predicts vitamin D deficiency in healthy and metabolic women: A cross-sectional study in 1048 subjects. Nutrients 2022, 14, 347. [Google Scholar] [CrossRef]
- Wang, Y.; Si, S.; Liu, J.; Wang, Z.; Jia, H.; Feng, K.; Sun, L.; Song, S.J. The associations of serum lipids with vitamin D status. PLoS ONE 2016, 11, e0165157. [Google Scholar] [CrossRef]
- Lupton, J.R.; Faridi, K.F.; Martin, S.S.; Sharma, S.; Kulkarni, K.; Jones, S.R.; Michos, E.D. Deficient serum 25-hydroxyvitamin D is associated with an atherogenic lipid profile: The Very Large Database of Lipids (VLDL-3) study. J. Clin. Lipidol. 2016, 10, 72–81.e71. [Google Scholar] [CrossRef]
- Patwardhan, V.G.; Khadilkar, A.V.; Chiplonkar, S.A.; Mughal, Z.M.; Khadilkar, V.V. Varying relationship between 25-hydroxy-vitamin D, high density lipoprotein cholesterol, and serum 7-dehydrocholesterol reductase with sunlight exposure. J. Clin. Lipidol. 2015, 9, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, E.A.; Przychodzeń, S.; Dąbrowski, M. The effects of vitamin D on severity of coronary artery atherosclerosis and lipid profile of cardiac patients. Arch. Med. Sci. AMS 2016, 12, 1199. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Venturi, S.; Del Bo’, C.; Møller, P.; Riso, P.; Porrini, M. Vitamin D counteracts lipid accumulation, augments free fatty acid-induced ABCA1 and CPT-1A expression while reducing CD36 and C/EBPβ protein levels in monocyte-derived macrophages. Biomedicines 2022, 10, 775. [Google Scholar] [CrossRef]
- Elffers, T.W.; de Mutsert, R.; Lamb, H.J.; de Roos, A.; Willems van Dijk, K.; Rosendaal, F.R.; Jukema, J.W.; Trompet, S. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS ONE 2017, 12, e0185403. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 2015, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Maldonado, A.; Aparicio, V.A.; Felix-Redondo, F.J.; Fernandez-Berges, D. Severity of obesity and cardiometabolic risk factors in adults: Sex differences and role of physical activity. The HERMEX study. Int. J. Cardiol. 2016, 223, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of estrogens in the regulation of liver lipid metabolism. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; pp. 227–256. [Google Scholar]
- Kuan, Y.-C.; Takahashi, Y.; Maruyama, T.; Shimizu, M.; Yamauchi, Y.; Sato, R. Ring finger protein 5 activates sterol regulatory element–binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP. J. Biol. Chem. 2020, 295, 3918–3928. [Google Scholar] [CrossRef]
- Shimano, H.; Sato, R. SREBP-regulated lipid metabolism: Convergent physiology—Divergent pathophysiology. Nat. Rev. Endocrinol. 2017, 13, 710–730. [Google Scholar] [CrossRef]
- Asano, L.; Watanabe, M.; Ryoden, Y.; Usuda, K.; Yamaguchi, T.; Khambu, B.; Takashima, M.; Sato, S.-i.; Sakai, J.; Nagasawa, K. Vitamin D metabolite, 25-hydroxyvitamin D, regulates lipid metabolism by inducing degradation of SREBP/SCAP. Cell Chem. Biol. 2017, 24, 207–217. [Google Scholar] [CrossRef]
- Reda, D.; Elshopakey, G.E.; Albukhari, T.A.; Almehmadi, S.J.; Refaat, B.; Risha, E.F.; Mahgoub, H.A.; El-Boshy, M.E.; Abdelhamid, F.M. Vitamin D3 alleviates nonalcoholic fatty liver disease in rats by inhibiting hepatic oxidative stress and inflammation via the SREBP-1-c/PPARα-NF-κB/IR-S2 signaling pathway. Front. Pharmacol. 2023, 14, 1164512. [Google Scholar] [CrossRef]
