Composite Track-Etched Membranes: Synthesis and Multifaced Applications
Abstract
:1. Introduction
2. Modification of TeMs by Grafting Prior to the Production of CTeMs
3. Synthesis of the Composite Track-Etched Membranes (CTeMs)
3.1. Electrochemical Deposition (ECD) for the Synthesis of Nanostructures in CTeMs
3.2. Electroless Deposition (ED) Technique for the Synthesis of Nanostructures
3.3. Radiation-Induced Chemical Synthesis of Nanostructures in CTeMs
3.4. Mixed Template Synthesis Techniques
4. Applications of Composite Track-Etched Membranes (CTeMs)
4.1. Environmental Applications of CTeMs
4.1.1. CTeMs as Catalysts in Water Purification
4.1.2. Application of CTeMs for the Heavy Metal Ions Sorption Removal
4.2. CTeMs in Sensor Technologies
4.3. Energy Storage Devices Based on CTeMs
4.4. Biomedical Applications of Composite Track-Etched Membranes
5. Conclusions, Future Directions, and Prospects for Composite Track-Etched Membranes (CTeMs)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, R.; Li, J.; Zeng, P.; Duan, L.; Dong, J.; Ma, Y.; Yang, L. The Application of Membrane Separation Technology in the Pharmaceutical Industry. Membranes 2024, 14, 24. [Google Scholar] [CrossRef]
- Hou, R.; Fong, C.; Freeman, B.D.; Hill, M.R.; Xie, Z. Current Status and Advances in Membrane Technology for Carbon Capture. Sep. Purif. Technol. 2022, 300, 121863. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, S.; Wang, H.; Wang, J.; Xiao, S. Research Progress and Application Prospects of Molecularly Imprinted Membrane Technology: A Review. Mater. Res. Innov. 2023, 27, 449–463. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, Z.; Elgarahy, A.M.; Farghali, M.; Mohamed, I.M.A.; Priya, A.K.; Hawash, H.B.; Yap, P. Membrane Technology for Energy Saving: Principles, Techniques, Applications, Challenges, and Prospects. Adv. Energy Sustain. Res. 2024, 5, 2400011. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Apel, P. Track Etching Technique in Membrane Technology. Radiat. Meas. 2001, 34, 559–566. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Narmukhamedova, A.R.; Melnikova, G.B.; Muslimova, I.B.; Yeszhanov, A.B.; Zhatkanbayeva, Z.K.; Chizhik, S.A.; Zdorovets, M.V. Preparation of Hydrophobic PET Track-Etched Membranes for Separation of Oil–Water Emulsion. Membranes 2021, 11, 637. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Shakayeva, A.K.; Lissovskaya, L.I.; Zdorovets, M.V. Preparation of Poly(Ethylene Terephthalate) Track-Etched Membranes for the Separation of Water-Oil Emulsions. Eurasian J. Chem. 2023, 110, 131–138. [Google Scholar] [CrossRef]
- Chakarvarti, S.K. Track-Etch Membranes as Tools for Template Synthesis of Nano-/Microstructures and Devices. In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1910–1924. [Google Scholar]
- Chakarvarti, S.K.; Vetter, J. Template Synthesis—A Membrane Based Technology for Generation of Nano-/Micro Materials: A Review. Radiat. Meas. 1998, 29, 149–159. [Google Scholar] [CrossRef]
- Kozhina, E.; Panov, D.; Kovalets, N.; Apel, P.; Bedin, S. A Thin-Film Polymer Heating Element with a Continuous Silver Nanowires Network Embedded Inside. Nanotechnology 2024, 35, 035601. [Google Scholar] [CrossRef]
- Kaya, D.; Keçeci, K. Review—Track-Etched Nanoporous Polymer Membranes as Sensors: A Review. J. Electrochem. Soc. 2020, 167, 037543. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, T.; Zhao, Z.; Wang, Q. Track-Etch Membranes as Tools for Template Synthesis of Highly Sensitive Pressure Sensors. ACS Appl. Mater. Interfaces 2022, 14, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Price, P.B.; Walker, R.M. Electron Microscope Observation of Etched Tracks from Spallation Recoils in Mica. Phys. Rev. Lett. 1962, 8, 217–219. [Google Scholar] [CrossRef]
- Iyer, R.H. Application of Solid State Nuclear Track Detectors in Fission Studies. J. Earth Syst. Sci. 1981, 90, 437–460. [Google Scholar] [CrossRef]
- Flerov, G.N.; Oganesyan, Y.T.; Lobanov, Y.V.; Kuznetsov, V.I.; Druin, V.A.; Perelygin, V.P.; Gavrilov, K.A.; Tretiakova, S.P.; Plotko, V.M. Synthesis and Physical Identification of the Isotope of Element 104 with Mass Number 260. Phys. Lett. 1964, 13, 73–75. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Price, P.B.; Symes, E.M. Novel Filter for Biological Materials. Science 1964, 143, 249–250. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Alter, H.W.; Furman, S.C.; Price, P.B.; Walker, R.M. Particle Track Etching. Science 1972, 178, 255–263. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Wang, X.; Wang, P.; Shen, W.; Ding, S.; Wang, Y. Fabrication and Application of Nanoporous Polymer Ion-Track Membranes. Nanotechnology 2019, 30, 052001. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Price, P.B.; Walker, R.M. Nuclear Tracks in Solids. Sci. Am. 1969, 220, 30–39. [Google Scholar] [CrossRef]
- Fischer, B.E.; Spohr, R. Production and Use of Nuclear Tracks: Imprinting Structure on Solids. Rev. Mod. Phys. 1983, 55, 907–948. [Google Scholar] [CrossRef]
- Spohr, R. Nuclear Track Irradiations at GSI. Nucl. Tracks 1980, 4, 101–108. [Google Scholar] [CrossRef]
- Tuleushev, A.Z.; Harrison, F.E.; Kozlovskiy, A.L.; Zdorovets, M.V. Insight into What Is inside Swift Heavy Ion Latent Tracks in PET Film. Polymers 2023, 15, 4050. [Google Scholar] [CrossRef] [PubMed]
- Bouffard, S.; Gervais, B.; Leroy, C. Basic Phenomena Induced by Swift Heavy Ions in Polymers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1995, 105, 1–4. [Google Scholar] [CrossRef]
- Shakayeva, A.K.; Yeszhanov, A.B.; Borissenko, A.N.; Kassymzhanov, M.T.; Zhumazhanova, A.T.; Khlebnikov, N.A.; Nurkassimov, A.K.; Zdorovets, M.V.; Güven, O.; Korolkov, I.V. Surface Modification of Polyethylene Terephthalate Track-Etched Membranes by 2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl Acrylate for Application in Water Desalination by Direct Contact Membrane Distillation. Membranes 2024, 14, 145. [Google Scholar] [CrossRef]
- Dmitriev, S.; Kravets, L.; Sleptsov, V. Modification of Track Membrane Structure by Plasma Etching. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1998, 142, 43–49. [Google Scholar] [CrossRef]
- Schuchert, I.U.; Molares, M.E.T.; Dobrev, D.; Vetter, J.; Neumann, R.; Martin, M. Electrochemical Copper Deposition in Etched Ion Track Membranes. J. Electrochem. Soc. 2003, 150, C189. [Google Scholar] [CrossRef]
- Zagorskiy, D.; Doludenko, I.; Zhigalina, O.; Khmelenin, D.; Kanevskiy, V. Formation of Nanowires of Various Types in the Process of Galvanic Deposition of Iron Group Metals into the Pores of a Track Membrane. Membranes 2022, 12, 195. [Google Scholar] [CrossRef]
- Borgekov, D.; Mashentseva, A.; Kislitsin, S.; Kozlovskiy, A.; Russakova, A.; Zdorovets, M. Temperature Dependent Catalytic Activity of Ag/PET Ion-Track Membranes Composites. Acta Phys. Pol. A 2015, 128, 871–875. [Google Scholar] [CrossRef]
- Subair, R.; Tripathi, B.P.; Formanek, P.; Simon, F.; Uhlmann, P.; Stamm, M. Polydopamine Modified Membranes with in Situ Synthesized Gold Nanoparticles for Catalytic and Environmental Applications. Chem. Eng. J. 2016, 295, 358–369. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Zdorovets, M.V.; Borgekov, D.B. Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites. Bull. Chem. React. Eng. Catal. 2018, 13, 405. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Zdorovets, M.V.; Zheltov, D.A.; Güven, O. Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III). Nanomaterials 2020, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Torati, S.R.; Reddy, V.; Yoon, S.S.; Kim, C. Electrochemical Biosensor for Mycobacterium Tuberculosis DNA Detection Based on Gold Nanotubes Array Electrode Platform. Biosens. Bioelectron. 2016, 78, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Barsbay, M.; Güven, O. Grafting in Confined Spaces: Functionalization of Nanochannels of Track-Etched Membranes. Radiat. Phys. Chem. 2014, 105, 26–30. [Google Scholar] [CrossRef]
- Bhattacharya, A. Grafting: A Versatile Means to Modify PolymersTechniques, Factors and Applications. Prog. Polym. Sci. 2004, 29, 767–814. [Google Scholar] [CrossRef]
- Bessbousse, H.; Nandhakumar, I.; Decker, M.; Barsbay, M.; Cuscito, O.; Lairez, D.; Clochard, M.-C.; Wade, T.L. Functionalized Nanoporous Track-Etched β-PVDF Membrane Electrodes for Lead(Ii) Determination by Square Wave Anodic Stripping Voltammetry. Anal. Methods 2011, 3, 1351. [Google Scholar] [CrossRef]
- Barsbay, M.; Güven, O.; Bessbousse, H.; Wade, T.L.; Beuneu, F.; Clochard, M.-C. Nanopore Size Tuning of Polymeric Membranes Using the RAFT-Mediated Radical Polymerization. J. Memb. Sci. 2013, 445, 135–145. [Google Scholar] [CrossRef]
- Cuscito, O.; Clochard, M.-C.; Esnouf, S.; Betz, N.; Lairez, D. Nanoporous β-PVDF Membranes with Selectively Functionalized Pores. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2007, 265, 309–313. [Google Scholar] [CrossRef]
- Spohr, R. Thermal Control of Drug Release by a Responsive Ion Track Membrane Observed by Radio Tracer Flow Dialysis. J. Control. Release 1998, 50, 1–11. [Google Scholar] [CrossRef]
- Reber, N.; Kuchel, A.; Spohr, R.; Wolf, A.; Yoshida, M. Transport Properties of Thermo-Responsive Ion Track Membranes. J. Memb. Sci. 2001, 193, 49–58. [Google Scholar] [CrossRef]
- Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Single Conical Nanopores Displaying PH-Tunable Rectifying Characteristics. Manipulating Ionic Transport with Zwitterionic Polymer Brushes. J. Am. Chem. Soc. 2009, 131, 2070–2071. [Google Scholar] [CrossRef]
- Nasir, S.; Ali, M.; Ensinger, W. Thermally Controlled Permeation of Ionic Molecules through Synthetic Nanopores Functionalized with Amine-Terminated Polymer Brushes. Nanotechnology 2012, 23, 225502. [Google Scholar] [CrossRef] [PubMed]
- Tomicki, F.; Krix, D.; Nienhaus, H.; Ulbricht, M. Stimuli–Responsive Track-Etched Membranes via Surface-Initiated Controlled Radical Polymerization: Influence of Grafting Density and Pore Size. J. Memb. Sci. 2011, 377, 124–133. [Google Scholar] [CrossRef]
- Soto Espinoza, S.L.; Arbeitman, C.R.; Clochard, M.C.; Grasselli, M. Functionalization of Nanochannels by Radio-Induced Grafting Polymerization on PET Track-Etched Membranes. Radiat. Phys. Chem. 2014, 94, 72–75. [Google Scholar] [CrossRef]
- Friebe, A.; Ulbricht, M. Controlled Pore Functionalization of Poly(Ethylene Terephthalate) Track-Etched Membranes via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir 2007, 23, 10316–10322. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Yeszhanov, A.B.; Zdorovets, M.V.; Gorin, Y.G.; Güven, O.; Dosmagambetova, S.S.; Khlebnikov, N.A.; Serkov, K.V.; Krasnopyorova, M.V.; Milts, O.S.; et al. Modification of PET Ion Track Membranes for Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions. Sep. Purif. Technol. 2019, 227, 115694. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Gorin, Y.G.; Dosmagambetova, S.S.; Zdorovets, M.V. Membrane Distillation of Pesticide Solutions Using Hydrophobic Track-Etched Membranes. Chem. Pap. 2020, 74, 3445–3453. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Gorin, Y.G.; Yeszhanov, A.B.; Kozlovskiy, A.L.; Zdorovets, M.V. Preparation of PET Track-Etched Membranes for Membrane Distillation by Photo-Induced Graft Polymerization. Mater. Chem. Phys. 2018, 205, 55–63. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Yeszhanov, A.B.; Korolkov, I.V.; Güven, O.; Dosmagambetova, S.S.; Shlimas, D.I.; Zhatkanbayeva, Z.K.; Zhidkov, I.S.; Kharkin, P.V.; Gluchshenko, V.N.; et al. Liquid Low-Level Radioactive Wastes Treatment by Using Hydrophobized Track-Etched Membranes. Prog. Nucl. Energy 2020, 118, 103128. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Muslimova, I.B.; Melnikova, G.B.; Petrovskaya, A.S.; Seitbayev, A.S.; Chizhik, S.A.; Zhappar, N.K.; Korolkov, I.V.; Güven, O.; Zdorovets, M.V. Graft Polymerization of Stearyl Methacrylate on PET Track-Etched Membranes for Oil–Water Separation. Polymers 2022, 14, 3015. [Google Scholar] [CrossRef]
- Lequieu, W.; Shtanko, N.; Duprez, F. Track Etched Membranes with Thermo-Adjustable Porosity and Separation Properties by Surface Immobilization of Poly(-Vinylcaprolactam). J. Memb. Sci. 2005, 256, 64–71. [Google Scholar] [CrossRef]
- Aguiar, C.; Soto Espinoza, S.L.; Laurella, S.; Grasselli, M. Selective Grafting Polymerization of Nanochannels in Track-Etched Pet Membranes Initiated by Remnant Peroxides. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2018, 437, 53–60. [Google Scholar] [CrossRef]
- Soto Espinoza, S.; Aguiar, C.; Richieri, F.; Grasselli, M. Track-Etched Membrane as Fluorescence-Based PH Biosensor. React. Funct. Polym. 2019, 135, 1–7. [Google Scholar] [CrossRef]
- Pan, K.; Ren, R.; Dan, Y.; Cao, B. Synthesis of Controlled Thermoresponsive PET Track-etched Membranes by ATRP Method. J. Appl. Polym. Sci. 2011, 122, 2047–2053. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Korolkov, I.V.; Yeszhanov, A.B.; Gorin, Y.G. Functionalization of PET Track-Etched Membranes by UV-Induced Graft (Co)Polymerization for Detection of Heavy Metal Ions in Water. Polymers 2019, 11, 1876. [Google Scholar] [CrossRef]
- Geismann, C.; Ulbricht, M. Photoreactive Functionalization of Poly(Ethylene Terephthalate) Track-Etched Pore Surfaces with “Smart” Polymer Systems. Macromol. Chem. Phys. 2005, 206, 268–281. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Liang, Z.; Zhang, Z.; Xie, J.; Gui, X.; Hou, B.; Mo, D.; Lu, L.; Yao, H. Hydrophobic Modified PET Ion Track-Etched Membrane for Oil/Water Separation. J. Water Process Eng. 2023, 54, 103997. [Google Scholar] [CrossRef]
- Smolinska, K.; Bryjak, M. Plasma Modified Track-Etched Membranes for Separation of Alkaline Ions. Open Access J. Sci. Technol. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Pan, K.; Ren, R.; Li, H.; Cao, B. Preparation of Dual Stimuli-responsive PET Track-etched Membrane by Grafting Copolymer Using ATRP. Polym. Adv. Technol. 2013, 24, 22–27. [Google Scholar] [CrossRef]
- Alem, H.; Duwez, A.-S.; Lussis, P.; Lipnik, P.; Jonas, A.M.; Demoustier-Champagne, S. Microstructure and Thermo-Responsive Behavior of Poly(N-Isopropylacrylamide) Brushes Grafted in Nanopores of Track-Etched Membranes. J. Memb. Sci. 2008, 308, 75–86. [Google Scholar] [CrossRef]
- Yang, Q.; Ulbricht, M. Novel Membrane Adsorbers with Grafted Zwitterionic Polymers Synthesized by Surface-Initiated ATRP and Their Salt-Modulated Permeability and Protein Binding Properties. Chem. Mater. 2012, 24, 2943–2951. [Google Scholar] [CrossRef]
- Muslimova, I.B.; Zhatkanbayeva, Z.K.; Omertasov, D.D.; Melnikova, G.B.; Yeszhanov, A.B.; Güven, O.; Chizhik, S.A.; Zdorovets, M.V.; Korolkov, I.V. Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions. Membranes 2023, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Muslimova, I.B.; Zhumanazar, N.; Melnikova, G.B.; Yeszhanov, A.B.; Zhatkanbayeva, Z.K.; Chizhik, S.A.; Zdorovets, M.V.; Güven, O.; Korolkov, I.V. Preparation and Application of Stimuli-Responsive PET TeMs: RAFT Graft Block Copolymerisation of Styrene and Acrylic Acid for the Separation of Water–Oil Emulsions. RSC Adv. 2024, 14, 14425–14437. [Google Scholar] [CrossRef] [PubMed]
- Korolkov, I.V.; Mashentseva, A.A.; Güven, O.; Gorin, Y.G.; Kozlovskiy, A.L.; Zdorovets, M.V.; Zhidkov, I.S.; Cholach, S.O. Electron/Gamma Radiation-Induced Synthesis and Catalytic Activity of Gold Nanoparticles Supported on Track-Etched Poly(Ethylene Terephthalate) Membranes. Mater. Chem. Phys. 2018, 217, 31–39. [Google Scholar] [CrossRef]
- Parmanbek, N.; Sütekin, D.S.; Barsbay, M.; Mashentseva, A.A.; Zheltov, D.A.; Aimanova, N.A.; Jakupova, Z.Y.; Zdorovets, M.V. Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(Dimethylamino)Ethyl Methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III). Polymers 2022, 14, 4026. [Google Scholar] [CrossRef] [PubMed]
- Parmanbek, N.; Sütekin, S.D.; Barsbay, M.; Aimanova, N.A.; Mashentseva, A.A.; Alimkhanova, A.N.; Zhumabayev, A.M.; Yanevich, A.; Almanov, A.A.; Zdorovets, M.V. Environmentally Friendly Loading of Palladium Nanoparticles on Nanoporous PET Track-Etched Membranes Grafted by Poly(1-Vinyl-2-Pyrrolidone) via RAFT Polymerization for the Photocatalytic Degradation of Metronidazole. RSC Adv. 2023, 13, 18700–18714. [Google Scholar] [CrossRef]
- Ma, T.; Janot, J.; Balme, S. Track-Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods 2020, 4, 2000366. [Google Scholar] [CrossRef]
- Tai, S.L.; Abidin, M.N.Z.; Ma’amor, A.; Hashim, N.A.; Hashim, M.L.H. Polyethylene Terephthalate Membrane: A Review of Fabrication Techniques, Separation Processes, and Modifications. Sep. Purif. Technol. 2025, 354, 129343. [Google Scholar] [CrossRef]
- Kirshanov, K.; Toms, R.; Aliev, G.; Naumova, A.; Melnikov, P.; Gervald, A. Recent Developments and Perspectives of Recycled Poly(Ethylene Terephthalate)-Based Membranes: A Review. Membranes 2022, 12, 1105. [Google Scholar] [CrossRef]