- Heemers, H.V.; Verhoeven, G.; Swinnen, J.V. Androgen activation of the sterol regulatory element-binding protein pathway: Current insights. Mol. Endocrinol. 2006, 20, 2265–2277. [Google Scholar] [CrossRef]
- Pop, L.C.; Shapses, S.A.; Chang, B.; Sun, W.; Wang, X. Vitamin D-binding protein in healthy pre-and postmenopausal women: Relationship with estradiol concentrations. Endocr. Pract. 2015, 21, 936–942. [Google Scholar] [CrossRef]
- Jassil, N.K.; Sharma, A.; Bikle, D.; Wang, X. Vitamin D binding protein and 25-hydroxyvitamin D levels: Emerging clinical applications. Endocr. Pract. 2017, 23, 605–613. [Google Scholar] [CrossRef]
- Oczkowicz, M.; Szymczyk, B.; Świątkiewicz, M.; Furgał-Dzierżuk, I.; Koseniuk, A.; Wierzbicka, A.; Steg, A. Analysis of the effect of vitamin D supplementation and sex on Vdr, Cyp2r1 and Cyp27b1 gene expression in Wistar rats’ tissues. J. Steroid Biochem. Mol. Biol. 2021, 212, 105918. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.C. HRT and cardiovascular disease. Best Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 109–120. [Google Scholar] [CrossRef]
- Chen, H.; Yao, J.; Hu, L.; Liu, Y.; Hocher, J.-G.; Zhang, X.; Hasan, A.A.; Lin, G.; Gong, F.; Hocher, B. Vitamin D binding protein correlate with estrogen increase after administration of human chorionic gonadotropin but do not affect ovulation, embryo, or pregnancy outcomes. Front. Endocrinol. 2024, 15, 1401975. [Google Scholar] [CrossRef]
Parameters | All | |||||
---|---|---|---|---|---|---|
Linear | Exponential | Quadratic | ||||
R2 | p | R2 | p | R2 | p | |
LDL (mg/dL) | 0.7947 | 0.0005 | 0.7938 | 0.0007 | 0.7949 | 0.0003 |
HDL (mg/dL) | 0.9225 | <0.0001 | 0.9534 | <0.0001 | 0.9648 | <0.0001 |
Total Cholesterol (mg/dL) | 0.7846 | 0.0006 | 0.7936 | 0.0004 | 0.8061 | 0.0003 |
Parameters | MEN | |||||
Linear | Exponential | Quadratic | ||||
R2 | p | R2 | p | R2 | p | |
LDL (mg/dL) | 0.8345 | 0.0003 | 0.8299 | 0.0003 | 0.7949 | 0.0002 |
HDL (mg/dL) | 0.6681 | 0.0041 | 0.6871 | 0.0040 | 0.9648 | 0.0039 |
Total Cholesterol (mg/dL) | 0.8850 | <0.0001 | 0.8992 | <0.0001 | 0.8061 | <0.0001 |
Parameters | WOMEN | |||||
Linear | Exponential | Quadratic | ||||
R2 | p | R2 | p | R2 | p | |
LDL (mg/dL) | 0.7356 | 0.0018 | 0.7298 | 0.0024 | 0.7363 | 0.0015 |
HDL (mg/dL) | 0.8460 | 0.0003 | 0.8782 | 0.0002 | 0.9404 | 0.0002 |
Total Cholesterol (mg/dL) | 0.5564 | 0.0207 | 0.6011 | 0.0183 | 0.6411 | 0.0132 |
Parameters | All | |||||
---|---|---|---|---|---|---|
Linear | Exponential | Quadratic | ||||
R2 | p | R2 | p | R2 | p | |
LDL (mg/dL) | 0.1999 | 0.3860 | 0.6961 | 0.2223 | 0.7273 | 0.1951 |
HDL (mg/dL) | 0.7204 | 0.0019 | 0.8034 | 0.0015 | 0.8347 | 0.0014 |
Total Cholesterol (mg/dL) | 0.2644 | 0.1284 | 0.3334 | 0.1037 | 0.4734 | 0.0924 |
Parameters | MEN | |||||
Linear | Exponential | Quadratic | ||||
R2 | p | R2 | p | R2 | p | |
LDL (mg/dL) | 0.0460 | 0.5518 | 0.1478 | 0.4523 | 0.3211 | 0.1963 |
HDL (mg/dL) | 0.4520 | 0.0332 | 0.4827 | 0.0298 | 0.5069 | 0.0166 |
Total Cholesterol (mg/dL) | 0.1173 | 0.3325 | 0.1223 | 0.3026 | 0.1401 | 0.2298 |
Parameters | WOMEN | |||||
Linear | Exponential | Quadratic | ||||