- Apel, P.Y. Track-Etching. In Encyclopedia of Membrane Science and Technology; Wiley: New York, NY, USA, 2013; pp. 1–25. [Google Scholar]
- Apel, P.Y.; Blonskaya, I.V.; Ivanov, O.M.; Kristavchuk, O.V.; Lizunov, N.E.; Nechaev, A.N.; Orelovich, O.L.; Polezhaeva, O.A.; Dmitriev, S.N. Creation of Ion-Selective Membranes from Polyethylene Terephthalate Films Irradiated with Heavy Ions: Critical Parameters of the Process. Membr. Membr. Technol. 2020, 2, 98–108. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Jiang, L. Bio-Inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS Nano 2021, 15, 18974–19013. [Google Scholar] [CrossRef]
- Molokanova, L.G.; Nechaev, A.N.; Apel, P.Y. The Effect of Surfactant Concentration on the Geometry of Pores Resulting from Etching of Poly(Ethylene Naphthalate) Films Irradiated by High-Energy Ions. Colloid J. 2014, 76, 170–175. [Google Scholar] [CrossRef]
- Ramírez, P.; Apel, P.Y.; Cervera, J.; Mafé, S. Pore Structure and Function of Synthetic Nanopores with Fixed Charges: Tip Shape and Rectification Properties. Nanotechnology 2008, 19, 315707. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.Y.; Blonskaya, I.V.; Dmitriev, S.N.; Orelovitch, O.L.; Presz, A.; Sartowska, B.A. Fabrication of Nanopores in Polymer Foils with Surfactant-Controlled Longitudinal Profiles. Nanotechnology 2007, 18, 305302. [Google Scholar] [CrossRef]
- Apel, P.; Schulz, A.; Spohr, R.; Trautmann, C.; Vutsadakis, V. Track Size and Track Structure in Polymer Irradiated by Heavy Ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1998, 146, 468–474. [Google Scholar] [CrossRef]
- Apel, P.Y.; Blonskaya, I.; Oganessian, V.; Orelovitch, O.; Trautmann, C. Morphology of Latent and Etched Heavy Ion Tracks in Radiation Resistant Polymers Polyimide and Poly(Ethylene Naphthalate). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2001, 185, 216–221. [Google Scholar] [CrossRef]
- Rostovtseva, T.K.; Bashford, C.L.; Alder, G.M.; Hill, G.N.; McGiffert, C.; Apel, P.Y.; Lowe, G.; Pasternak, C.A. Diffusion through Narrow Pores: Movement of Ions, Water and Nonelectrolytes through Track-Etched PETP Membranes. J. Membr. Biol. 1996, 151, 29–43. [Google Scholar] [CrossRef]
- Apel, P.; Spohr, R.; Trautmann, C.; Vutsadakis, V. Track Structure in Polyethylene Terephthalate Irradiated by Heavy Ions: Let Dependence of Track Diameter. Radiat. Meas. 1999, 31, 51–56. [Google Scholar] [CrossRef]
- Apel, P.Y.; Blonskaya, I.V.; Orelovitch, O.L.; Dmitriev, S.N. Diode-like Ion-Track Asymmetric Nanopores: Some Alternative Methods of Fabrication. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2009, 267, 1023–1027. [Google Scholar] [CrossRef]
- Schönenberger, C.; van der Zande, B.M.I.; Fokkink, L.G.J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U. Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. J. Phys. Chem. B 1997, 101, 5497–5505. [Google Scholar] [CrossRef]
- Muench, F. Direct Surface Functionalization with Metal and Metal Oxide Nanostructures. In Encyclopedia of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 318–336. [Google Scholar]
- Muench, F. Electroless Plating of Metal Nanomaterials. ChemElectroChem 2021, 8, 2993–3012. [Google Scholar] [CrossRef]
- Dauginet-De Pra, L.; Ferain, E.; Legras, R.; Demoustier-Champagne, S. Fabrication of a New Generation of Track-Etched Templates and Their Use for the Synthesis of Metallic and Organic Nanostructures. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2002, 196, 81–88. [Google Scholar] [CrossRef]
- Hashimi, A.S.; Nohan, M.A.N.M.; Chin, S.X.; Zakaria, S.; Chia, C.H. Rapid Catalytic Reduction of 4-Nitrophenol and Clock Reaction of Methylene Blue Using Copper Nanowires. Nanomaterials 2019, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Zdorovets, M.V.; Mashentseva, A.A.; Kozlovskiy, A.L.; Ivanov, I.A.; Kadyrzhanov, K.K. Ionizing Radiation Induced Modification of the Copper Nanotubes Structure. J. Nano Electron. Phys. 2017, 9, 06017-1–06017-6. [Google Scholar] [CrossRef]
- Kozhina, E.P.; Bedin, S.A.; Nechaeva, N.L.; Podoynitsyn, S.N.; Tarakanov, V.P.; Andreev, S.N.; Grigoriev, Y.V.; Naumov, A.V. Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates. Appl. Sci. 2021, 11, 1375. [Google Scholar] [CrossRef]
- Chauhan, R.P.; Gehlawat, D.; Kaur, A.; Rana, P. Ion Beam-Induced Variation in Electrical Conductivity of Ag Nanowires. Radiat. Eff. Defects Solids 2013, 168, 484–489. [Google Scholar] [CrossRef]
- Liu, J.; Duan, J.L.; Toimil-Molares, M.E.; Karim, S.; Cornelius, T.W.; Dobrev, D.; Yao, H.J.; Sun, Y.M.; Hou, M.D.; Mo, D.; et al. Electrochemical Fabrication of Single-Crystalline and Polycrystalline Au Nanowires: The Influence of Deposition Parameters. Nanotechnology 2006, 17, 1922–1926. [Google Scholar] [CrossRef]
- Karim, S.; Toimil-Molares, M.E.; Maurer, F.; Miehe, G.; Ensinger, W.; Liu, J.; Cornelius, T.W.; Neumann, R. Synthesis of Gold Nanowires with Controlled Crystallographic Characteristics. Appl. Phys. A 2006, 84, 403–407. [Google Scholar] [CrossRef]
- Wang, H.-W.; Shieh, C.-F.; Chen, H.-Y.; Shiu, W.-C.; Russo, B.; Cao, G. Standing [111] Gold Nanotube to Nanorod Arrays via Template Growth. Nanotechnology 2006, 17, 2689–2694. [Google Scholar] [CrossRef]
- Sharma, M.K.; Ambolikar, A.S.; Aggarwal, S.K. Electrochemical Synthesis of Gold Nanorods in Track-Etched Polycarbonate Membrane Using Removable Mercury Cathode. J. Nanopart. Res. 2012, 14, 1094. [Google Scholar] [CrossRef]
- Naderi, N.; Hashim, M.R.; Rouhi, J. Synthesis and Characterization of Pt Nanowires Electrodeposited into the Cylindrical Pores of Polycarbonate Membranes. Int. J. Electrochem. Sci. 2012, 7, 8481–8486. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Zdorovets, M.V. Electrochemical Template Synthesis of Copper Nanotubes from Nitrate and Sulfate Electrolytes. Russ. J. Gen. Chem. 2019, 89, 988–993. [Google Scholar] [CrossRef]
- Valizadeh, S.; George, J.M.; Leisner, P.; Hultman, L. Electrochemical Synthesis of Ag/Co Multilayered Nanowires in Porous Polycarbonate Membranes. Thin Solid Films 2002, 402, 262–271. [Google Scholar] [CrossRef]
- Doludenko, I.M.; Zagorskiy, D.L.; Melnikova, P.D.; Menushenkov, V.P.; Gilimianova, A.R.; Panina, L.V.; Biziaev, D.A.; Chaibullin, R.I. Layered Co/Cu and Ni/Cu Nanowires: Relationship between the Structure and Magnetic Properties. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2022, 16, 326–332. [Google Scholar] [CrossRef]
- Caspani, S.; Moraes, S.; Navas, D.; Proenca, M.P.; Magalhães, R.; Nunes, C.; Araújo, J.P.; Sousa, C.T. The Magnetic Properties of Fe/Cu Multilayered Nanowires: The Role of the Number of Fe Layers and Their Thickness. Nanomaterials 2021, 11, 2729. [Google Scholar] [CrossRef]
- Doludenko, I.M.; Volchkov, I.S.; Turenko, B.A.; Koshelev, I.O.; Podkur, P.L.; Zagorskiy, D.L.; Kanevskii, V.M. Electrical Properties Arrays of Intersecting of Nanowires Obtained in the Pores of Track Membranes. Mater. Chem. Phys. 2022, 287, 126285. [Google Scholar] [CrossRef]
- Shumskaya, A.E.; Kozlovskiy, A.L.; Zdorovets, M.V.; Evstigneeva, S.A.; Trukhanov, A.V.; Trukhanov, S.V.; Vinnik, D.A.; Kaniukov, E.Y.; Panina, L.V. Correlation between Structural and Magnetic Properties of FeNi Nanotubes with Different Lengths. J. Alloys Compd. 2019, 810, 151874. [Google Scholar] [CrossRef]
- Wei, X.-Q.; Payne, G.F.; Shi, X.-W.; Du, Y. Electrodeposition of a Biopolymeric Hydrogel in Track-Etched Micropores. Soft Matter 2013, 9, 2131. [Google Scholar] [CrossRef]
- Luo, J.; Lan, M.; Wagner, M.; Ulrich, N.; Kopold, P.; Tzifas, I.; Wang, H.; Trautmann, C.; Toimil-Molares, M.E. Electrochemical Conversion of Cu Nanowire Arrays into Metal-Organic Frameworks HKUST-1. J. Electrochem. Soc. 2023, 170, 022506. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Ibragimova, M.A.; Akhmetova, S.B.; Kozlovskiy, A.L.; Zdorovets, M.V.; Amirkhanova, Z.T. Synthesis, Radical Scavenging, and Antimicrobial Activities of Core–Shell Au/Ni Microtubes. Chem. Pap. 2020, 74, 2189–2199. [Google Scholar] [CrossRef]
- Shumskaya, A.; Panina, L.; Rogachev, A.; Ihnatovich, Z.; Kozlovskiy, A.; Zdorovets, M.; Kaniukov, E.; Korolkov, I. Catalytic Activity of Ni Nanotubes Covered with Nanostructured Gold. Processes 2021, 9, 2279. [Google Scholar] [CrossRef]
- Shumskaya, A.; Kozhina, E.; Bedin, S.; Andreev, S.; Kulesh, E.; Rogachev, A.; Yarmolenko, M.; Korolkov, I.; Kozlovskiy, A.; Zdorovets, M.; et al. Detection of Polynitro Compounds at Low Concentrations by SERS Using Ni@Au Nanotubes. Chemosensors 2022, 10, 306. [Google Scholar] [CrossRef]
- Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors 2019, 19, 1186. [Google Scholar] [CrossRef] [PubMed]
- Rauber, M.; Alber, I.; Müller, S.; Neumann, R.; Picht, O.; Roth, C.; Schökel, A.; Toimil-Molares, M.E.; Ensinger, W. Highly-Ordered Supportless Three-Dimensional Nanowire Networks with Tunable Complexity and Interwire Connectivity for Device Integration. Nano Lett. 2011, 11, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Toimil-Molares, M.E. Characterization and Properties of Micro- and Nanowires of Controlled Size, Composition, and Geometry Fabricated by Electrodeposition and Ion-Track Technology. Beilstein J. Nanotechnol. 2012, 3, 860–883. [Google Scholar] [CrossRef] [PubMed]
- Kozlovskiy, A.L.; Zdorovets, M.V. The Study of the Structural Characteristics and Catalytic Activity of Co/CoCo2O4 Nanowires. Compos. Part B Eng. 2020, 191, 107968. [Google Scholar] [CrossRef]
- Martin, C.R. Nanomaterials: A Membrane-Based Synthetic Approach. Science 1994, 266, 1961–1966. [Google Scholar] [CrossRef]
- Hillebrenner, H.; Buyukserin, F.; Stewart, J.D.; Martin, C.R. Template Synthesized Nanotubes for Biomedical Delivery Applications. Nanomedicine 2006, 1, 39–50. [Google Scholar] [CrossRef]
- Lee, S.B.; Martin, C.R. Electromodulated Molecular Transport in Gold-Nanotube Membranes. J. Am. Chem. Soc. 2002, 124, 11850–11851. [Google Scholar] [CrossRef]
- Harrell, C.C.; Siwy, Z.S.; Martin, C.R. Conical Nanopore Membranes: Controlling the Nanopore Shape. Small 2006, 2, 194–198. [Google Scholar] [CrossRef]
- Muench, F.; Bohn, S.; Rauber, M.; Seidl, T.; Radetinac, A.; Kunz, U.; Lauterbach, S.; Kleebe, H.-J.; Trautmann, C.; Ensinger, W. Polycarbonate Activation for Electroless Plating by Dimethylaminoborane Absorption and Subsequent Nanoparticle Deposition. Appl. Phys. A 2014, 116, 287–294. [Google Scholar] [CrossRef]
- Muench, F.; Oezaslan, M.; Rauber, M.; Kaserer, S.; Fuchs, A.; Mankel, E.; Brötz, J.; Strasser, P.; Roth, C.; Ensinger, W. Electroless Synthesis of Nanostructured Nickel and Nickel–Boron Tubes and Their Performance as Unsupported Ethanol Electrooxidation Catalysts. J. Power Sources 2013, 222, 243–252. [Google Scholar] [CrossRef]
- Stohr, T.; Fischer, A.; Muench, F.; Antoni, M.; Wollstadt, S.; Lohaus, C.; Kunz, U.; Clemens, O.; Klein, A.; Ensinger, W. Electroless Nanoplating of Pd-Pt Alloy Nanotube Networks: Catalysts with Full Compositional Control for the Methanol Oxidation Reaction. ChemElectroChem 2020, 7, 855–864. [Google Scholar] [CrossRef]
- Muench, F.; Rauber, M.; Stegmann, C.; Lauterbach, S.; Kunz, U.; Kleebe, H.-J.; Ensinger, W. Ligand-Optimized Electroless Synthesis of Silver Nanotubes and Their Activity in the Reduction of 4-Nitrophenol. Nanotechnology 2011, 22, 415602. [Google Scholar] [CrossRef] [PubMed]
- Korolkov, I.V.; Borgekov, D.B.; Mashentseva, A.A.; Güven, O.; Atlcl, A.B.; Kozlovskiy, A.L.; Zdorovets, M.V. The Effect of Oxidation Pretreatment of Polymer Template on the Formation and Catalytic Activity of Au/PET Membrane Composites. Chem. Pap. 2017, 71, 2353–2358. [Google Scholar] [CrossRef]
- Mashentseva, A.A. Effect of the Oxidative Modification and Activation of Templates Based on Poly(Ethylene Terephthalate) Track-Etched Membranes on the Electroless Deposition of Copper and the Catalytic Properties of Composite Membranes. Pet. Chem. 2019, 59, 1337–1344. [Google Scholar] [CrossRef]
- Russakova, A.V.; Altynbaeva, L.S.; Barsbay, M.; Zheltov, D.A.; Zdorovets, M.V.; Mashentseva, A.A. Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes. Membranes 2021, 11, 116. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Zdorovets, M. V Influence of Deposition Temperature on the Structure and Catalytic Properties of the Copper Nanotubes Composite Membranes. Mater. Res. Express 2018, 5, 065041. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Turapbay, K.O.; Temir, A.M.; Seytbaev, A.S.; Zdorovets, M.V. Determination of Optimal Conditions for Electoless Synthesis of Copper Nanotubes in the Polymer Matrix. Russ. J. Gen. Chem. 2018, 88, 1213–1218. [Google Scholar] [CrossRef]
- Altynbaeva, L.S.; Mashentseva, A.A.; Aimanova, N.A.; Zheltov, D.A.; Shlimas, D.I.; Nurpeisova, D.T.; Barsbay, M.; Abuova, F.U.; Zdorovets, M.V. Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions. Membranes 2023, 13, 495. [Google Scholar] [CrossRef]
- Schaefer, S.; Muench, F.; Mankel, E.; Fuchs, A.; Brötz, J.; Kunz, U.; Ensinger, W. Double-Walled Ag—Pt Nanotubes Fabricated by Galvanic Replacement and Dealloying: Effect of Composition on the Methanol Oxidation Activity. Nano 2015, 10, 1550085. [Google Scholar] [CrossRef]
- Altynbaeva, L.; Barsbay, M.; Aimanova, N.; Jakupova, Z.; Nurpeisova, D.; Zdorovets, M.; Mashentseva, A. A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials 2022, 12, 1724. [Google Scholar] [CrossRef] [PubMed]
- Mashentseva, A.A.; Nurpeisova, D.T.; Barsbay, M. Effect of Copper Doping on the Photocatalytic Performance of Ni2O3 @PC Membrane Composites in Norfloxacin Degradation. RSC Adv. 2024, 14, 4424–4435. [Google Scholar] [CrossRef] [PubMed]
- Čubová, K.; Čuba, V. Synthesis of Inorganic Nanoparticles by Ionizing Radiation—A Review. Radiat. Phys. Chem. 2020, 169, 108774. [Google Scholar] [CrossRef]
- Belloni, J.; Marignier, J.-L.; Mostafavi, M. Mechanisms of Metal Nanoparticles Nucleation and Growth Studied by Radiolysis. Radiat. Phys. Chem. 2020, 169, 107952. [Google Scholar] [CrossRef]
- Parmanbek, N.; Aimanova, N.A.; Mashentseva, A.A.; Barsbay, M.; Abuova, F.U.; Nurpeisova, D.T.; Jakupova, Z.Y.; Zdorovets, M.V. E-Beam and γ-Rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes. Membranes 2023, 13, 659. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Güven, O.; Mashentseva, A.A.; Atıcı, A.B.; Gorin, Y.G.; Zdorovets, M.V.; Taltenov, A.A. Radiation Induced Deposition of Copper Nanoparticles inside the Nanochannels of Poly(Acrylic Acid)-Grafted Poly(Ethylene Terephthalate) Track-Etched Membranes. Radiat. Phys. Chem. 2017, 130, 480–487. [Google Scholar] [CrossRef]
- Shumskaya, A.; Korolkov, I.; Rogachev, A.; Ignatovich, Z.; Kozlovskiy, A.; Zdorovets, M.; Anisovich, M.; Bashouti, M.; Shalabny, A.; Busool, R.; et al. Synthesis of Ni@Au Core-Shell Magnetic Nanotubes for Bioapplication and SERS Detection. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 626, 127077. [Google Scholar] [CrossRef]
- Boettcher, T.; Stojkovikj, S.; Khadke, P.; Kunz, U.; Mayer, M.T.; Roth, C.; Ensinger, W.; Muench, F. Electrodeposition of Palladium-Dotted Nickel Nanowire Networks as a Robust Self-Supported Methanol Electrooxidation Catalyst. J. Mater. Sci. 2021, 56, 12620–12633. [Google Scholar] [CrossRef]
- Liu, Z.; Abedin, S.Z.E.; Ghazvini, M.S.; Endres, F. Electrochemical Synthesis of Vertically Aligned Zinc Nanowires Using Track-Etched Polycarbonate Membranes as Templates. Phys. Chem. Chem. Phys. 2013, 15, 11362. [Google Scholar] [CrossRef]
- Li, M.; Ulrich, N.; Schubert, I.; Sigle, W.; Peter Wagner, M.F.; Trautmann, C.; Toimil-Molares, M.E. Three-Dimensional Free-Standing Gold Nanowire Networks as a Platform for Catalytic Applications. RSC Adv. 2023, 13, 4721–4728. [Google Scholar] [CrossRef]
- Ulrich, N.; Schäfer, M.; Römer, M.; Straub, S.D.; Zhang, S.; Brötz, J.; Trautmann, C.; Scheu, C.; Etzold, B.J.M.; Toimil-Molares, M.E. Cu Nanowire Networks with Well-Defined Geometrical Parameters for Catalytic Electrochemical CO2 Reduction. ACS Appl. Nano Mater. 2023, 6, 4190–4200. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Borgekov, D.B.; Kenzhina, I.E.; Kozlovskiy, A.L. Effect of Ionizing Radiation on Structural and Conductive Properties of Copper Nanotubes. Phys. Lett. A 2018, 382, 175–179. [Google Scholar] [CrossRef]
- Sato, Y.; Koshikawa, H.; Yamamoto, S.; Sugimoto, M.; Sawada, S.I.; Yamaki, T. Fabrication of Size-and Shape-Controlled Platinum Cones by Ion-Track Etching and Electrodeposition Techniques for Electrocatalytic Applications. Quantum Beam Sci. 2021, 5, 21. [Google Scholar] [CrossRef]
- Kozhina, E.; Bedin, S.; Martynov, A.; Andreev, S.; Piryazev, A.; Grigoriev, Y.; Gorbunova, Y.; Naumov, A. Ultrasensitive Optical Fingerprinting of Biorelevant Molecules by Means of SERS-Mapping on Nanostructured Metasurfaces. Biosensors 2022, 13, 46. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Kenzhina, I.E.; Zdorovets, M.V. FeCo—Fe2CoO4/Co3O4 Nanocomposites: Phase Transformations as a Result of Thermal Annealing and Practical Application in Catalysis. Ceram. Int. 2020, 46, 10262–10269. [Google Scholar] [CrossRef]
- Scheuerlein, M.C.; Muench, F.; Kunz, U.; Hellmann, T.; Hofmann, J.P.; Ensinger, W. Electroless Nanoplating of Iridium: Template-Assisted Nanotube Deposition for the Continuous Flow Reduction of 4-Nitrophenol. ChemElectroChem 2020, 7, 3496–3507. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Aimanova, N.A.; Parmanbek, N.; Altynbaeva, L.S.; Nurpeisova, D.T. Application of the Cu@PET Composite Track-Etched Membranes for Catalytic Removal of Cr(VI) Ions. Bull. Karaganda Univ. Chem. Ser. 2022, 107, 227–238. [Google Scholar] [CrossRef]
- Komatsu, T. Protein-Based Smart Microtubes and Nanotubes as Ultrasmall Biomaterials. Chem. Lett. 2020, 49, 1245–1255. [Google Scholar] [CrossRef]
- Mashentseva, A.; Borgekov, D.; Kislitsin, S.; Zdorovets, M.; Migunova, A. Comparative Catalytic Activity of PET Track-Etched Membranes with Embedded Silver and Gold Nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2015, 365, 70–74. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Aimanova, N.A.; Zdorovets, M. V Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes 2021, 11, 60. [Google Scholar] [CrossRef]
- Tovani, C.B.; Oliveira, T.M.; Soares, M.P.R.; Nassif, N.; Fukada, S.Y.; Ciancaglini, P.; Gloter, A.; Ramos, A.P. Strontium Calcium Phosphate Nanotubes as Bioinspired Building Blocks for Bone Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 43422–43434. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, S.; Felix, E.-M.; Muench, F.; Antoni, M.; Lohaus, C.; Brötz, J.; Kunz, U.; Gärtner, I.; Ensinger, W. NiCo Nanotubes Plated on Pd Seeds as a Designed Magnetically Recollectable Catalyst with High Noble Metal Utilisation. RSC Adv. 2016, 6, 70033–70039. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, B.; Gui, X.; Ma, J.; Chu, J.; Guo, Z.; Wang, W.; Qin, W.; Qin, Z.; Yao, H.; et al. Planting Gold Nanoflower for Harvesting Reproducible SERS Substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 308, 123793. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, M.; Parker, M.; Kobayashi, Y.; Martin, C.R. Molecular Sieving and Sensing with Gold Nanotube Membranes. Chem. Rec. 2002, 2, 259–267. [Google Scholar] [CrossRef]
- Muench, F.; Neetzel, C.; Kaserer, S.; Brötz, J.; Jaud, J.-C.; Zhao-Karger, Z.; Lauterbach, S.; Kleebe, H.-J.; Roth, C.; Ensinger, W. Fabrication of Porous Rhodium Nanotube Catalysts by Electroless Plating. J. Mater. Chem. 2012, 22, 12784. [Google Scholar] [CrossRef]
- Scheuerlein, M.C.; Ensinger, W. Development of a Nanoscale Electroless Plating Procedure for Bismuth and Its Application in Template-Assisted Nanotube Fabrication. RSC Adv. 2021, 11, 8636–8642. [Google Scholar] [CrossRef]
- Scheuerlein, M.C.; Ensinger, W. Electroless Nano-Plating in Ion-Track Etched Polymers: Iridium-and Bismuth-Coated Membranes for Catalysis and Sensing Applications. In Proceedings of the World Congress on Recent Advances in Nanotechnology, Lisbon, Portugal, 14–16 June 2021; pp. 109-1–109-4. [Google Scholar]
- Yamamoto, S.; Koshikawa, H.; Taguchi, T.; Yamaki, T. Precipitation of Pt Nanoparticles inside Ion-Track-Etched Capillaries. Quantum Beam Sci. 2020, 4, 8. [Google Scholar] [CrossRef]
- Kamakshi; Kumar, R.; Saraswat, V.K.; Kumar, M.; Awasthi, K. Palladium Nanoparticle Binding in Functionalized Track Etched PET Membrane for Hydrogen Gas Separation. Int. J. Hydrogen Energy 2017, 42, 16186–16194. [Google Scholar] [CrossRef]
- Usman, M.; Ali, M.; Al-Maythalony, B.A.; Ghanem, A.S.; Saadi, O.W.; Ali, M.; Jafar Mazumder, M.A.; Abdel-Azeim, S.; Habib, M.A.; Yamani, Z.H.; et al. Highly Efficient Permeation and Separation of Gases with Metal–Organic Frameworks Confined in Polymeric Nanochannels. ACS Appl. Mater. Interfaces 2020, 12, 49992–50001. [Google Scholar] [CrossRef]
- Acharya, N.K.; Kulshrestha, V.; Awasthi, K.; Kumar, R.; Jain, A.K.; Singh, M.; Avasthi, D.K.; Vijay, Y.K. Gas Permeation Study of Ti-Coated, Track-Etched Polymeric Membranes. Vacuum 2006, 81, 389–393. [Google Scholar] [CrossRef]
- Mashentseva, A.; Borgekov, D.; Zdorovets, M.; Russakova, A. Synthesis, Structure, and Catalytic Activity of Au/Poly(Ethylene Terephthalate) Composites. Acta Phys. Pol. A 2014, 125, 1263–1266. [Google Scholar] [CrossRef]
- Felix, E.-M.; Antoni, M.; Pause, I.; Schaefer, S.; Kunz, U.; Weidler, N.; Muench, F.; Ensinger, W. Template-Based Synthesis of Metallic Pd Nanotubes by Electroless Deposition and Their Use as Catalysts in the 4-Nitrophenol Model Reaction. Green Chem. 2016, 18, 558–564. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Zdorovets, M.V. Catalytic Activity of Composite Track-Etched Membranes Based on Copper Nanotubes in Flow and Static Modes. Pet. Chem. 2019, 59, 552–557. [Google Scholar] [CrossRef]
- Zuo, Y.; Song, J.-M.; Niu, H.-L.; Mao, C.-J.; Zhang, S.-Y.; Shen, Y.-H. Synthesis of TiO2-Loaded Co0.85Se Thin Films with Heterostructure and Their Enhanced Catalytic Activity for p-Nitrophenol Reduction and Hydrazine Hydrate Decomposition. Nanotechnology 2016, 27, 145701. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, H.; Chen, C.; Huang, G.; Chen, Q. Insights into the Reduction of 4-Nitrophenol to 4-Aminophenol on Catalysts. Chem. Phys. Lett. 2017, 684, 148–152. [Google Scholar] [CrossRef]
- Kästner, C.; Thünemann, A.F. Catalytic Reduction of 4-Nitrophenol Using Silver Nanoparticles with Adjustable Activity. Langmuir 2016, 32, 7383–7391. [Google Scholar] [CrossRef]
- Lim, J.; Yang, S.; Kim, C.; Roh, C.-W.; Kwon, Y.; Kim, Y.-T.; Lee, H. Shaped Ir–Ni Bimetallic Nanoparticles for Minimizing Ir Utilization in Oxygen Evolution Reaction. Chem. Commun. 2016, 52, 5641–5644. [Google Scholar] [CrossRef]
- Rao, C.; Trivedi, D. Chemical and Electrochemical Depositions of Platinum Group Metals and Their Applications. Coord. Chem. Rev. 2005, 249, 613–631. [Google Scholar] [CrossRef]
- Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L.M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by Metallic Nanoparticles in Aqueous Solution: Model Reactions. Chem. Soc. Rev. 2012, 41, 5577. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Campbell, C.T. The Active Site in Nanoparticle Gold Catalysis. Science 2004, 306, 234–235. [Google Scholar] [CrossRef] [PubMed]
- Moraes Silva, S.; Tavallaie, R.; Sandiford, L.; Tilley, R.D.; Gooding, J.J. Gold Coated Magnetic Nanoparticles: From Preparation to Surface Modification for Analytical and Biomedical Applications. Chem. Commun. 2016, 52, 7528–7540. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Muneer, M.; Khosa, M.K.K.; Akram, N.; Khalid, S.; Adeel, M.; Nisar, A.; Sherazi, S. Azadirachta Indica Leaves Extract Assisted Green Synthesis of Ag-TiO2 for Degradation of Methylene Blue and Rhodamine B Dyes in Aqueous Medium. Green Process. Synth. 2019, 8, 659–666. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Miguel, N.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Photocatalytic Degradation of Pesticides in Natural Water: Effect of Hydrogen Peroxide. Int. J. Photoenergy 2012, 2012, 371714. [Google Scholar] [CrossRef]
- Kavaklı, C.; Barsbay, M.; Tilki, S.; Güven, O.; Kavaklı, P.A. Activation of Polyethylene/Polypropylene Nonwoven Fabric by Radiation-Induced Grafting for the Removal of Cr(VI) from Aqueous Solutions. Water Air Soil Pollut. 2016, 227, 473. [Google Scholar] [CrossRef]
- Barsbay, M.; Güven, O. Nanostructuring of Polymers by Controlling of Ionizing Radiation-Induced Free Radical Polymerization, Copolymerization, Grafting and Crosslinking by RAFT Mechanism. Radiat. Phys. Chem. 2020, 169, 107816. [Google Scholar] [CrossRef]
- Chandan, M.R.; Kumar, K.R.; Shaik, A.H. Two-Dimensional Cu Nanostructures for Efficient Photo-Catalytic Degradation of Methylene Blue. Environ. Sci. Adv. 2022, 1, 814–826. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, S.; Ning, P. Degradation Mechanism of Methylene Blue in a Heterogeneous Fenton-like Reaction Catalyzed by Ferrocene. Ind. Eng. Chem. Res. 2014, 53, 643–649. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Martins, A.S.; Guaraldo, T.T.; Wenk, J.; Mattia, D.; Boldrin Zanoni, M.V. Nanoporous WO3 Grown on a 3D Tungsten Mesh by Electrochemical Anodization for Enhanced Photoelectrocatalytic Degradation of Tetracycline in a Continuous Flow Reactor. J. Electroanal. Chem. 2022, 920, 116617. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Ma, W.; Wang, Y.; Cui, P.; Qi, J.; Chen, Z.; Zhu, Z.; Meng, F. Highly Efficient Electro-Catalysis Activationof Peroxymonosulfate by “Used” As/Cr/Mo@FeOOH Material for the Degradation of Metronidazole: Degradation Mechanism and Toxicity Assessment. J. Taiwan Inst. Chem. Eng. 2021, 121, 302–312. [Google Scholar] [CrossRef]