R2 | p | R2 | p | R2 | p | |
LDL (mg/dL) | 0.1713 | 0.2344 | 0.4532 | 0.0672 | 0.6523 | 0.0562 |
HDL (mg/dL) | 0.5375 | 0.0161 | 0.6011 | 0.0152 | 0.7066 | 0.0025 |
Total Cholesterol (mg/dL) | 0.2376 | 0.1775 | 0.4532 | 0.0986 | 0.5526 | 0.0678 |
All | Men | Women | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p | FDR | B# | 95%CI | p | FDR | B# | 95%CI | p | FDR | B# | 95%CI | |
Constant | <0.001 | / | 13.128 | 12.235~14.020 | <0.001 | / | 12.973 | 11.686~14.187 | <0.001 | / | 14.204 | 12.863~15.544 |
Gender | 0.048 | 0.050 | 0.301 | 0.021~0.580 | / | / | / | / | / | / | / | / |
Age (years) | 0.000 | 0.040 | 0.176 | 0.168~0.185 | <0.001 | 0.013 | 0.175 | 0.164~0.186 | <0.001 | 0.025 | 0.177 | 0.166~0.189 |
Seasonal grouping | <0.001 | 0.020 | 2.643 | 2.366~2.919 | <0.001 | 0.025 | 3.207 | 2.825~3.589 | <0.001 | 0.013 | 2.113 | 1.714~2.512 |
LDL (mg/dL) | <0.001 | 0.010 | −0.015 | −0.019~−0.012 | <0.001 | 0.038 | −0.016 | −0.021~−0.011 | <0.001 | 0.038 | −0.015 | −0.019~−0.010 |
HDL (mg/dL) | <0.001 | 0.030 | 0.058 | 0.050~0.066 | <0.001 | 0.050 | 0.053 | 0.040~0.066 | <0.001 | 0.050 | 0.061 | 0.050~0.070 |
All | Men | Women | |||||||
---|---|---|---|---|---|---|---|---|---|
p | B# | 95%CI | p | B# | 95%CI | p | B# | 95%CI | |
Constant | 0.258 | 39.319 | 28.900~107.538 | 0.369 | 41.179 | 48.789~131.147 | 0.540 | 34.074 | 75.056~143.204 |
Gender | 0.937 | 0.179 | −4.251~4.608 | / | / | / | / | / | / |
Age (years) | 0.001 | −0.193 | −0.309~−0.076 | 0.001 | −0.264 | −0.422~−0.106 | 0.094 | −0.143 | −0.310~0.025 |
Seasonal grouping | 0.189 | 2.759 | −1.358~6.867 | 0.462 | 2.269 | −3.326~7.863 | 0.235 | 3.573 | −2.328~9.473 |
LDL (mg/dL) | 0.075 | −0.291 | −0.611~0.029 | 0.267 | −0.205 | −0.567~0.157 | 0.089 | −0.490 | −1.055~0.075 |
Sqrt-LDL | 0.051 | 6.970 | −0.706~14.646 | 0.233 | 4.788 | −3.088~12.665 | 0.059 | 12.352 | −0.648~25.353 |
HDL (mg/dL) | 0.149 | 0.742 | −0.267~1.751 | 0.649 | 0.355 | −1.175~1.885 | 0.119 | 1.191 | −0.307~2.689 |
Sqrt-HDL | 0.225 | −9.776 | −25.568~6.016 | 0.754 | −3.627 | −26.327~19.072 | 0.155 | −17.513 | −41.662~6.636 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, Y.; Wang, J.; Chen, X.; Reichetzeder, C.; Elitok, S.; Krämer, B.K.; Doebis, C.; Huesker, K.; von Baehr, V.; et al. Vitamin D Is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort. Nutrients 2024, 16, 3936. https://doi.org/10.3390/nu16223936
Li X, Liu Y, Wang J, Chen X, Reichetzeder C, Elitok S, Krämer BK, Doebis C, Huesker K, von Baehr V, et al. Vitamin D Is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort. Nutrients. 2024; 16(22):3936. https://doi.org/10.3390/nu16223936
Chicago/Turabian StyleLi, Xitong, Yvonne Liu, Jingyun Wang, Xin Chen, Christoph Reichetzeder, Saban Elitok, Bernhard K. Krämer, Cornelia Doebis, Katrin Huesker, Volker von Baehr, and et al. 2024. "Vitamin D Is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort" Nutrients 16, no. 22: 3936. https://doi.org/10.3390/nu16223936
APA StyleLi, X., Liu, Y., Wang, J., Chen, X., Reichetzeder, C., Elitok, S., Krämer, B. K., Doebis, C., Huesker, K., von Baehr, V., & Hocher, B. (2024). Vitamin D Is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort. Nutrients, 16(22), 3936. https://doi.org/10.3390/nu16223936