- Kalkan Erdoğan, M. Preparation and Stabilization of Ag Nanoparticles with N-Vinyl-2-Pyrrolidone Grafted-Poly(Vinyl Alcohol) in an Organic Medium and Investigation of Their Usability in the Catalytic Dye Decolorization. Colloids Interface Sci. Commun. 2020, 34, 100222. [Google Scholar] [CrossRef]
- Demchenko, V.; Riabov, S.; Kobylinskyi, S.; Goncharenko, L.; Rybalchenko, N.; Kruk, A.; Moskalenko, O.; Shut, M. Effect of the Type of Reducing Agents of Silver Ions in Interpolyelectrolyte-Metal Complexes on the Structure, Morphology and Properties of Silver-Containing Nanocomposites. Sci. Rep. 2020, 10, 7126. [Google Scholar] [CrossRef]
- Turhan, T.; Güvenilir, Y.A.; Sahiner, N. Micro Poly(3-Sulfopropyl Methacrylate) Hydrogel Synthesis for in Situ Metal Nanoparticle Preparation and Hydrogen Generation from Hydrolysis of NaBH4. Energy 2013, 55, 511–518. [Google Scholar] [CrossRef]
- Yu, H.; Chen, F.; Ye, L.; Zhou, H.; Zhao, T. Enhanced Photocatalytic Degradation of Norfloxacin under Visible Light by Immobilized and Modified In2O3/TiO2 Photocatalyst Facilely Synthesized by a Novel Polymeric Precursor Method. J. Mater. Sci. 2019, 54, 10191–10203. [Google Scholar] [CrossRef]
- Kar, S.; Pal, T.; Ghosh, S. Removal of Norfloxacin from Wastewater by Adsorption onto SnS2 Followed by Photocatalytic Degradation. ChemistrySelect 2023, 8, e202300878. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Zdorovets, M.V. Composites Based on Polyethylene Terephthalate Track-Etched Membranes and Silver as Hydrogen Peroxide Decomposition Catalysts. Pet. Chem. 2017, 57, 954–960. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Borgekov, D.B.; Niyazova, D.T.; Zdorovets, M.V. Evaluation of the Catalytic Activity of the Composite Track-Etched Membranes for p-Nitrophenol Reduction Reaction. Pet. Chem. 2015, 55, 810–815. [Google Scholar] [CrossRef]
- Rostovshchikova, T.N.; Smirnov, V.V.; Kozhevin, V.M.; Yavsin, D.A.; Zabelin, M.A.; Yassievich, I.N.; Gurevich, S.A. New Size Effect in the Catalysis by Interacting Copper Nanoparticles. Appl. Catal. A Gen. 2005, 296, 70–79. [Google Scholar] [CrossRef]
- Panov, D.V.; Bichkov, V.Y.; Tulenin, Y.P.; Zagorskiy, D.L.; Kanevskiy, V.M.; Volchkov, I.S. Copper Nanowires as Catalysts for CO Oxidation. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 1264–1269. [Google Scholar] [CrossRef]
- Rais, J.; Plešek, J.; Selucký, P.; Kyrš, M.; Kadlecová, L. Extraction of Cesium with Derivatives of Carborane into Nitrobenzene. J. Radioanal. Nucl. Chem. Artic. 1991, 148, 349–357. [Google Scholar] [CrossRef]
- Clarke, T.D.; Wai, C.M. Selective Removal of Cesium from Acid Solutions with Immobilized Copper Ferrocyanide. Anal. Chem. 1998, 70, 3708–3711. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, S.; Pandey, A.K.; Goswami, A. Copper Ferrocyanide Loaded Track Etched Membrane: An Effective Cesium Adsorbent. J. Radioanal. Nucl. Chem. 2015, 304, 697–703. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and Antimony in Water and Wastewater: Overview of Removal Techniques with Special Reference to Latest Advances in Adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Li, D. Adsorptive Removal of Phosphate from Water Using Mesoporous Materials: A Review. J. Environ. Manag. 2017, 193, 470–482. [Google Scholar] [CrossRef]
- Chaudhury, S.; Nir, O. Electro-Enhanced Membrane Sorption: A New Approach for Selective Ion Separation and Its Application to Phosphate and Arsenic Removal. Ind. Eng. Chem. Res. 2020, 59, 10595–10605. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Seitzhapar, N.; Barsbay, M.; Aimanova, N.A.; Alimkhanova, A.N.; Zheltov, D.A.; Zhumabayev, A.M.; Temirgaziev, B.S.; Almanov, A.A.; Sadyrbekov, D.T. Adsorption Isotherms and Kinetics for Pbii Ion Removal from Aqueous Solutions with Biogenic Metal Oxide Nanoparticles. RSC Adv. 2023, 13, 26839–26850. [Google Scholar] [CrossRef]
- Hering, K.; Cialla, D.; Ackermann, K.; Dörfer, T.; Möller, R.; Schneidewind, H.; Mattheis, R.; Fritzsche, W.; Rösch, P.; Popp, J. SERS: A Versatile Tool in Chemical and Biochemical Diagnostics. Anal. Bioanal. Chem. 2008, 390, 113–124. [Google Scholar] [CrossRef]
- Spain, E.; McCooey, A.; Joyce, K.; Keyes, T.E.; Forster, R.J. Gold Nanowires and Nanotubes for High Sensitivity Detection of Pathogen DNA. Sens. Actuators B Chem. 2015, 215, 159–165. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Rab, S.; Pratap Singh, R.; Suman, R. Sensors for Daily Life: A Review. Sens. Int. 2021, 2, 100121. [Google Scholar] [CrossRef]
- Han, S.; Peng, H.; Sun, Q.; Venkatesh, S.; Chung, K.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An Overview of the Development of Flexible Sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, W.; Romain, A.-C.; Nicolas, J.; Stuetz, R.M. The Use of Sensor Arrays for Environmental Monitoring: Interests and Limitations. J. Environ. Monit. 2003, 5, 852. [Google Scholar] [CrossRef] [PubMed]
- Kucherenko, I.S.; Soldatkin, O.O.; Dzyadevych, S.V.; Soldatkin, A.P. Electrochemical Biosensors Based on Multienzyme Systems: Main Groups, Advantages and Limitations—A Review. Anal. Chim. Acta 2020, 1111, 114–131. [Google Scholar] [CrossRef]
- Rajan, N.K.; Duan, X.; Reed, M.A. Performance Limitations for Nanowire/Nanoribbon Biosensors. WIREs Nanomed. Nanobiotechnol. 2013, 5, 629–645. [Google Scholar] [CrossRef]
- Liang, C.Z.; Chung, T.-S.; Lai, J.-Y. A Review of Polymeric Composite Membranes for Gas Separation and Energy Production. Prog. Polym. Sci. 2019, 97, 101141. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A Review on Membrane Fabrication: Structure, Properties and Performance Relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Wang, J. Stripping Analysis at Bismuth Electrodes: A Review. Electroanalysis 2005, 17, 1341–1346. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9780429170195. [Google Scholar]
- Hicke, H.; Becker, M.; Paulke, B.; Ulbricht, M. Covalently Coupled Nanoparticles in Capillary Pores as Enzyme Carrier and as Turbulence Promoter to Facilitate Enzymatic Polymerizations in Flow-through Enzyme–Membrane Reactors. J. Memb. Sci. 2006, 282, 413–422. [Google Scholar] [CrossRef]
- Wharton, J.E.; Jin, P.; Sexton, L.T.; Horne, L.P.; Sherrill, S.A.; Mino, W.K.; Martin, C.R. A Method for Reproducibly Preparing Synthetic Nanopores for Resistive-Pulse Biosensors. Small 2007, 3, 1424–1430. [Google Scholar] [CrossRef]
- Morones-Ramírez, J.R. Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes. Int. J. Polym. Sci. 2014, 2014, 967615. [Google Scholar] [CrossRef]
- Ndilowe, G.M.; Bode-Aluko, C.A.; Chimponda, D.; Kristavchuk, O.; Kochnev, I.; Nechaev, A.; Petrik, L. Fabrication of Silver-Coated PET Track-Etched Membrane as SERS Platform for Detection of Acetaminophen. Colloid Polym. Sci. 2021, 299, 1729–1741. [Google Scholar] [CrossRef]
- Longoni, M.; Zalaffi, M.S.; de Ferri, L.; Stortini, A.M.; Pojana, G.; Ugo, P. Surface Enhanced Raman Spectroscopy with Electrodeposited Copper Ultramicro-Wires with/without Silver Nanostars Decoration. Nanomaterials 2021, 11, 518. [Google Scholar] [CrossRef] [PubMed]
- Kovalets, N.P.; Kozhina, E.P.; Razumovskaya, I.V.; Bedin, S.A.; Piryazev, A.A.; Grigoriev, Y.V.; Naumov, A.V. Toward Single-Molecule Surface-Enhanced Raman Scattering with Novel Type of Metasurfaces Synthesized by Crack-Stretching of Metallized Track-Etched Membranes. J. Chem. Phys. 2022, 156. [Google Scholar] [CrossRef]
- Kozhina, E.; Kulesh, E.; Bedin, S.; Doludenko, I.; Piryazev, A.; Korolkov, I.; Kozlovskiy, A.; Zdorovets, M.; Rogachev, A.; Shumskaya, A. One-Dimensional Magneto-Optical Nanostructures: Template Synthesis, Structure, Properties, and Application in Spectroscopy Based on Plasmon Resonance. IEEE Magn. Lett. 2022, 13, 1–5. [Google Scholar] [CrossRef]
- Del Pilar Rodríguez-Torres, M.; Díaz-Torres, L.; Romero-Servin, S. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates. Int. J. Mol. Sci. 2014, 15, 19239–19252. [Google Scholar] [CrossRef]
- Kaniukov, E.; Yakimchuk, D.; Arzumanyan, G.; Terryn, H.; Baert, K.; Kozlovskiy, A.; Zdorovets, M.; Belonogov, E.; Demyanov, S. Growth Mechanisms of Spatially Separated Copper Dendrites in Pores of a SiO2 Template. Philos. Mag. 2017, 97, 2268–2283. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Li, L.; Zhang, J.; Liu, J.; Hu, J.; Wu, X.; Weng, Z.; Chu, X.; Li, J.; et al. Magnetic–Plasmonic Ni@Au Core–Shell Nanoparticle Arrays and Their SERS Properties. RSC Adv. 2020, 10, 2661–2669. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Shumskaya, A.; Kozlovskiy, A.L.; Kaliyekperov, M.E.; Lissovskaya, L.I.; Zdorovets, M.V. Magnetic-Plasmonic Ni Nanotubes Covered with Gold for Improvement of SERS Analysis. J. Alloys Compd. 2022, 901, 163661. [Google Scholar] [CrossRef]
- Perales-Rondon, J.V.; Colina, A.; González, M.C.; Escarpa, A. Roughened Silver Microtubes for Reproducible and Quantitative SERS Using a Template-Assisted Electrosynthesis Approach. Appl. Mater. Today 2020, 20, 100710. [Google Scholar] [CrossRef]
- Amin, K.M.; Muench, F.; Kunz, U.; Ensinger, W. 3D NiCo-Layered Double Hydroxide@Ni Nanotube Networks as Integrated Free-Standing Electrodes for Nonenzymatic Glucose Sensing. J. Colloid Interface Sci. 2021, 591, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Shumskaya, A.E.; Lemesonok, S.N.; Alisienok, O.A.; Kovalev, V.E.; Korzan, S.I.; Kulesh, E.A.; Imanova, G.T.; Jabarov, S.H. Sensor Label with Polyaniline-Metal Composites for Meat Freshness Monitoring. Mater. Res. Innov. 2024, 28, 379–385. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Ultrathin, Flexible, Solid Polymer Composite Electrolyte Enabled with Aligned Nanoporous Host for Lithium Batteries. Nat. Nanotechnol. 2019, 14, 705–711. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Xu, H.; Song, Y.; He, X. Polyimides as Promising Materials for Lithium-Ion Batteries: A Review. Nano-Micro Lett. 2023, 15, 135. [Google Scholar] [CrossRef]
- Brouzgou, A.; Podias, A.; Tsiakaras, P. PEMFCs and AEMFCs Directly Fed with Ethanol: A Current Status Comparative Review. J. Appl. Electrochem. 2013, 43, 119–136. [Google Scholar] [CrossRef]
- Koenigsmann, C.; Wong, S.S. One-Dimensional Noble Metal Electrocatalysts: A Promising Structural Paradigm for Direct Methanolfuelcells. Energy Environ. Sci. 2011, 4, 1161–1176. [Google Scholar] [CrossRef]
- Antolini, E.; Perez, J. The Renaissance of Unsupported Nanostructured Catalysts for Low-Temperature Fuel Cells: From the Size to the Shape of Metal Nanostructures. J. Mater. Sci. 2011, 46, 4435–4457. [Google Scholar] [CrossRef]
- Muench, F. Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts. Catalysts 2018, 8, 597. [Google Scholar] [CrossRef]
- Wang, W.; Tian, M.; Abdulagatov, A.; George, S.M.; Lee, Y.-C.; Yang, R. Three-Dimensional Ni/TiO2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications. Nano Lett. 2012, 12, 655–660. [Google Scholar] [CrossRef]
- Obradović, M.D.; Stančić, Z.M.; Lačnjevac, U.Č.; Radmilović, V.V.; Gavrilović-Wohlmuther, A.; Radmilović, V.R.; Gojković, S.L. Electrochemical Oxidation of Ethanol on Palladium-Nickel Nanocatalyst in Alkaline Media. Appl. Catal. B Environ. 2016, 189, 110–118. [Google Scholar] [CrossRef]
- Lee, P.L.J.; Thangavel, V.; Guery, C.; Trautmann, C.; Toimil-Molares, M.E.; Morcrette, M. Etched Ion-Track Membranes as Tailored Separators in Li–S Batteries. Nanotechnology 2021, 32, 365401. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Scrosati, B.; Tarascon, J. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Busche, M.R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical Electrochemical Study on the Parasitic Shuttle-Effect in Lithium-Sulfur-Cells at Different Temperatures and Different Rates. J. Power Sources 2014, 259, 289–299. [Google Scholar] [CrossRef]
- Zhang, S.S. Liquid Electrolyte Lithium/Sulfur Battery: Fundamental Chemistry, Problems, and Solutions. J. Power Sources 2013, 231, 153–162. [Google Scholar] [CrossRef]
- Ji, X.; Nazar, L.F. Advances in Li–S Batteries. J. Mater. Chem. 2010, 20, 9821. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Zdorovets, M.V.; Shumskaya, A.E.; Kadyrzhanov, K.K. Study of the Applicability of Fe Nanotubes as an Anode Material of Lithium-Ion Batteries. Prog. Electromagn. Res. M 2019, 82, 157–166. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Ren, D.; Ouyang, M.; Lu, L.; Han, X. Thermal Runaway Triggered by Plated Lithium on the Anode after Fast Charging. ACS Appl. Mater. Interfaces 2019, 11, 46839–46850. [Google Scholar] [CrossRef]
- Chung, Y.S.; Yoo, S.H.; Kim, C.K. Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance. Ind. Eng. Chem. Res. 2009, 48, 4346–4351. [Google Scholar] [CrossRef]
- Arora, P.; Zhang, Z. Battery Separators. Chem. Rev. 2004, 104, 4419–4462. [Google Scholar] [CrossRef]
- Liu, J.; Cao, D.; Yao, H.; Liu, D.; Zhang, X.; Zhang, Q.; Chen, L.; Wu, S.; Sun, Y.; He, D.; et al. Hexagonal Boron Nitride-Coated Polyimide Ion Track Etched Separator with Enhanced Thermal Conductivity and High-Temperature Stability for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 8639–8649. [Google Scholar] [CrossRef]
- de Moraes, A.C.M.; Hyun, W.J.; Luu, N.S.; Lim, J.-M.; Park, K.-Y.; Hersam, M.C. Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 8107–8114. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, K.; Choudhury, S.; Komber, H.; Simon, F.; Formanek, P.; Sharma, A.; Stamm, M. Functionalization of Track-Etched Poly (Ethylene Terephthalate) Membranes as a Selective Filter for Hydrogen Purification. Int. J. Hydrogen Energy 2014, 39, 9356–9365. [Google Scholar] [CrossRef]
- Kamakshi; Kumar, R.; Saraswat, V.K.; Kumar, M.; Awasthi, K. Functionalized and Engineered Nanochannels for Gas Separation. Pure Appl. Chem. 2018, 90, 1063–1071. [Google Scholar] [CrossRef]
- Kumar, R.; Kamakshi; Kumar, M.; Awasthi, K. UV-Irradiation Assisted Functionalization and Binding of Pd Nanoparticles in Polycarbonate Membranes for Hydrogen Separation. Environ. Sci. Pollut. Res. 2021, 28, 46404–46413. [Google Scholar] [CrossRef]
- Saini, N.; Agarwal, S.; Awasthi, K. Bimetallic PdPt Alloy Nanoparticle-Decorated Track-Etched Polyethylene Terephthalate Membranes for Efficient H2 Separation. Mater. Adv. 2024, 5, 2906–2916. [Google Scholar] [CrossRef]
- Volkov, D.S.; Rogova, O.B.; Ovseenko, S.T.; Odelskii, A.; Proskurnin, M.A. Element Composition of Fractionated Water-Extractable Soil Colloidal Particles Separated by Track-Etched Membranes. Agrochemicals 2023, 2, 561–580. [Google Scholar] [CrossRef]
- Awasthi, K.; Kulshrestha, V.; Acharya, N.K.; Singh, M.; Vijay, Y.K. Ion Transport through Track Etched Polypropylene Membrane. Eur. Polym. J. 2006, 42, 883–887. [Google Scholar] [CrossRef]
- Mabrouk, M.; Das, D.B.; Salem, Z.A.; Beherei, H.H. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021, 26, 1077. [Google Scholar] [CrossRef]
- Rosi, N.L.; Mirkin, C.A. Nanostructures in Biodiagnostics. Chem. Rev. 2005, 105, 1547–1562. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Alegret, S.; del Valle, M. Potentiometric Bioelectronic Tongue for the Analysis of Urea and Alkaline Ions in Clinical Samples. Biosens. Bioelectron. 2007, 22, 2171–2178. [Google Scholar] [CrossRef]
- Li, M.; Xiong, Y.; Lu, W.; Wang, X.; Liu, Y.; Na, B.; Qin, H.; Tang, M.; Qin, H.; Ye, M.; et al. Functional Nanochannels for Sensing Tyrosine Phosphorylation. J. Am. Chem. Soc. 2020, 142, 16324–16333. [Google Scholar] [CrossRef]
Grafted Monomer | Added functionality | Refs. |
---|---|---|
2-dimethylaminoethyl methacrylate | pH and temperature responsivity | [43] |
Glycidyl methacrylate | Epoxy functionality | [44] |
N-isopropylacrylamide | Temperature responsivity | [45] |
Styrene | Hydrophobization for purification of saline solutions | [46] |
Triethoxyvinylsilane and 1H,1H,2H,2H-perfluorododecyltrichlorosilane | Pesticide (carbendazim) removal | [47] |
Triethoxyvinylsilane | Water desalination | [48] |
Triethoxyvinylsilane and styrene | Membrane distillation of radioactive wastes. | [49] |
Acrylic acid | Detection of sub-ppb concentrations of Pb2+ | [37] |
Stearyl methacrylate | Oil–water separation | [50] |
N-vinylcaprolactam | Temperature responsivity | [51] |
Glycidyl methacrylate and acrylic acid | Selective functionalization | [52] |
Glycidyl methacrylate | Fluorescence-based ph biosensing | [53] |
N-isopropylacrylamide | Temperature responsivity | [54] |
Acrylic acid and 4-vinylpyridine | Detection of heavy metal ions | [55] |
Acrylic acid | pH responsivity, reactive layer for further functionalization | [56] |
Propyltrichlorosilane | Oil/water separation | [57] |
Acrylic acid and di(ethylene glycol)methyl ether methacrylate | Separation of alkaline ions | [58] |
2-hydroxyethyl-methacrylate and N-isopropylacrylamide | Environmental responsiveness | [59] |
Polymer | Etching Solution | Sensibilization | Deactivator | T, °C | Etching Time, d = 1 µm, h | Etching Selectivity | |
---|---|---|---|---|---|---|---|
PC | NaOH | UV | Methanol | 50 | 1 | 100–10,000 | |
PET | NaOH | UV, DMF | Methanol | 50 | 1 | 10–1000 | |
Na2CO3 | 80 | 1 | 1000 | ||||
PP | CrO3 | H2SO4 | 80 | 1 | 10–100 | ||
PVDF | KMnO4 | NaOH | 80 | 5 | 10–100 | ||
PI | NaOCl | Na2B4O7 | 50 | 1 | 10–1000 |
Deposited Materials | Structure | Polymer Template | Synthesis Approach | Application of CTeM | Refs. | ||
---|---|---|---|---|---|---|---|
Pores Size and Density | Substrate | Thickness, µm | |||||
Ni and Pd | Ni NWs and Pd NPs | 400 nm; 1.5 × 108 cm−2 | PC | 25.0 | Electroplating | Catalyst for fuel cell | [131] |
ZnO | NWs | 90 nm; 1.0 × 109 | PC | 21.0 | Electroplating | - | [132] |
Au | NWs | 80 and 170 nm; 4.0 × 108 cm−2 | PC | 30.0 | Electroplating | Catalysis | [133] |
Cu | NWs | 136 ± 6 nm; 8.0 × 108 cm−2 | PC | 30.0 | Electroplating | CO2 reduction | [134] |
NTs | 380 ± 20 nm; 4 × 107 cm−2 | PET | 12.0 | - | [135] | ||
Pt | Nanocones | 550 nm; 3.0 × 107 and 1.0 × 108 cm−2 | PI and PC | 12.0 50.0 | Electroplating | Electrocatalysis | [136] |
Ni@Au | NTs | 380 ± 20 nm; 4 × 107 cm−2 | PET | 12.0 | Electroless/Electroplating | Catalysis Antioxidants Antimicrobial activity SERS | [102,103,130] |
Ag | NWs | 60–200 nm; 8.4 × 109, 1.2 × 109, 4 × 108 cm−2. | PET | - | Electroplating | Sensors | [137] |
Co/CoCo2O4 | NWs | 400 nm; 4 × 107 cm−2 | PET | 12.0 | Electroplating | CO adsorption, Catalysis | [108] |
FeCo–Fe2CoO4/ Co3O4 | NWs | 400 nm; 4 × 107 cm−2 | PET | 12.0 | Electroplating | Catalysis | [138] |
Pd@Pt | NTs | 400 nm; 1.5 × 108 cm−2, | PC | 20.0 | Electroless | Electro-oxidation of methanol | [115] |
Ir | NPs | 400 nm; 1.5 × 108 cm−2 | PC | 25.0 | Electroless | Catalysis | [139] |
Cu | NTs | 390–400 nm; 4 × 107 cm−2 | PET | 12.0 | Electroless | Catalysis Heavy metal ion sorption | [119,122,124,140] |
Pd | NPs | 410 nm; 4 × 107 cm−2 | PVP-g-PET | 12.0 | Electroless | Catalysis | [66] |
NiFe@Au | Nanobeads | 80 nm; 5 × 107 cm−2 | PET | 11.0 | Electroless | Immunocapture of nanocarriers | [130] |
Protein@Au | NTs | 400 nm; | PC | 10.0 | Electroless | Biodevices in biochemical and biomedical application | [141] |
Au Ag | NTs | 400 nm | PET | 12.0 | Electroless | Catalysis | [117,142,143] |
Sr(CaP) | NTs | 200 nm; | PC | 20.0 | Electroless | Biomedical | [144] |
NiCo | NTs | 650 nm; 1.0 × 108 cm−2 | PC | 30.0 | Electroless | Catalysis | [145] |
Ni2O3@Cu | NTs | 400 nm 4.0 × 107 cm−2 | PC | 20.0 | Electroless | Catalysis | [125] |
Au | Nanoflowers | 50 nm | PC | 20.0 | Electroless | SERS sensor | [146] |
Au | NTs | 30 nm; 6.0 × 108 cm−2 | PC | 10.0 | Electroless | Molecular sieving | [147] |
Rh | NTs | 100–400 nm; 1 × 108 cm−2 | PC | 30.0 | Electroless | Catalysis | [148] |
Bi | NTs | 2.5 × 108 cm−2 | PC | 25.0 | Electroless | CO2 reduction, heavy metal sensing | [149] |
Ir@Bi | NTs | 400 nm | PC | 25.0 | Electroless | Degradation of dyes; Pb (II) sensing | [150] |
Pt | NPs | 500 nm; 3 × 107 cm−2 | PI | 2.0 | Radiation-Induced | - | [151] |
Pd | NPs | 100–200 nm; | PET | - | Electroless | Gas separation | [152] |
Cu/CuO | NTs | 430 nm; 4 × 107 cm−2 | PET | 12.0 | Electroless | Catalysis Heavy metal ion sorption | [32] |
Au, Ag | NPs | 400 nm | PAA-g-PET | 12.0 | Radiation-induced | Catalysis | [64] |
Pt | NPs | 500 nm; 3 × 107 cm−2 | PI | 2.0 | Radiation-induced | - | [151] |
Cu(OH)2 Cu | NPs | 400 nm | PAA-g-PET | 12.0 | Radiation-induced | Catalysis | [128] |
HKUST-1 | NPs | 300 nm; 5 × 108 cm−2 | PET | 12.0 | Layer-by-layer coating | Separation | [153] |
Ti | NPs | 100–150 nm | PC, PET | 30.0 25.0 | Vacuum evaporation (10−6 Torr) | H2 purification | [154] |
Deposition Time, h | Rate Constant, min−1 | |
---|---|---|
ASI (Au/Ag/PET) | ASII (Au/PET) | |
1 | 0.087 ± 0.02 | 0.041 ± 0.01 |
5 | 0.084 ± 0.01 | 0.074 ± 0.02 |
24 | 0.082 ± 0.005 | 0.05 ± 0.01 |
Cycles | Apparent Constant Rate [k × 10−3 min−1] p-NP to p-AP | Conversion of Initial Reagent p-NP to p-AP |
---|---|---|
1st | 85.0 | 89.8% |
2nd | 69.3 | 87.1% |
3rd | 66.5 | 80.3% |
Test Mode | Test Run | k × 10−2, min−1 | p-NP Conversion | Ea, kJ/mol |
---|---|---|---|---|
Static | 1 | 5.1 ± 0.4 | 98.4 ± 4.1 | 28.32 |
2 | 3.6 ± 0.2 | 95.0 ± 3.2 | ||
3 | 3.5 ± 0.3 | 88.2 ± 4.0 | ||
Flow | 1 | 56.3 ± 11.5 | 78.7 ± 8.5 | 97.57 |
2 | 9.8 ± 1.2 | 34.6 ± 3.8 | ||
3 | 1.8 ± 0.1 | 14.9 ± 2.8 |
Loaded Catalyst | Investigated Nitro Compound | k, min−1 | Ea, kJ mol−1 | D, % |
---|---|---|---|---|
Cu/CuO/PET TeMs (5 h, 140 °C) | p-NP | 0.29 | 39.9 | 98.1 |
p-NA | 0.26 | 13.4 | 90.6 | |
p-NBA | 0.30 | 52.3 | 83.9 |
Stabilizer | Solution 1 (Citrate Stabilized) | Solution 2 (EDA Stabilized) |
---|---|---|
IrCl3·xH2O | 5 mM | 3 mM |
EDA | - | 18 mM |
Na3C6H5O7·2H2O | 20 mM | - |
HCl | 15 mM | - |
NaBH4 | 50 mM (added slowly) | 60 mM |
Type of CTeM | Membrane | Utilized Nitro Compound | Rate Constant, k | Decomposition Degree, D, % | Ea, kJ/mol | Cycles | Refs. |
---|---|---|---|---|---|---|---|
Ag/PC | PC TeM (30 µm, 1 × 108 cm−2) | p-NP | 0.053 s−1 | - | - | - | [116] |
Au/PET | PET TeM (12 µm, 1 × 109 cm2) | p-NP | 0.074 ± 0.02 min−1 | 98.1 | - | 5 | [155] |
Ag/PET | PET TeM (12 µm, 1 × 109 cm−2) | p-NP | 0.085 min−1 | 89.8 | 51.19 | 3 | [29] |
Pd/PC | PC TeM (30 µm, 1 × 108 cm−2) | p-NP | 0.06 s−1 | - | - | - | [156] |
Au/PEI-g-DOPA/PET | PEI-g-PET TeM (1.5 × 108 cm−2) | p-NP | 0.00409 s−1 | 99% at 40 L m −2 h−1 permeation rate | - | 11 | [30] |
Au/PET-Ox | PET TeM (12 µm, 4 × 107 cm−2) | p-NP | 0.0466 ± 0.0031 min−1 | - | - | - | [117] |
Cu/PET | PET TeM (12 µm, 4 × 107 cm−2) | p-NP | 56.3 ± 11.5 × 10−2, min−1 (flow mode) 5.1 ± 0.4 × 10−2, min−1 (static mode) | 78.7 ± 8.5 (for flow mode) 98.4 ± 4.1 (for static mode) | 28.32 (static mode) 97.57 (flow mode) | 3 | [157] |
Cu/CuO/PET | PET TeM (12 µm, 4 × 107 cm−2) | p-NP | 0.29 min−1 (reduction of p-NP) | 98.1 (reduction of p-NP) | 39.9 (reduction of p-NP) | 5 | [32] |
p-NA | 0.26 min−1 (reduction of p-NA) | 90.6 (reduction of p-NA) | 13.4 (reduction of p-NA) | ||||
p-NBA | 0.30 min−1 (reduction of p-NBA) | 83.9 (reduction of p-NBA) | 52.3 (reduction of p-NBA) | ||||
Ir/PC | PC TeM (25 µm, 1.5 × 108 cm−2) | p-NP | at 25 °C 0.033 min−1 at 35 °C 0.043 min−1 at 60 °C 0.082 min−1 | 80 | 21.3 | 8 | [139] |
Ni@Au/PET | PET TeM (12 µm, 4 × 107 cm−2) | p-NP | 0.0017 s−1 | 80 | - | 5 | [103] |
Cycles | Apparent Constant Rate [k × 10−3 min−1] H2O2 Decomp. | Conversion of Initial Reagent H2O2 Decomp. |
---|---|---|
1st | 16.5 | 73.53% |
2nd | 7.0 | 54.7% |
3rd | - | - |
Deposition Time, min | 1 × 109 Ion/cm2 | 4 × 107 Ion/cm2 | ||||
---|---|---|---|---|---|---|
t, min | V (O2), mL | k, min−1 | t, min | V (O2), mL | k, min−1 | |
30 | 215 ± 27.8 | 60 ± 1.3 | 8.7 ± 0.95 | 185 ± 15 | 58.6 ± 1.3 | 12.3 ± 1.49 |
60 | 165 ± 17.3 | 57.3 ± 4.1 | 15.2 ± 3.4 | 180 ± 8.7 | 59 ± 0.9 | 13.0 ± 3.0 |
180 | 193 ± 40.1 | 60.3 ± 2.3 | 11.1 ± 1.85 | 175 ± 8.7 | 59.53 ± 0.4 | 12.4 ± 0.38 |
300 | 220 ± 20.0 | 61.7 ± 0.4 | 9.33 ± 0.83 | 155 ± 25.0 | 60.1 ± 0.8 | 14.9 ± 2.15 |
Type of CTeM | Polymer Template | Utilized Compound | k, min−1 | Ea, kJ/mol | D, % | References |
---|---|---|---|---|---|---|
Ag/PET | PET (12 µm, 4 × 107 cm−2) | H2O2 | 12.3 ± 1.49 (for 30 min Ag deposition time) | 34.35 | - | [182] |
14.9 ± 2.15 (for 300 min Ag deposition time) | 39.25 | - | ||||
Cu_Asc/PET | PET (12 µm, 4 × 107 cm−2) | K3[Fe(CN)6] | 0.4 | 7.1 | 94.4 | [121] |
Cu_DMAB/PET | PET (12 µm, 4 × 107 cm−2) | Cr (IV) | 0.017 | 10.8 | 99.88 | [140] |
Cu_Gly/PET | 0.156 | 35.96 | 99.56 | |||
Cu_CHOH/PET | 0.249 | 37.00 | 41.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashentseva, A.A.; Sutekin, D.S.; Rakisheva, S.R.; Barsbay, M. Composite Track-Etched Membranes: Synthesis and Multifaced Applications. Polymers 2024, 16, 2616. https://doi.org/10.3390/polym16182616
Mashentseva AA, Sutekin DS, Rakisheva SR, Barsbay M. Composite Track-Etched Membranes: Synthesis and Multifaced Applications. Polymers. 2024; 16(18):2616. https://doi.org/10.3390/polym16182616
Chicago/Turabian StyleMashentseva, Anastassiya A., Duygu S. Sutekin, Saniya R. Rakisheva, and Murat Barsbay. 2024. "Composite Track-Etched Membranes: Synthesis and Multifaced Applications" Polymers 16, no. 18: 2616. https://doi.org/10.3390/polym16182616
APA StyleMashentseva, A. A., Sutekin, D. S., Rakisheva, S. R., & Barsbay, M. (2024). Composite Track-Etched Membranes: Synthesis and Multifaced Applications. Polymers, 16(18), 2616. https://doi.org/10.3390/polym16182616